
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

175

This work is supported by the Natural Science Foundation of China
(60373072), National 973 Program (2002CB312001) and the Science
Development Foundation of Education Committee of Shanghai.

Constructing the Reaching Region Graph for Timed

Automata with PVS

Huaikou Miao, Qingguo Xu

School of Computer Engineering and Science, Shanghai University
No. 149, Yanchang Rd., Shanghai 200072, P. R. China

Summary
Based on our existing works, this paper firstly gives clock region
equivalence PVS specification, and then constructs the reachable
region graph for a given Timed Automaton (TA) via
characterizing some kinds of clock regions, finally analyses the
reachable states using the region graph. These works can
conveniently analysis some real-time system in the form of TA
model. A case study is investigated and the results are satisfying.
As a by-product, an error is detected in the region-equivalence
definition which is extensively referred in many papers.

Key words:
Timed Automata, Clock region, Region equivalence, Reachability
analysis, PVS

1. Introduction

Timed automata (TAs) are a specification and verification
model for timed systems [1], systems that involve
real-valued variables. The problem that underlies the
safety verification for a TA is reachability: can an unsafe
state be reached from an initial state by executing the
system? The traditional approach to reachability in model
checking techniques attempts to construct region timed
automaton or zone automata for a given TA. Almost of this
kind of works are carried out in programming language.
In this paper, we want to introduce the region construction
techniques in PVS (Prototype Verification System), a
well-known formal verification tool developed by SRI
International. Other research works [2, 3, 9, 12] about
modeling and verifying real-time system modeled by TA
using PVS only consider the deduction method. These
works share a common shortcoming: the reachable states
space for a TA cannot be determined using PVS.
The works in this paper are the extensions to our previous
works [13], a mechanized system called FVofTA (Formal
Verification of Timed Automata) for specifying and
reasoning about real-time systems using TA theory in PVS.
The overall structure of FVofTA is shown in Figure 1.
Some preliminaries may refer to [13].

real -t i me model i ng i n PVS

TA syntax &
semanti cs

cl ocks
mani pul at i on

PVS speci f i cat i on
l anguage

model checki ng
techni ques

PVS prover
strategi es t i med temporal l ogi c

mechani zed proof system

The rest of this paper is organized as follows. Section 2
introduces the formal syntax and semantics for timed
automata. Section 3 investigates the clock regions and its
classifications with the corresponding characterizations.
Section 4 firstly formalizes the clock region equivalence
theory, and then details the PVS implementations about the
region automaton construction method and the reachability
analyzing techniques using model checking algorithm, as
well as a sample case study. The related works are
discussed in section 5. Finally, the conclusions and the
future works under consideration are sketched out.

2. Timed Automata Model

The Timed Automata [1, 8] for modeling real-time system
was invented by Rajeev Alur and David L. Dill. In order to
model timed behaviors, the clock constraints and the clock
interpretations should be firstly defined.

Definition 1 clock interpretations
A clock interpretation v for a set C of clocks assigns a real
value to each clock. It is a mapping from C to the set of
nonnegative real numbers. ■

Figure 1. The Structure of FVofTA

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

176

Definition 2 clock constraints
For a set of C of clock variables, the set Ф(C) of clock
constraints ϕ is defined as

1 2: | | | | /\ϕ ϕ ϕ= ≤ ≤ < <x c c x x c c x

where x is a clock in C and c is a constant in , the set of
nonnegative rational numbers. ■
We say that a clock interpretation v for C satisfies a clock
constraint ϕ over C if and only if ϕ evaluates to true
according to the values given by v. For δ∈ , v+δ denotes
the clock interpretation which maps every clock x to the
value v(x)+ δ. For Y⊆C, v[Y:=0] denotes the clock
interpretation for C that assigns 0 to each x∈Y, and agrees
with v over the rest of the clocks.
Timed Automaton (TA) is finite state systems with some
clocks, and the formal definition for TA is as follows:

Definition 3 Timed Automata
A timed automaton is a tuple<L, L0, Σ, E, C, Inv, Gad, Rst>
with

 L, a finite set of locations with initial locations set
L0⊆L

 Σ, a finite set of labels
 E⊆L×Σ×L, a set of edges (also called switches)
 C, a finite set of clocks
 Inv: L→Ф(C) , a function that assigns to each

locations l∈L an invariant Inv(l)
 Gad: E→Ф(C), a function that labels each edge e∈E

with a clock constraint Gad(e) (called guard) in Ф(C)
over C, and

 Rst: E→2C, a function that assigns to each edge e∈E
a set of clocks Rst (e).

L×Σ×2C×Ф(C) ×L is a set of switches. A switch
, , , , 's a sϕ λ< > represents a transition from location s to

location s' on symbol a, if e=(s, a, s') is in E, ϕ = Inv(s) /\
Gad (e) is enabled, and λ = Rst (e). ■
Definition 3 is a little different from that given in [8] to
some extent. Using our definition here, it is easy to
generate ϕ automatically for every switch

, , , , 's a sϕ λ< > using the conjunction of Gad and Inv.
The semantics of a TA A is defined by associating a
transition system SA with it.
Definition 4 Transition System
Transition System is a tuple 0, , ,< Σ →>Q Q , where

 Q is a set of states,
 Q0 ⊆ Q is a set of initial states,
 Σ is a state of labels (or events), and
 →⊆ ×Σ×Q Q is a set of transitions.

For a transition <q, a, q'> in →, we write '⎯⎯→
aq q . The

system starts in an initial state, and if '⎯⎯→
aq q then the

system can change its state form q to q'. We write
'→q q if '⎯⎯→

aq q for some label a. * '→q q denotes
that state q' is reachable from the state q. ■
Thus, a state of SA is a pair (s, v) such that s is a location of
TA A and v is a clock interpretation for clock set C such
that v satisfies the invariant Inv(s). The set of all states of A
is denoted QA. A state (s, v) is an initial state if s is an
initial location of A and v(x) =0 for all clocks x. There are
two types of transitions in SA :

 State can change due to elapse of time: for a state (s,
v) and a real-valued time increment δ≥0,
(,) (,)δν ν δ⎯⎯→ +s s if

', 0 ' , 'δ δ δ ν δ∀ ≤ ≤ + satisfies the invariant Inv(s),

 State can change due to a locations-switch: for a state
(s, v) and a switch , , , , 's a sϕ λ< > such that v
satisfies φ, (,) (, [: 0])s sαν ν λ⎯⎯→ = .

Based on this point, a run for A is defined by a state
sequences starting from an initial state and triggered by an
action (time-delay or locations-switch).

3. Region Graph Construction

3.1 Clock Region and Its Characterization

For any δ∈ , fr(δ) denotes the fractional part of δ, and ⎣δ⎦
denotes the integral part of δ; that is δ = ⎣δ⎦ + fr(δ). For
each clock x∈C, let cx be the largest integer c such that x is
compared with c in the some clock constraint appearing in
an invariant or a guard. Base on these notations, Rajeev
Alur gave the formal definition about region equivalence ≅,
which is an equivalent relation and defined over the set of
all clock interpretations for C:

Definition Region Equivalence [8] (inaccurate)
 For two clock interpretations v and v', v≅ v' iff all the
following conditions hold:

 For all x∈C, either ⎣v (x)⎦ and ⎣v '(x)⎦ are the same, or
both v(x) and v '(x) exceeds cx.

 For all x, y∈C with v (x) ≤ cx and v (y) ≤ cy , fr(v (x))
≤fr(v (y)) iff fr(v '(x)) ≤fr(v '(y)).

 For all x∈C with v (x) ≤ cx, fr(v (x)) = 0 iff fr(v '(x)) =
0. ■

Unfortunately, some faults are found if we investigate the
above definition thoroughly. For example, considering two
clock interpretations over C = {x} with v(x) = cx + 0.5 and
v'(x) = cx, according to the definition, v ≅ v' holds because
the antecedent v(x) ≤ cx in the third condition is false, but
v' ≅ v does not. This fault was captured by modeling and
verifying this inaccurate definition with PVS. Now we
give the following correct definition:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

177

Definition 5 Region Equivalence
 For two clock interpretations v and v', v≅ v' iff all the
following conditions hold:

 For all x∈C, v (x) ≤ cx iff v '(x) ≤ cx.
 For all x∈C with v (x) ≤ cx, ⎣v (x)⎦ = ⎣v ' (x)⎦ .
 For all x, y∈C with v (x) ≤ cx and v (y) ≤ cy , fr(v (x))

≤fr(v (y)) iff fr(v '(x)) ≤fr(v '(y)).
For all x∈C with v (x) ≤ cx, fr(v (x)) = 0 iff fr(v '(x)) = 0. ■
A clock region for a TA A is an equivalence of clock
interpretations induced by ≅. [v]denotes the clock region to
which v belongs. Each clock region can be uniquely
characterized by a (finite) set of clock constraints it
satisfies. The number of clock regions is finite. For a clock
constraint ϕ of TA A, if v ≅ v' then v satisfies ϕ iff v'
satisfiesϕ.

Each region can be represented by specifying
(1) for every clock x, one clock constraint from the

set
{x=c| c=0,1,..,cx}∪{c-1 < x < c | c =1,..,cx }
∪{x > cx }

(2) for every pair of clocks x and y such that c-1<x<c
and d-1 < y <d appear in (1) for some c, d,
whether fr(x) is less than, equal to, greater than
fr(y).

Region equivalence relation ≅ over the clock
interpretations can be extended to an equivalence relation
over the state-space by requiring equivalent states to have
identical locations and region-equivalent clock
interpretations: (l,v) ≅ (l',v') iff l = l' and v ≅ v'. Because the
stability property [8] of region-equivalence relation.
Now we consider the evolution of a clock interpretation v
due to elapse of time. As time elapses in a TA, v moves
along the diagonally upwards direction since all the clocks
have the same rate. Because all the cock interpretations in
one clock region has the same timed behavior, we choose
one as a representative and postulate it has only one
time-successor.

Definition 6 Region's Time Successor [1]
A clock region α' is a time successor of a clock region α
iff for each v∈α, there exists a t∈ such that v'= v + t ∈α'.
■
For an arbitrary clock region [v], ∀x, v(x) > cx, we call it a
bound-exceeded region. A bound-exceeded region is a
time successor of itself. If [v] isn't a bound-exceeded and
∀x, v(x) ≤ cx ⇒ fr(v(x)) = 0, we call it a point region and

postulate t in Definition 6 is 0.5. If ∀x,y, v(x) ≤ cx & v(y) ≤
cy ⇒ fr(v(x)) = fr(v(x)) ≠ 0, we call it a diagonal region and
postulate t in Definition 6 is 1- fr(v(x)). Other clock
regions forms a polyhedron in the n-dimensional euclidean
space in general, we definition m = 1 - max{fr(v(x)) | v(x)
≤ cx}, and if ∃x: v(x) ≤ cx & fr(v(x)) = 0, then we call this
kind of region polyhedron region I and postulate t = m/2;
and the last kind of clock region is called polyhedron
region II and t = m. These can be summarized in Table 1.
We call this time successor computed via the above
algorithm next clock region, and denote [v'] = [next(v)] if v'
is the time successor of v.

3.2 Constructing Reachable Region Graph for TA

Because the region equivalence ≅ over clock interpretation
is stable, i.e., a bisimulation of the time-abstract transition
system [8], we can construct a reachable region graph for a
given TA with the aid of Table 1.

Definition 7 reachable region automaton
For a TA A= <L, L0, Σ, E, C, Inv, Gad, Rst>, Let RA be its
transition system and of the form of Definition 4, called
region automaton.

 The states of RA are of the form <s,α> where s∈ L,
and α is a clock region.

 The initial states are of the form <s, [v0]> where
s0∈L0, and v0(x) = 0 for all x ∈C.

 State can change due to (1) a next step, i.e.,
(,[]) (,[()])ts s nextν ν⎯⎯→ if both v and v' satisfies the
invariant I(s) and t is the same as that in Table 1, or
(2) a locations-switch: for a state (s, [v]) and a switch

, , , , 's a sϕ λ< > such that v satisfies φ,
(, []) (, [[: 0]])s sαν ν λ⎯⎯→ = .■

For a given TA A, the reachable region automaton RA given
in Definition 7 and SA given in Sections 2 are bisimilar as
transition systems, the proof can be found in [7]. Therefore,
some properties of TA A can also be investigated over RA.
A location in target locations LF⊆ L of TA A is reachable in
SA iff exists an equivalence class π of ≅ such that π
contains a state whose location is in LF. Therefore, the
reachability problem can be solved in RA rather than in SA.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

178

4. Implementation in PVS

4.1 PVS
PVS [4] is a specification and verification environment
developed by SRI International's Computer Science
Laboratory. It provides an integrated environment for the
development and analysis of formal specifications, and
supports a wide range of activities involved in creating,
analyzing, modifying, managing, and documenting
theories and proofs. In distinction to other widely used
proof systems, such as HOL and the ACL2 theorem prover,
PVS supports both a highly expressive specification
language and an interactive theorem prover in which most
low-level proof steps are automated. The system consists
of a specification language [5], a parser, a type checker,
and an interactive proof checker [6]. The PVS
specification language is based on a richly typed
higher-order logic that permits a type checker to catch a
number of semantic errors in specifications. The PVS
prover consists of a set of inference steps that can be used
to reduce a proof goal to simpler sub goals that can be
discharged automatically by the primitive proof steps of
the prover. The primitive proof steps incorporate
arithmetic and equality decision procedures, automatic
rewriting, and BDD-based boolean simplification.
Specifications in PVS consist of one or more theories.
Each theory may be parameterized and may import other
theories. In proving theorems in PVS, users can apply a
sequence of primitive proof steps. In addition to primitive
proof steps, PVS supports more complex proof steps
called strategies, which can be invoked just like any other
proof step. Strategies may be defined using primitive proof
steps, applicative Lisp code, and other strategies, and may
be built-in or user-defined. It is very convenient for us to

formalize a system and prove the corresponding theorems.

4.2 Preliminaries
Some preliminaries, i.e., some underlying theories for
characterizing clock region, must be firstly developed.
Figure 2 gives the PVS specification about clock region
equivalence, where fr is the abbreviation of prelude
function [11] fractional. The theory Region_equiv is based
on our existing works [13] which include the theories Time,
clock interpretation and clock constraints etc. The
functions exb, point, diag, ply1 and ply2 characterize the
classifications for clock region shown in Table 1
respectively. The recursive function is used to calculate the
maximum fractional part over the clocks whose values
don't exceed their bound in a clock interpretation. The
function next is defined according to Table 1. The
formulae lem44_1~44, which are copied from the lemma
44 in [6], formally depict some properties of clock region.

4.3 Region Automaton theory in PVS
We have some theories and templates about modeling TA
system in [13]. Here we suppose the TA model PVS
specification has been established. That is to say, we have
owned the definitions for TYPE States, Runs, time-delay
step delta function and locations-switch transition
locswitch between two States, etc.
Based on the theory Region_equiv, we can construct the
reachable region graph for a given TA structure with PVS.
We restrict the time-elapse step instead giving the region
graph explicitly in the PVS specification shown in Figure
3. In other words, the transition system starts from the
initial states, and each transition is triggered by the RStep
function defined over two states.
In this theory, we can carry out the reachability states
analysis, i.e. , encoding a search algorithm in PVS.

Table 1. Classification of Clock Region
Category
No.

Category Name Characterization t in Definition 6 Next region
Category

E bound-exceeded region ∀x, v(x) > cx 0 E

P point region ∀x, v(x) ≤ cx ⇒ fr(v(x)) = 0 0.5 D or U

D diagonal line region ∀x,y, v(x) ≤ cx & v(y) ≤ cy

⇒ fr(v(x)) = fr(v(x)) ≠0

1-fr(v(x)),

where v(x) ≤ cx

P

PI polyhedron region I (∃x: v(x) ≤ cx & fr(v(x)) = 0) &

(∃x, v(x) ≤ cx & fr(v(x)) ≠0)

m/2 E or PII

PII polyhedron region II ∀x, v(x) ≤ cx ⇒ fr(v(x)) ≠0 m PI

Note: (1) the characterization for Categories P, D and PII omit the conjunction ∃x: v(x) ≤ cx.

 (2) m = 1 - max{fr(v(x)) | v(x) ≤ cx}

(3) Categories PI and PII may be degraded to P and D respectively if the dimension decreases. So this

classification is not disjoint pairwise.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

179

4.4 Reachability Analysis
A location s of timed automaton A is said to reachable if
some state if some state q with location component s is
reachable in the corresponding region automaton RA.
Because the finity of the region space, it is possible to
transverse using some search algorithm.
In order to implement this function, a new type SL defined
as list[States] is firstly introduced. This type of variable or
constant can be used to restore a list of states which are in
a certain order. An overloaded member function for TYPE
SL is recursively defined with respect to region
equivalence, that is to say, a state s belongs to a list of

states sl iff s is equal to the head element of sl or belongs
to its tail list in the essence of region equivalence. The
succ function is used to compute the entire successor states
for a single state, where AIdx is a function that maps a
natural number which is below NA, the number of actions,
onto an action. This definition is based on the fact that the
next state is achieved by a delay transition or an action in
RA. The reachable state set of TGC system can be acquired
by BFS (breadth first search) or DFS (depth first search)
with the aid of succ. Here a sample BFS algorithm BFS
shown in Figure 4 is given using recursive function, which

RegionAutomaton: THEORY BEGIN
…. % Importing a TA Model PVS specification, so we have the definition

% about TYPE and the transition function, as well as the TA structure.
s, s1, q, q1, u, u1 : VAR States;
A: VAR Actions
IMPORTING region_equiv[N, c];

~(s, s1): bool = loc(s) = loc(s1) AND v(s) ~ v(s1)
bisem(q, u): bool = ∀q1: q ~ u & Step(q, q1) ⇒
 (∃u1: Step(u, u1) & q1 ~ u1);
Stable: THEOREM bisem(q, u)
nd(s): States = s with [v := next(s`v)]
locswitch(s, A): States =(# loc := Edge(s0`loc, A), v := reset(s0`v)(ResetC(A)))
RStep(s,s1) : bool = s`v |= Inv(s`loc) & s1`v |= Inv(s1`loc) &

(s1 = nd(s) OR (∃A: s1 = locswitch(s, A) AND s`v |= Guard(A))
…

END RegionAutomaton

Figure 3. The Theory Region Automaton

RegionAutomaton: THEORY BEGIN
….

s, s1, q, q1, u, u1 : VAR States;
SL: TYPE = list[States]
member(s, (l: SL)): RECURSIVE bool =
 CASES l OF null: FALSE, cons(hd, tl): s ~ hd OR member(s, tl) ENDCASES

MEASURE length(l)
succ(s)(i: upto[NA]): RECURSIVE SL = IF i = NA THEN null[States]
 ELSE LET A = AIdx(i), s1 =locswitch(s, A) IN

 IF (s`v |= (Inv(s`loc) AND Guard(A)) & s1`v |= Inv(s1`loc) THEN cons(s1,
succ(s)(i + 1)) ELSE succ(s)(i + 1) ENDIF

 ENDIF MEASURE NA - i
succ(s): SL = LET s1 = nd(s), sa = succ(s)(0) IN
 IF ((s`v |= Inv(s`loc)) & (s1`v |= Inv(s`loc))) THEN cons(s1, sa)
 ELSE sa ENDIF
BFS(sl, vl: list[States]): RECURSIVE list[States] = CASES sl
 OF null: reverse(vl),
 cons(s, l): IF member(s, vl) THEN BFS(l, vl)
 ELSE BFS(append(l, succ(s)), cons(s, vl)) ENDIF
 ENDCASES MEASURE …
initS: States = (# loc :=..., v := zero #)
reachable(s) : bool = member(s, BFS((: initS :), (: :)))
NonDeadlock : THEOREM reachable(s) & (NOT null?(succ(s)))

END RegionAutomaton

Figure 4. Reachability Analysis via BFS

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

180

is implemented by maintaining a visiting and a visited
states list. The recursive process must be terminated
because of the finity of the region space. Based on these
works, the system behaviors can be investigated. For
example, as a correct and robust real-time system, the
theorem NonDeadlock about deadlock-freedom, which
claims for all the reachable states, there must exist at lest
one successor must be ensured, is formalized in this theory.
Once the reachable states are calculated, the safety
property, which asserts some bad states will never be
entered, can be verified.
We have tested this PVS specification via investigating
a case study TGC (Train-Gate-Controller) system [8]
shown in Figure 5, about which modeling details can
refer to [13]. Using some interactions in PVS prover, we
can prove that the reachable locations for TGC system
are the set {S0T0U0, S1T0U1, S1T1U0, S1T2U0,
S2T2U0, S3T2U0, S0T2U2, S0T3U0, S1T3U1}, where
Si, Tj and Uk represent the corresponding location for
the three components Train, Gate and Controller
respectively. Therefore, we can assert that the TGC
system is safe because the unsafe states (with the
location component S2 for Train and non-T2 for Gate
respectively) are not in the reachable states.

S0 S1
x<=5

S2
x<=5

S3
x<=5

Trai n

approach, x: =0

ex
it

out

x>2,
enter

T0 T1
y<=1

T2T3
y<=2

Gat e

l ower, y: =0

y>
=1

,u
p

rai se, y: =0

down

U2
z<=1 U0 U1

z<=1

Cont rol l er

approach, z: =0

z=1, l ower

exi t , z: =0

rai se

5. Related Works and Discussions

One of the research work about formal verification for
real-time system based-on timed automata model using
theorem proving method had been conducted in TAME

(Timed Automata Modeling Environment) project [2] in
US Naval Research Laboratory. TAME provides
mechanical assistance that allows humans to specify and
reason about real-time systems in a direct manner.
Nevertheless, TAME doesn't supply some operation on
clocks. Therefore, it is inconvenient and unnatural to use
TAME especially in proving some properties about clocks
of TA. Another research work, which is conducted by Jozef

Hooman [9], gives the TA model theory and some lemmas
about the corresponding runs of TA in PVS. Our previous
work is a further development and application of [9], we
give the explicit definition for Runs of TA and show how
to construct product TA in PVS [12]. The works in [13] can
reduce the modeling loads for TA and its corresponding
operations in PVS to some extent.
The common shortcoming for both TAME and the works
of Jozef Hooman was that they didn't provide the
manipulation for the clocks, a very important notion in TA
theory. Therefore, some operations on TA, such as clock
region-equivalence or time-abstract application in terms of
clocks interpretation, and the formal verifications of some
properties defined over the clock variables became
unnatural and difficult.
We don't intend to compare the efficiency of BFS function
shown in Figure 5 with that of the other known model
checkers such as UPPAAL [14], Kronos [15] etc., because
our algorithm is implemented in PVS and others are
implemented using programming language, and therefore
they are not comparable in efficiency. But the
formalization to BFS can be used to verify correctness of
some search algorithm. Furthermore, this method can be
looked upon as a basis for detecting reachable states or
locations for TA after some improvements such that it can
be automatically carried out in the PVS prover. For
examples, developing some special strategies for FVofTA
should be helpful.

6. Conclusions and Future Works

Based on the our existing works [14], this paper firstly
gives clock region equivalence PVS specification, and then
constructs the reachable region graph for a given TA via
characterizing some kinds of clock regions, finally
analyses the reachable states using this graph. These works
can conveniently analysis some real-time system in the
form of TA model. As a by-product, an error is detected in
the region-equivalence definition which is extensively
referred in many papers.
The future works about the further extensions for FVofTA
mainly include the following parts:
(1) We want to establish the TTL (Timed Temporal Logic)

framework based on the TA modeling theory, and to
ensure that TTL formula can be verified using our
clock manipulation theories.

(2) The efficiency of model checking algorithms such as
BFS must be improved in PVS because PVS is used as
theorem prover assistant rather than algorithm
programming language despite that the correctness for
them will be ensured by the PVS proof system.

(3) Other model checking algorithms, such as checking the
TA's emptiness etc., are considered to be developed in
our system in the future.

Figure 5. Train-gate controller

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

181

References

[1] R. Alur and D.L. Dill. A theory of timed automata.

Theoretical Computer Science 126:183-235, 1994.
[2] M. Archer and C. Heitmeyer. TAME: A specialized

specification and verification system for timed automata.
1996 IEEE Real-Time Systems Symp., Washington, D.C.,
1996, 3-6.

[3] Thomas A. Henzinger and Vlad Rusu. Reachability
verification for hybrid automata. Proceedings of the First
International Workshop on Hybrid Systems: Computation
and Control (HSCC), Lecture Notes in Computer Science
1386, Springer, 1998, pp. 190-204.

[4] Owre S, Shankar N, Rushby J, Stringer-Calvert D. PVS
system guide version 3.2. Computer Science Laboratory, SRI
International, September, 2004, 1–95.

[5] Owre S, Shankar N, Rushby J, Stringer-Calvert D. PVS
language reference version 3.0. Computer Science
Laboratory, SRI International, February, 2003, 1–123.

[6] Shankar N, Owre S, Rushby J, Stringer-Calvert D. PVS
prover guide version 3.2. Computer Science Laboratory, SRI
International, September, 2004, 1–128.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
Cambridge: MIT PRESS, 1999, 265-292.

[8] R. Alur. Timed Automata. NATO-ASI 1998 Summer School on
Verification of Digital and Hybrid Systems.

[9] Jozef Hooman. Timed Automata in PVS. Summerschool
Zhengzhou, 2004.

[10] Owre S, Shankar N. Abstract Datatypes in PVS. Computer
Science Laboratory, SRI International, 1997,1-52.

[11] Owre S, Shankar N. The PVS Prelude Library. Computer
Science Laboratory, SRI International, 2003,1-31.

[12] Qingguo XU, Huaikou MIAO. Formal Verification
Framework for safety of Real-time System Based-on Timed
Automata Model in PVS, the IASTED International
Conference on Software Engineering, Innsbruck, Austria,
February 12-14, 2006, 107-112, ACTA Press 2006.

[13] Qingguo XU, Huaikou MIAO: Modeling Timed Automata
Theory in PVS. Proceedings of the International Conference
on Software Engineering Research and Practice, SERP, Las
Vegas, Nevada, USA, June 27-29, 2006. CSREA Press 2006.

[14] Johan Bengtsson, Wang Yi. Timed Automata: Semantics,
Algorithms and Tools, Johan Bengtsson and Wang Yi. In
Lecture Notes on Concurrency and Petri Nets. W. Reisig and
G. Rozenberg (eds.), LNCS 3098, Springer-Verlag 2004.

[15] S. Yovine. Kronos: A verification tool for real-time systems.
International Journal of Software Tools for Technology
Transfer, Vol. 1, Issue 1/2, pages 123-133, October 1997.

Huaikou Miao received the M.Sc
degree from Shanghai University of
Science and Technology in 1986.
After working as a lecturer (from
1986) and an associate professor
(from 1990) in the Department of
Computer Science, Shanghai
University of Science and
Technology, and an associate
professor (from 1994) in the School

of Computer Engineering and Science, Shanghai University. He
has been a professor at Shanghai University since 1997. His
research interest includes formal methods and software
engineering. He is a member of IEEE Computer Society.

Qingguo Xu received the B.S.
and M.S. degrees in Chemical
Engineering from East China
University of Metallurgy, (now
named Anhui University of
Technology) in 1995 and 1998,
respectively. During 1998-2002, he
worked as a research assistant, a
lecturer (from 2001) in system
engineering research laboratory in
Qingdao Institute of Chemical

Technology (now named Qingdao University of Science &
Technology). He now is a PHD. candidate in the School of
Computer Engineering and Science, Shanghai University. His
main research interest is about the formal verification and
validation of real-time system.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

