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Summary 
We investigate a transportation problem with 
discontinuous piecewise linear cost function in this paper. 
The basic feasible solution for the transportation problem, 
in which flow bounds on edges are uncertain, is obtained 
by disaggregating piecewise linear cost function. A genetic 
algorithm is proposed to solve the transportation problem 
based on the network representation of the basic feasible 
solution. A basic feasible solution is represented by the 
spanning tree that consists of all basic edges and nonbasic 
edges with positive flow amount. Sorted edge set is used 
to represent the spanning tree. Edges of a spanning tree are 
sorted by root first search pattern in the representation. 
Single point crossover operator and random pivot mutation 
operator are developed for effective and efficient evolution. 
Computational tests demonstrate our genetic algorithm not 
only can obtain better solution quality, but also is more 
efficient than the previous proposed genetic algorithm 
based on the matrix encoding. 
Key words: 
Transportation problem; discontinuous piecewise linear 
cost function; genetic algorithm; spanning tree 

1. Introduction 

The transportation problem with discontinuous piecewise 
linear cost function (the TPDPLC problem) arise in many 
practical applications areas. Some transportation problems 
with discount consideration have this kind of cost function, 
and some production planning and scheduling problems 
where production amount need to be divided into several 
small portions or setup time need be considered can also 
be modeled as this kind of transportation problem. Other 
applications can be found in telecommunications and 
logistics domain, and so on.  

Though it can be found in many applications, research 
on transportation problems with discontinuous piecewise 
linear cost function is not so rich. Transportation problems 
with discontinuous piecewise linear cost function can 
easily be formulated and solved as a mixed integer 
programming problem. Theoretically, any general mixed 
integer programming solution method can be used to solve 
this kind of problem, for example, branch and bound 
method, branch and cut method. However, these methods 

are generally inefficient and computationally expensive for 
the problems with large size.  

Metaheuristic methods, can obtain global optimal 
solution or approximately global optimal solution at the 
cost of less computational time, are preferable in practical 
industry applications. To the best of our knowledge, the 
matrix encoding genetic algorithm for generic nonlinear 
transportation problems developed by Michalewicz, et al. 
[1] is an only metaheuristic method relevant directly to our 
problem. They developed a genetic algorithm for the 
transportation problem with general nonlinear cost 
functions and demonstrated its superiority relative to 
off-the-shelf nonlinear programming solvers, such as 
GAMS, when cost functions are not smooth. However, 
solution quality and efficiency of the matrix encoding 
genetic algorithm are not so ideal, as an evolutionary 
algorithm. To improve solution quality and decrease 
computational time, we propose a genetic algorithm for 
transportation problems with discontinuous piecewise 
linear cost function based on the cost function 
disaggregation.  

Although the research on transportation problems with 
discontinuous piecewise linear cost function are lack, there 
are extensive relevant literatures on transportation 
problems. The first kind of relevant work is the fixed 
charge transportation problem. The fixed charge 
transportation problem is simplified version of the 
TPDPLC problem whose cost function has only one 
segment. The fixed charge transportation problem has 
been studied by many researchers from about four decades 
years ago. A number of exact solution algorithms are 
developed to solve the FCT problem, which include 
cutting plane approaches [2], vertex ranking methods [3, 
4], and branch and bound approaches [5, 6]. Some 
heuristic methods are also proposed [7, 8]. Recently, some 
metaheuristic methods are developed for the FCP problem. 
Sun et al. [9, 10] developed a tabu heuristic search 
procedure. Gottlieb and Paulmann proposed a matrix 
representation genetic algorithm [11]. Li et al. (1998) 
proposed a genetic algorithm where prüfer numbers are 
use to encode spanning tree [12]. 

The second kind of relevant work is network flow 
problems with piecewise linear cost functions. Network 
flow problem, where transportation network has several 
stages, is extension of transportation problem. Although 
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the literatures on network flow is rich, research concerning 
problems with piecewise linear cost functions is limited. 
Piecewise linear cost functions can be classified two 
categories. One category is piecewise linear convex or 
concave function. Balakrishnan and Graves develop a 
Lagrangian heuristic algorithm for the uncapacitated 
network flow problem with piecewise linear concave cost 
[13]. Aghezzaf and Wolsey model piecewise linear 
concave costs in a tree partitioning problem [14]. 
Cominetti and Ortega study minimum concave cost 
network flows [15]. They propose a branch and bound 
algorithm and improve the approximations and obtain 
better lower bound using sensitivity analysis. Chan et al. 
study the minimum concave cost multi-commodity 
network flow problem, and characterize structural 
properties of the optimal solution of the linear 
programming relaxation and propose a heuristic solution 
approach that uses these properties to transform the 
fractional solution into an integer one [16]. 

Another category is nonconvex and nonconcave cost 
function. Breakpoints occur generally between any two 
adjacent segments in the function, as studied in the paper. 
Croxton et al. examine a multi-commodity network flow 
problem with this kind of function [17]. They exploit the 
disaggregation techniques to solve a logistics problem 
called the merge-in-transit problem. Kim and Pardalos 
propose a dynamic domain contraction algorithm for the 
nonconvex piecewise linear network flow problem, which 
iteratively solves a series of linear network flow problems 
with dynamically adapted costs and restricted domains 
[18]. Gabrela et al. develop an exact algorithm for 
multicommodity network optimization with general step 
cost functions [19]. The proposed procedure may be 
viewed as a specialization of the well-known Benders 
partitioning procedure, leading to iteratively solving an 
integer 0-1 linear programming relaxed subproblem which 
is progressively augmented through constraint generation. 
The third kind of relevant work is the facility location and 
network design problems. Holmberg develops algorithms 
for the facility location problem with staircase cost using 
Bender’s decomposition and Lagrangian heuristic methods 
[20, 21]. However, most of the research in the areas of 
facility location and network design has focus on the fixed 
charge case. Blakrishnan et al. provide an annotated 
bibliography concerning network design problems up to 
1997 [22]. Crainic et al. proposed a bundle-based 
relaxation method for capacity fixed charge network 
design problems [23]. Magnanti et al. model and solve a 
two facility capacitated network loading problem [24]. 

2. Problem statement  

Given a transportation network G = (V, E) where V is the 
node set consisting of all source nodes and destination 

nodes, E is the arc set. Let m denote the number of source 
nodes, n the number of destination nodes, Ci the capacity 
of source node i, Dj the demand of destination j, (i, j) the 
arc from source node i to destination j, xi,j the flow amount 
on arc (i, j) (the decision variable). As shown in Fig. 1, we 
define the cost gi,j(xi,j) on arc (i, j) as a piecewise linear 
increasing function with a finite set of discontinuities. In 
addition, we assume that gi,j(0) = 0. 

Discontinuous piecewise linear function can be 
characterized by its segments. To any arc (i, j), each 
segment s has a nonnegative variable cost vi,j,s (the slope), 
a nonnegative fixed cost fi,j,s (the intercept), upper bound 
ubi,j,s of the flow and lower bound lbi,j,s of the flow. Each 
arc (i, j) has a finite number of segments because the total 
flow on arc (i, j) can be bounded the minimum value 
between the capacity of node i and the demand of 
destination j. we denote segments on arc (i, j) by the set Si,j 
= {1, 2, …, NBi,j}. Let lbi,j,1 = 0. It can be inferred that the 
problem is more difficult to solve if there are more 
segments on arc (i, j). With these notations, we can express 
the transportation problem with discontinuous piecewise 
linear cost as the following formulation:  
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In the above model, s∈Si,j, equation (1) and (2) is the 
capacity balance and the demand balance, respectively. 
The sum of flows on all arcs is related to source i (i = 1, 2, 
…, m)should be equal to the capacity of source i, Ci, on 
the right hand side of equation (1). The sum of flows on all 
arcs is related to destination j (j = 1, 2, …, n)should be 
equal to the demand of destination j, Dj, on the right hand 
side of equation (2). Inequality (3) restricts the flow 
amount on any arc must be larger than or equal to zero. 
Equation (4) defines the relationship between the flow 
amount on arc and cost. The objective function is the 
minimizing of the total transportation cost on all arcs. 
The TPDPLC problem is simplified to the fixed charge 
transportation problem if the number of segment is 
decreased to one (NBi,j = 1,∀ (i, j)). The equation (4) will 
be substituted by the following equation (5) and 
constraints (1)~(3) hold for the fixed charge transportation 
problem. 
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where fi,j is the fixed cost on arc (i,j). Since the fixed 
charge transportation problem version of the TPDPLC 
problem is known to be NP-hard, the TPDPLC problem is 
NP-hard as well. The paper [28] proved that the optimal 
solution for the fixed charge transportation problem occurs 
at one of extreme points defined by constraint in Equation 
(1)~(3). An extreme point is a basic feasible solution of the 
fixed charge transportation problem, which has m+n-1 
basic variables and they must be a spanning tree of the 
transportation network. However, since the cost function is 
nonconvex and nonconcave for the TPDPLC problem, the 
optimal solution of the TPDPLC problem need not be an 
extreme point of the convex set defined by constraints. It 
can occur within the convex set. Let X be the set of all 
feasible transportation assignment S.  
Definition 1. Let set Bk = {S | S∈X, lbi,j,s≤ xi,j≤ ubi,j,s}, 
where k is an mn vector with ((i-1)n+j)th component ki,j , 
and ki,j can be any value of set Si,j = {1, …, NBi,j}, and 
subindex s∈Si,j. Bk is called a basic set.  

The TPDPLC problem defined on a certain Bk can be 
seen as a fixed charge transportation problem with lower 
bound and upper bound constraints of the flow on each arc. 
The basic feasible solution of the TPDPLC problem on Bk 
is denoted by BFk∈(Fk, Lk, Uk) according to the network 
simplex method, where Fk is the set of m+n-1 basic arcs, 
Lk is the set of arcs whose flow are equal to lower bounds, 
and Uk is the set of arcs whose flow are equal to upper 
bounds.  
Definition 2. Let E[Bk] be extreme points of basic set Bk, 
we call the set D =∪kE[Bk] the dominant set. 
Then, the TPDPLC problem must be minimized at a point 
in set D. It’s evident that upper bound ubi,j,s is equal to 
lower bound lbi,j,s+1. Let set Bi,j be the bound set consisting 
of all upper bound and lower bound on arc (i, j). The 
number of elements is equal to NBi,j+1 in set Bi,j and kth 
component of set Bi,j is bi,j,k. The basic feasible solution of 
the TPDPLC problem can be denoted by BF∈(F, L, U), 
where F = ∪kFk, L = ∪kLk = {l | l = lbi,j,s, s∈Si,j},U = ∪
kUk = {u | u = ubi,j,s, s∈Si,j}. Let bound set B = L∪U = ∪
Bi,j, then BF∈(F, B). It means that the basic feasible 
solution of the TPDPLC problem has m + n - 1 basic arcs 
and mn - (m + n - 1) nonbasic arcs (lower bound or upper 
bound). 

The form of the basic feasible solution for the 
TPDPLC problem is similar to that for the general 
transportation problems and the network flow problems. 
However, a distinguish feature of the basic feasible 
solution for the TPDPLC problem is that the bounds of the 
flow on any edge (u, v) is not fixed and can be any value in 
bound set Bu,v (Bound of the flow on an edge for the 
general transportation problem and network flow problem 

can only one of two values, lower bound or upper bound. 
If the value of upper bound is unlimited, the flow bound is 
generally equal to zero). In our genetic algorithm, the 
problem is solved by the procedure called random bound 
selection procedure make using of the random search 
characteristic of genetic algorithm. 

 
Fig. 1 Discontinuous piecewise linear cost function 

3. Genetic algorithm 

Genetic algorithm is a probabilistic algorithm that may 
converge at global optimal solution. The standard 
procedure of genetic algorithm can be found from Gen and 
Cheng (2000). In the rest of this section, we describe 
representation of candidate solution, initiation, crossover, 
and mutation operators in detail. 

3.1. Sorted edge set encoding 

One of the most important factors of a genetic algorithm is 
the encoding by which the chromosome is used to 
represent candidate solutions. The matrix encoding is a 
primitive representation for the transportation problem 
because the arc set of transportation network can be seen 
as a standard matrix. The paper [1] uses the matrix 
encoding to represent the candidate solution for the 
TPDPLC problem. However, the matrix encoding has not 
enough merits to evolution effectively and efficiently, so 
we hope to find another coding that is more compact and 
more effective to evolutionary computation for the 
TPDPLC problem. 

Since the basic arcs of the basic feasible solution form 
a spanning tree of transportation network, the coding of 
spanning trees solution for the general transportation 
problems can be used for reference to encode the basic 
feasible solution for the TPDPLC problem. There is a 
variety of coding for spanning trees. They include 
link-and-node biasing [25], the preceding coding [26], 
prüfer numbers [12], edge sets [27], and so on. In these 
coding, edge sets coding, in which spanning trees are 
directly represented as sets of their edges, exhibits high 
locality that small changes in genotypes should correspond 
to small changes in solutions they represent and high 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 

 

185

 

heritability that solutions generated by crossover should 
combine features of their parents, and is proved to be a 
compact and effective coding for spanning tree. Moreover, 
edge sets coding can easily extend to represent the basic 
feasible solution for the TPDPLC problem. So we 
proposed a novel sorted edge set coding which not only 
inherit high locality and heritability of edge sets coding, 
but also extend edge sets coding to effective and efficient 
evolutionary computation for the TPDPLC problem.  

In the sorted edge set coding, chromosome c 
representing the basic feasible solution for the TPDPLC 
problem consists of two parts: one part is sub-chromosome 
f which maps the basic edge set, and another part is 
sub-chromosome z which maps the positive nonbasic edge 
set. The positive nonbasic edge is edge whose flow is 
larger than zero. Representing only positive nonbasic 
edges in chromosome is more compact and more 
reasonable than representing all nonbasic edges in 
chromosome because most of nonbasic must be equal to 
zero to satisfy demand constraints and capacity constraints. 
Gene of chromosome is characterized by edge (s, d) (the 
flow amount on edge (s, d) can be added into gene, but is 
omitted for convenience of description). The number of 
gene is fixed to m+n-1 in sub-chromosome f through 
whole evolutionary process. The number of gene in 
sub-chromosome z is not a constant and can be increased 
or reduced while the basic feasible solution represented by 
chromosome varies.  

All edges contained in chromosome c are sorted by a 
special rule. We assume spanning tree formed by the basic 
edges is T=(VT, ET), of which root node is r∈VT. 
Sub-chromosome f (one sorted edges set) can be attained 
through root first search that visit the node set VT-r as deep 
as possible from neighbor to neighbor before backtracking. 
Sorting all positive nonbasic edges by the order created, 
we can obtain sub-chromosome z (another sorted edge set). 
Different chromosomes can be obtained if different node is 
selected to be root of spanning tree. We can randomly 
select a node to be the root in the initialization operator of 
individual. In the evolutionary operators, the father node 
of the first edge of sub-chromosome f is the root of the 
spanning tree represented by the current chromosome. 
An important characteristic of sorted edge set with root 
first search pattern is the high efficiency of some basic 
operators on tree, for instance, it can be finished in O(|ET|) 
time to find a sub-tree whose root is any node r∈VT in tree 
T. 

3.2. Appending Edge procedure 

Creating spanning tree can be seen as a main procedure for 
creating new individuals. Positive nonbasic edges are 
produced during the creating spanning tree procedure. 
Moreove, AppendEdge procedure, which appends a new 
edge into the growing new individual, is a basic procedure 

in the initiation procedure and the crossover procedure. Let 
G=(V,E) be the transportation graph, T=(VT,ET) the 
growing tree where VT is the growing node set and ET is 
the growing edge set, PT the set of node of whose demand 
(capacity) is not fully satisfied (exhausted), EUB the 
nonbasic edge set, and D(u) the residual amount of node u. 
AppendEdge procedure is below: 
 
procedure AppendEdge (VT, ET, PT, EUB, V, E) 
If PT ≠φThen 

Select randomly a node u from the set PT; 
If ∃ (u,v)∈E-EUB, and v∈{V-VT} Then 

Select randomly an edge (u,v) from the set E-EUB, 
and v∈{V-VT}; 

Else 
Select randomly an edge (u,v) from the set EUB; 
EUB←EUB-(u,v); 
D(u)←D(u)+x(u,v); 
D(v)←D(v)+x(u,v); 

End If 
Else 

Select randomly a node u from the set VT where∃ (u,v)
∈E, and v∈{V-VT}; 

End If 
x(u,v)←min(D(u),D(v)); 
D(u)←D(u)-x(u,v); 
D(v)←D(v)-x(u,v); 
VT←VT∪{v}; 
ET←ET∪{(u,v)}; 
If D(u)=0 and u∈PT Then PT←PT-{u}; End If 
If D(v)≠0 Then PT←PT∪{v}; End If 
    

One AppendEdge procedure can not only add a new 
edge (u,v) into T, but also satisfy (exhaust) fully the 
demand (or the capacity) of node u or node v. In fact, the 
number of node in the set PT is always 1 before the 
finishing last time application of AppendEdge procedures 
whether in the initiation procedure or in the crossover 
operator. So time of choosing one node from set PT is thus 
constant. If a new edge (u,v)∈E-EUB can’t be found, then 
an extra task is removing a corresponding edge from set 
EUB (row 6~9 in AppendEdge procedures). Representing 
the graph G with adjacency list allows fast identification of 
the edges adjacent to each newly connected node, the 
identification operator’s time is O(|E|). 

3.3. Initiation  

As mentioned in section 3.1, the optimal solution of the 
TPDPLC problem need not be an extreme point of the 
convex set defined by constraints. It can occur within the 
convex set. However, we create only the extreme point 
solution for the initiation population, that is, the flow 
amount of each nonbasic arc is zero and sub-chromosome 
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z =φ in the initiation individuals. Since one AppendEdge 
procedure adds a new basic variable edge into T, |V|-1 
times AppendEdge procedures can create a new individual 
satisfying all constraints from scratch. It is known easily 
that the edges of sub-chromosome f must be sorted by the 
pattern of root first search. 

3.4. Crossover 

Given the parents P1 and P2. Let S1 denote offspring 
individual will be created. To avoid complex repair 
operator, we developed following single point crossover 
operator based on sorted edge set representation. 
Setp1: Choosing a random parent to be basic parent, for 

example, P1. A location k (0<k<|EP1|) is randomly 
chosen in basic variables sub-chromosome f of P1. 
The edge pointed at by locate k is ek = (uk, vk); 

Setp2: Visiting sequentially edges of sub-chromosome f 
(P1) of P1 from the location k, we can get a 
sub-tree T(P1, k) of spanning tree denoted by 
sub-chromosome f (P1). T(P1, k) = (VT(P1,k), ET(P1,k)) 
where |ET(P1,k)| < |EP1|. The root of sub-tree T(P1, k) 
is vk; 

Step3: Adding all nonbasic edge (u, v)∈EUB (P1) where u
∈VT(P1,k) - {vk} or v∈VT(P1,k) - {vk} and EUB (P1) is 
equivalent to sub-chromosome z (P1) into EUB (S1); 

Step4: |EP1| - |ET(P1,k)| - 1 times AppendEdge procedures are 
used to append |EP1| - |ET(P1,k)| - 1 basic edges to 
sub-tree T(P1,k)∪{ek}. In the appending process, 
if P2 has a feasible edge e = (u’, v’) where u’∈
PT(P1,k), e ∈ EP2 - ET(P1,k), AppendEdge (VT(P1,k), 
ET(P1,k), PT(P1,k), VP2, EP2) is used to append feasible 
edge e to growing T. Otherwise, AppendEdge 
(VT(P1,k), ET(P1,k), PT(P1,k), V, E) will be used to 
append feasible edge e∈E - EP2 - ET(P1,k) from 
graph G. 

Demand (capacity) of every element is satisfied 
(exhausted) in set VT(P1,k) because T(P1, k) is sub-tree of 
spanning tree T. So, the only parent node uk of edge ek is 
unsatisfied or unexhausted in all nodes of T(P1, k)∪{ek}. 
|EP1| - |ET(P1,k)| - 1 nodes must be inserted into sub-tree 
T(P1, k)∪{ek} using |EP1| - |ET(P1,k)| - 1 times AppendEdge 
procedures, and a new individual can be created. Moreover, 
the edges of sub-tree T(P1, k)∪{ek} must be sorted by the 
pattern of root-first search because all of these are inherit 
from parent individual P1. All edges of another sub-tree 
Tsub created by |EP1| - |ET(P1,k)| - 1 times AppendEdge 
procedures, of which root is node uk, are also sorted by the 
same pattern. If all edges of sub-tree Tsub are appended to 
the edge set of sub-tree T(P1, k)∪{ek}, we can get a new 
offspring individual that all edges of sub-chromosome f 
are sorted by the root first search pattern.    

3.5. Random pivot mutation 

The network simplex method is an efficiently method for 
solving minimum cost flow problem. It pivots from the 
current basic feasible solution to a better adjacent one 
through adding an entering basic variable and removing a 
leaving basic variable. The idea that new solutions can be 
found by only a small change in the parent individual is 
suitable for the mutation operator of the genetic algorithm 
for solving the TPDPLC problem. Given parent individual 
P whose spanning tree is T = (VT, ET), we choose 
randomly an element (i, j) from the nonbasic edge set E - 
ET as entering edge, instead of choosing a nonbasic edge 
which can improve the objective value at the fastest rate in 
the network simplex method. A circle cl is obtained after 
edge (i, j) is added to spanning tree T. However, it is not as 
simple as it might seem to choose a leaving edge (r, s)∈cl 
because bound of the flow on each edge (u, v)∈cl is not 
fixed and can be any value in bound set Bu,v as mentioned 
in section 2. The following procedure is used to choose an 
edge to leave spanning tree T.  
Step1: To entering edge (i, j)∈cl，we choose randomly 

the value of ki,jmaxUi,j where ki,j∈{1,…,NBi,j} and 
ki,jmaxUi,j ≠ x(i,j). If ki,jmaxUi,j < x(i,j) ， then 
ki,jmaxUi,j is set to the lower bound L(i, j) of edge (i, 
j). The difference △i,j = x(i, j) - ki,jmaxUi,j is used 
to estimate whether edge (i, j) should be the 
leaving edge. On the contrary, If ki,jmaxUi,j > x(i, j)，
then ki,jmaxUi,j is set to the upper bound U(i, j) of 
edge (i, j). The difference △i,j = ki,jmaxUi,j - x(i, j) 
is used to estimate whether edge (i,j) should be the 
leaving edge; 

Step2: If we number all edges in circle cl from edge (i, j)，
we can get edge set Podd in which the index of each 
edge is odd and edge set Peven in which the index of 
each edge is even. To ∀ (r, s) ∈ Podd, if 
ki,jmaxUi,j<x(i, j), kr,smaxUr,s is set to upper bound 
U(r, s) where kr,s∈{1,…,NBr,s} and kr,smaxUr,s > 
x(r,s); If ki,jmaxUi,j > x(i,j), kr,smaxUr,s is set to 
lower bound L(r, s) where ki,j∈{1,…, NBr,s} and 
kr,smaxUr,s<x(r, s). On the contrary, to ∀ (r, s)∈
Peven, if ki,jmaxUi,j < x(i,j), kr,smaxUr,s is set to lower 
bound L(r, s) where kr,s ∈ {1, … ,NBr,s} and 
kr,smaxUr,s<x(r, s); If ki,jmaxUi,j>x(i, j), kr,smaxUr,s 

is set to upper bound U(r, s) where ki,j∈{1,…, 
NBr,s} and kr,smaxUr,s>x(r, s);  

Step3. Selecting edge (r, s) ∈ cl so that diff(r,s) = 
min{min{x(u, v) - L(u, v) | (u, v)∈cl and bound of 
the flow on edge (u, v) is the lower bound}, 
min{U(u,v) - x(u, v) | (u, v)∈cl and bound of the 
flow on edge (u, v) is the upper bound}} where 
diff(r, s) denotes the difference between x(r, s) and 
bound of the flow on edge (r, s). If (u, v)∈cl and 
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bound of flow on edge (u, v) is lower bound, then 
x(u, v) = x(u, v) - diff(r, s); If (u, v)∈cl and bound 
of the flow on edge (u, v) is upper bound, then x(u, 
v) = x(u, v) + diff(r, s); 

Step4. When (r,s) ≠ (i,j), if x(i, j)∈EUB(P1), we remove 
edge (i, j) from EUB(P1); If x(r,s) ≠ 0, we add 
edge (r, s) into EUB(P1). 

The above pivot operator breaks the order of edges in 
individual P if (r, s) ≠ (i, j), so the edge set of T after 
pivoted need to reschedule in order to recover the normal 
order. The below procedure is used to implement the task. 
Assume leaving edge (r, s) is the kth edge of the sorted 
edge set (sub-chromosome f) of individual P before 
pivoted, Visiting sequentially edges of T from the location 
k (not including edge (r, s)), we can get a sub-tree T(T, 
k)=(VT(T,k),ET(T,k)) of spanning tree T. Another sub-tree T - 
T(T, k) can be obtained if sub-tree T(T, k) is removed from 
spanning tree T. Sub-tree T - T(T, k) and sub-tree T(T, k) 
are connected through edge (i, j). Assume node i lies in the 
node set of sub-tree T - T(T, k), and node j lies in the node 
set of sub-tree T(T, k), next task will transfer sorted edge 
set ET(T,k) of T(T, k) of which root is node s into sorted edge 
set E’T(T,k) of which root is node j. The detail procedure is 
below: 

Visiting sequentially edges of set ET(T,k) from the edge 
of which son node is node j to edge ek+1, we can obtain a 
track l = (ej, ej-1, … , ez). To any two adjacent nodes ex 

and ex+1 (j ≤ x ≤ z-1) in l, father node of edge ex is son 
node of edge ex+1 and father node of edge ez is node vk. 
Then father node and son node of every edge in l are 
exchanged and all edges from edge ej to ek+1 are insert into 
E’T(P1,k) while track l is obtained. 
Let Vl be the node set of track l, the element number of set 
Vl is z-j+2. Any edge of which father node is one element 
of set Vl denotes a flag edge in edge set ET(T,k). Visiting 
each edges of set ET(T,k) from the last edge el to edge ej+1, 
and inserting the segment that consist of edges from edge 
el to the first flag edge (including the first flag edge) and 
the segments that consist of edges between two flag edges 
(including the flag edge closer to edge ej+1) into E’T(P1,k), 
we finish the rescheduling task. 

An example of mutation operator is shown in Fig. 2. 
Sorted edge set of spanning tree T in parent individual P is 
{(1,2), (2,4), (4,8), (4,9), (2,5), (5,10), (1,3), (3,6), (3,7), 
(7,11), (11, 13), (7,12)} before the mutation is executed. 
Edge (10,13) and edge (1,3) are selected as the entering 
edge and the leaving edge respectively. Then, the sub-tree 
T(T,7) = {(3,6), (3,7), (7,11), (11, 13), (7,12)} is 
rescheduled to T’(T,7) = {(13,11), (11,7), (7,3), (3,6), 
(7,12)}. Appending all edge of T’(T,7) and edge (10,13) 
into the T-T(T,7), we can get the new individual T’ whose 
sorted edge set is {(1,2), (2,4), (4,8), (4,9), (2,5), (5,10), 
(10,13), (13,11), (11,7), (7,3), (3,6), (7,12)}. 

   Finding sub-tree T(T, k) can be finished in O(|ET(T,k)|) 
time as mention in section 3.1. Moreover, It can be found 
that the rescheduling sorted edge set of tree can also be 
finished in O(|ET|) time from above described procedure. 
So, the mutation operator is efficient.  

 
Fig. 2 spanning tree before and after mutated 

4. Computational results 

In the computation tests, three problem sizes, measured by 
m×n, are used: 5×10, 10×10, 10×20. All the problems 
are fully connected. The total supply (demand) for three 
problem size are 5000, 10000, and 15000 respectively. 
Two kinds of experiments were distinguished. The first 
kind of experiment was performed in order to obtain 
influences of the number of segments in piecewise linear 
cost function on algorithm’s performances. The test 
instances of each problem size were generated randomly. 
Within each test instance, four maximum numbers of 
segments were employed (2, 4, 6, 8) and other parameters 
were fixed. The net increased fixed costs between two 
adjacent segments were integers ranging 1200 through 
2400. The variable unit costs on each segment were 
integers between 3~8. 

Since a strong correspondence between the difficulty 
of an instance and the F/C ratio of the fixed costs to the 
variable costs of the optimal solution for the fixed charge 
transportation problem, we want also to know influences 
of the fixed cost on computational performance for the 
TPDPLC problem. It is the reason that we performed the 
second kind of computational experiment. Within each test 
instances, the maximum number of segments was fixed to 
4. The variable unit cost on each segment was any integers 
between 3~8. The net increased fixed costs between two 
adjacent segments can be any integers from four different 
ranges: 100~400, 400~1600, 1600~6400, 6400~12800. 
Our genetic algorithm and the matrix encoding genetic 
algorithm were coded in Java programming language. All 
computation tests were performed on the PC that the main 
frequency of CPU is Pentium (R)4 2.50GHz, operation 
system is Windows XP. 
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In our genetic algorithm, the population size was fixed 
at 100. The crossover rate and the mutation rate were 0.3 
and 0.1 respectively. The pressure of tournament was 2. 
The generation limits was 2000. If the best individual of 
the next generation doesn’t improve the current best 
solution, the worst individual of the next generation would 
be replaced by the current best solution. The evolutionary 
computing would be terminated if continuous 100 
generation can not improve the current best solution. In the 
matrix encoding genetic algorithm, the crossover rate and 
the mutation rate were 0.05(c1=0.35,c2=0.65) and 0.2 
respectively. The pressure of tournament was 2. The 
population sizes were 40. The generation limits was 
10000. 

In all test experiments, the solution quality difference 
between algorithm A1 and algorithm A2 was measured by 
Diff_obj(A1, A2) = optimalA1 - optimalA2 where optimalA1 
and optimalA2 are the optimal solution obtained by 
algorithm A1 and algorithm A2 respectively. If 
Diff_obj(A1, A2) > 0, algorithm A1 can obtained better 
solution quality than algorithm A2 and vice versa. 
Similarly, the computational time differences between 
algorithm A1 and algorithm A2 were measured by 
Diff_time(A1, A2) = timeA1 - timeA2 where timeA1 and timeA2 
are the computational time consumed by algorithm A1 and 
algorithm A2 respectively. If Diff_ time(A1, A2) > 0, 
algorithm A1 consumed more computational time than 
algorithm A2 and vice versa. 

4.1. Results of the first kind of experiments 

Let SES-GA and MA-GA denote our genetic algorithm 
based on sorted edge set coding and the matrix encoding 
genetic algorithm respectively. Diff_obj(SES-GA, MA-GA) 
for the first kind of computational experiments are showed 
in Fig. 3. Objective function values of each test problem 
are the average of 5 runs. SES-GA algorithm can obtained 
better solution qualities than MA-GA algorithm on each 
test problem because all Diff_obj(SES-GA, MA-GA) values 
are positive as shown in Fig. 3. The differences on solution 
qualities become larger while the number of segments 
increases. The tendency becomes more and more apparent 
if the problem sizes increase. In fact, the difficulty of an 
instance is in direct proportion to the number of segments 
for SES-GA whose genetic operators are relative to the 
number of segment. On the contrary, the genetic operators 
of MA-GA are not dependent on the number of segment. 
However, the fact shows that MA-G can not obtained 
better solution quality than SES-GA though the number of 
segments increases. 

Other important information in Fig. 3 is that solution 
quality differences Diff_obj(SES-GA, MA-GA) become 
larger and larger while the size of problem increase. It 
proves that SES-GA is more suitable to solve the problems 
with large size than MA-GA. 

 

 
Fig. 3 average differences of solution quality 

4.2. Results of the second kind of experiments 

Diff_obj(SES-GA, MA-GA) and Diff_time(MA-GA, 
SES-GA) for the second kind of computational 
experiments are showed in Fig. 5 and Fig. 6 respectively. 
The solution quality and computation efficiency of 
SES-GA are both better than those of MA-GA. The strong 
tendencies that the larger fixed cost leads to the larger 
differences on the solution quality for problems with the 
same size and the same number of segment are shown in 
Fig. 5. Solution quality differences Diff_obj(SES-GA, 
MA-GA) and computational time differences 
Diff_time(MA-GA, SES-GA) are also larger and larger 
while the size of problem increase in the 

 
Fig. 4 differences of computational time 

 
 

 
Fig. 5 average differences of solution quality  
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second kind of experiments. However, it seem as if 
computational time difference Diff_time(MA-GA, SES-GA) 
are not sensitive to the values of the fixed cost for 
problems with the same size and the same number of 
segment, as shown in Fig. 6. 

 
Fig. 6 differences of computational time 

5. Conclusions  

In this paper, we analyzed a transportation problem with 
discontinuous piecewise linear cost function and 
developed a genetic algorithm to solve it. Our genetic 
algorithm exhibits better optimization effect on solution 
quality and efficiency than the matrix encoding genetic 
algorithm. It should be the main reasons that our genetic 
algorithm utilizes the structure of spanning tree in the 
basic feasible solution and the possible values of the 
nonbasic variables are restricted to the flow bounds. The 
compact coding representing the basic feasible solution is 
another important factor.  

In addition, the genetic algorithm developed in the 
paper can be applied to solve the fixed charge 
transportation problem as well as. It should be more 
effective and efficient because the flow bounds on edges 
are determinate.  

Future research may concentrate on find some adaptive 
mechanisms to drive the evolutionary process away from 
local optima. It is also meaningful that extend our 
algorithm to other practical application areas, for example, 
the facility location and network design problems. 
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