
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

182

Manuscript received July 5, 2006.
Manuscript revised July 25, 2006.

Genetic Algorithm for the Transportation Problem with
Discontinuous Piecewise Linear Cost Function

Su Sheng†, Zhan Dechen†, and Xu Xiaofei†,

† School of computer science and technology, Harbin Institute of Technology, Harbin, China

Summary
We investigate a transportation problem with
discontinuous piecewise linear cost function in this paper.
The basic feasible solution for the transportation problem,
in which flow bounds on edges are uncertain, is obtained
by disaggregating piecewise linear cost function. A genetic
algorithm is proposed to solve the transportation problem
based on the network representation of the basic feasible
solution. A basic feasible solution is represented by the
spanning tree that consists of all basic edges and nonbasic
edges with positive flow amount. Sorted edge set is used
to represent the spanning tree. Edges of a spanning tree are
sorted by root first search pattern in the representation.
Single point crossover operator and random pivot mutation
operator are developed for effective and efficient evolution.
Computational tests demonstrate our genetic algorithm not
only can obtain better solution quality, but also is more
efficient than the previous proposed genetic algorithm
based on the matrix encoding.
Key words:
Transportation problem; discontinuous piecewise linear
cost function; genetic algorithm; spanning tree

1. Introduction

The transportation problem with discontinuous piecewise
linear cost function (the TPDPLC problem) arise in many
practical applications areas. Some transportation problems
with discount consideration have this kind of cost function,
and some production planning and scheduling problems
where production amount need to be divided into several
small portions or setup time need be considered can also
be modeled as this kind of transportation problem. Other
applications can be found in telecommunications and
logistics domain, and so on.

Though it can be found in many applications, research
on transportation problems with discontinuous piecewise
linear cost function is not so rich. Transportation problems
with discontinuous piecewise linear cost function can
easily be formulated and solved as a mixed integer
programming problem. Theoretically, any general mixed
integer programming solution method can be used to solve
this kind of problem, for example, branch and bound
method, branch and cut method. However, these methods

are generally inefficient and computationally expensive for
the problems with large size.

Metaheuristic methods, can obtain global optimal
solution or approximately global optimal solution at the
cost of less computational time, are preferable in practical
industry applications. To the best of our knowledge, the
matrix encoding genetic algorithm for generic nonlinear
transportation problems developed by Michalewicz, et al.
[1] is an only metaheuristic method relevant directly to our
problem. They developed a genetic algorithm for the
transportation problem with general nonlinear cost
functions and demonstrated its superiority relative to
off-the-shelf nonlinear programming solvers, such as
GAMS, when cost functions are not smooth. However,
solution quality and efficiency of the matrix encoding
genetic algorithm are not so ideal, as an evolutionary
algorithm. To improve solution quality and decrease
computational time, we propose a genetic algorithm for
transportation problems with discontinuous piecewise
linear cost function based on the cost function
disaggregation.

Although the research on transportation problems with
discontinuous piecewise linear cost function are lack, there
are extensive relevant literatures on transportation
problems. The first kind of relevant work is the fixed
charge transportation problem. The fixed charge
transportation problem is simplified version of the
TPDPLC problem whose cost function has only one
segment. The fixed charge transportation problem has
been studied by many researchers from about four decades
years ago. A number of exact solution algorithms are
developed to solve the FCT problem, which include
cutting plane approaches [2], vertex ranking methods [3,
4], and branch and bound approaches [5, 6]. Some
heuristic methods are also proposed [7, 8]. Recently, some
metaheuristic methods are developed for the FCP problem.
Sun et al. [9, 10] developed a tabu heuristic search
procedure. Gottlieb and Paulmann proposed a matrix
representation genetic algorithm [11]. Li et al. (1998)
proposed a genetic algorithm where prüfer numbers are
use to encode spanning tree [12].

The second kind of relevant work is network flow
problems with piecewise linear cost functions. Network
flow problem, where transportation network has several
stages, is extension of transportation problem. Although

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

183

the literatures on network flow is rich, research concerning
problems with piecewise linear cost functions is limited.
Piecewise linear cost functions can be classified two
categories. One category is piecewise linear convex or
concave function. Balakrishnan and Graves develop a
Lagrangian heuristic algorithm for the uncapacitated
network flow problem with piecewise linear concave cost
[13]. Aghezzaf and Wolsey model piecewise linear
concave costs in a tree partitioning problem [14].
Cominetti and Ortega study minimum concave cost
network flows [15]. They propose a branch and bound
algorithm and improve the approximations and obtain
better lower bound using sensitivity analysis. Chan et al.
study the minimum concave cost multi-commodity
network flow problem, and characterize structural
properties of the optimal solution of the linear
programming relaxation and propose a heuristic solution
approach that uses these properties to transform the
fractional solution into an integer one [16].

Another category is nonconvex and nonconcave cost
function. Breakpoints occur generally between any two
adjacent segments in the function, as studied in the paper.
Croxton et al. examine a multi-commodity network flow
problem with this kind of function [17]. They exploit the
disaggregation techniques to solve a logistics problem
called the merge-in-transit problem. Kim and Pardalos
propose a dynamic domain contraction algorithm for the
nonconvex piecewise linear network flow problem, which
iteratively solves a series of linear network flow problems
with dynamically adapted costs and restricted domains
[18]. Gabrela et al. develop an exact algorithm for
multicommodity network optimization with general step
cost functions [19]. The proposed procedure may be
viewed as a specialization of the well-known Benders
partitioning procedure, leading to iteratively solving an
integer 0-1 linear programming relaxed subproblem which
is progressively augmented through constraint generation.
The third kind of relevant work is the facility location and
network design problems. Holmberg develops algorithms
for the facility location problem with staircase cost using
Bender’s decomposition and Lagrangian heuristic methods
[20, 21]. However, most of the research in the areas of
facility location and network design has focus on the fixed
charge case. Blakrishnan et al. provide an annotated
bibliography concerning network design problems up to
1997 [22]. Crainic et al. proposed a bundle-based
relaxation method for capacity fixed charge network
design problems [23]. Magnanti et al. model and solve a
two facility capacitated network loading problem [24].

2. Problem statement

Given a transportation network G = (V, E) where V is the
node set consisting of all source nodes and destination

nodes, E is the arc set. Let m denote the number of source
nodes, n the number of destination nodes, Ci the capacity
of source node i, Dj the demand of destination j, (i, j) the
arc from source node i to destination j, xi,j the flow amount
on arc (i, j) (the decision variable). As shown in Fig. 1, we
define the cost gi,j(xi,j) on arc (i, j) as a piecewise linear
increasing function with a finite set of discontinuities. In
addition, we assume that gi,j(0) = 0.

Discontinuous piecewise linear function can be
characterized by its segments. To any arc (i, j), each
segment s has a nonnegative variable cost vi,j,s (the slope),
a nonnegative fixed cost fi,j,s (the intercept), upper bound
ubi,j,s of the flow and lower bound lbi,j,s of the flow. Each
arc (i, j) has a finite number of segments because the total
flow on arc (i, j) can be bounded the minimum value
between the capacity of node i and the demand of
destination j. we denote segments on arc (i, j) by the set Si,j
= {1, 2, …, NBi,j}. Let lbi,j,1 = 0. It can be inferred that the
problem is more difficult to solve if there are more
segments on arc (i, j). With these notations, we can express
the transportation problem with discontinuous piecewise
linear cost as the following formulation:

()∑∑
= =

m

i

n

j
jiji xg

1 1
,,min

s.t. miCx
m

j
iji ,,2,1,

1
, L==∑

=

 (1)

njDx
n

i
jji ,,2,1,

1
, L==∑

=

 (2)

mjnix ji ,,2,1;,,2,1,0, LL ==≥ (3)
where

()
⎪⎩

⎪
⎨
⎧

≤<+

=
=

sjijisjijisjisji

ji
jiji ubxlbxvf

x
xg

,,,,,,,,,,

,
,,

00
 (4)

In the above model, s∈Si,j, equation (1) and (2) is the
capacity balance and the demand balance, respectively.
The sum of flows on all arcs is related to source i (i = 1, 2,
…, m)should be equal to the capacity of source i, Ci, on
the right hand side of equation (1). The sum of flows on all
arcs is related to destination j (j = 1, 2, …, n)should be
equal to the demand of destination j, Dj, on the right hand
side of equation (2). Inequality (3) restricts the flow
amount on any arc must be larger than or equal to zero.
Equation (4) defines the relationship between the flow
amount on arc and cost. The objective function is the
minimizing of the total transportation cost on all arcs.
The TPDPLC problem is simplified to the fixed charge
transportation problem if the number of segment is
decreased to one (NBi,j = 1,∀ (i, j)). The equation (4) will
be substituted by the following equation (5) and
constraints (1)~(3) hold for the fixed charge transportation
problem.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

184

 ()
⎪⎩

⎪
⎨
⎧

>+

=
=

0
00

,,,,

,

jijijiji

ji
ijij xxvf

x
xg (5)

where fi,j is the fixed cost on arc (i,j). Since the fixed
charge transportation problem version of the TPDPLC
problem is known to be NP-hard, the TPDPLC problem is
NP-hard as well. The paper [28] proved that the optimal
solution for the fixed charge transportation problem occurs
at one of extreme points defined by constraint in Equation
(1)~(3). An extreme point is a basic feasible solution of the
fixed charge transportation problem, which has m+n-1
basic variables and they must be a spanning tree of the
transportation network. However, since the cost function is
nonconvex and nonconcave for the TPDPLC problem, the
optimal solution of the TPDPLC problem need not be an
extreme point of the convex set defined by constraints. It
can occur within the convex set. Let X be the set of all
feasible transportation assignment S.
Definition 1. Let set Bk = {S | S∈X, lbi,j,s≤ xi,j≤ ubi,j,s},
where k is an mn vector with ((i-1)n+j)th component ki,j ,
and ki,j can be any value of set Si,j = {1, …, NBi,j}, and
subindex s∈Si,j. Bk is called a basic set.

The TPDPLC problem defined on a certain Bk can be
seen as a fixed charge transportation problem with lower
bound and upper bound constraints of the flow on each arc.
The basic feasible solution of the TPDPLC problem on Bk
is denoted by BFk∈(Fk, Lk, Uk) according to the network
simplex method, where Fk is the set of m+n-1 basic arcs,
Lk is the set of arcs whose flow are equal to lower bounds,
and Uk is the set of arcs whose flow are equal to upper
bounds.
Definition 2. Let E[Bk] be extreme points of basic set Bk,
we call the set D =∪kE[Bk] the dominant set.
Then, the TPDPLC problem must be minimized at a point
in set D. It’s evident that upper bound ubi,j,s is equal to
lower bound lbi,j,s+1. Let set Bi,j be the bound set consisting
of all upper bound and lower bound on arc (i, j). The
number of elements is equal to NBi,j+1 in set Bi,j and kth
component of set Bi,j is bi,j,k. The basic feasible solution of
the TPDPLC problem can be denoted by BF∈(F, L, U),
where F = ∪kFk, L = ∪kLk = {l | l = lbi,j,s, s∈Si,j},U = ∪
kUk = {u | u = ubi,j,s, s∈Si,j}. Let bound set B = L∪U = ∪
Bi,j, then BF∈(F, B). It means that the basic feasible
solution of the TPDPLC problem has m + n - 1 basic arcs
and mn - (m + n - 1) nonbasic arcs (lower bound or upper
bound).

The form of the basic feasible solution for the
TPDPLC problem is similar to that for the general
transportation problems and the network flow problems.
However, a distinguish feature of the basic feasible
solution for the TPDPLC problem is that the bounds of the
flow on any edge (u, v) is not fixed and can be any value in
bound set Bu,v (Bound of the flow on an edge for the
general transportation problem and network flow problem

can only one of two values, lower bound or upper bound.
If the value of upper bound is unlimited, the flow bound is
generally equal to zero). In our genetic algorithm, the
problem is solved by the procedure called random bound
selection procedure make using of the random search
characteristic of genetic algorithm.

Fig. 1 Discontinuous piecewise linear cost function

3. Genetic algorithm

Genetic algorithm is a probabilistic algorithm that may
converge at global optimal solution. The standard
procedure of genetic algorithm can be found from Gen and
Cheng (2000). In the rest of this section, we describe
representation of candidate solution, initiation, crossover,
and mutation operators in detail.

3.1. Sorted edge set encoding

One of the most important factors of a genetic algorithm is
the encoding by which the chromosome is used to
represent candidate solutions. The matrix encoding is a
primitive representation for the transportation problem
because the arc set of transportation network can be seen
as a standard matrix. The paper [1] uses the matrix
encoding to represent the candidate solution for the
TPDPLC problem. However, the matrix encoding has not
enough merits to evolution effectively and efficiently, so
we hope to find another coding that is more compact and
more effective to evolutionary computation for the
TPDPLC problem.

Since the basic arcs of the basic feasible solution form
a spanning tree of transportation network, the coding of
spanning trees solution for the general transportation
problems can be used for reference to encode the basic
feasible solution for the TPDPLC problem. There is a
variety of coding for spanning trees. They include
link-and-node biasing [25], the preceding coding [26],
prüfer numbers [12], edge sets [27], and so on. In these
coding, edge sets coding, in which spanning trees are
directly represented as sets of their edges, exhibits high
locality that small changes in genotypes should correspond
to small changes in solutions they represent and high

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

185

heritability that solutions generated by crossover should
combine features of their parents, and is proved to be a
compact and effective coding for spanning tree. Moreover,
edge sets coding can easily extend to represent the basic
feasible solution for the TPDPLC problem. So we
proposed a novel sorted edge set coding which not only
inherit high locality and heritability of edge sets coding,
but also extend edge sets coding to effective and efficient
evolutionary computation for the TPDPLC problem.

In the sorted edge set coding, chromosome c
representing the basic feasible solution for the TPDPLC
problem consists of two parts: one part is sub-chromosome
f which maps the basic edge set, and another part is
sub-chromosome z which maps the positive nonbasic edge
set. The positive nonbasic edge is edge whose flow is
larger than zero. Representing only positive nonbasic
edges in chromosome is more compact and more
reasonable than representing all nonbasic edges in
chromosome because most of nonbasic must be equal to
zero to satisfy demand constraints and capacity constraints.
Gene of chromosome is characterized by edge (s, d) (the
flow amount on edge (s, d) can be added into gene, but is
omitted for convenience of description). The number of
gene is fixed to m+n-1 in sub-chromosome f through
whole evolutionary process. The number of gene in
sub-chromosome z is not a constant and can be increased
or reduced while the basic feasible solution represented by
chromosome varies.

All edges contained in chromosome c are sorted by a
special rule. We assume spanning tree formed by the basic
edges is T=(VT, ET), of which root node is r∈VT.
Sub-chromosome f (one sorted edges set) can be attained
through root first search that visit the node set VT-r as deep
as possible from neighbor to neighbor before backtracking.
Sorting all positive nonbasic edges by the order created,
we can obtain sub-chromosome z (another sorted edge set).
Different chromosomes can be obtained if different node is
selected to be root of spanning tree. We can randomly
select a node to be the root in the initialization operator of
individual. In the evolutionary operators, the father node
of the first edge of sub-chromosome f is the root of the
spanning tree represented by the current chromosome.
An important characteristic of sorted edge set with root
first search pattern is the high efficiency of some basic
operators on tree, for instance, it can be finished in O(|ET|)
time to find a sub-tree whose root is any node r∈VT in tree
T.

3.2. Appending Edge procedure

Creating spanning tree can be seen as a main procedure for
creating new individuals. Positive nonbasic edges are
produced during the creating spanning tree procedure.
Moreove, AppendEdge procedure, which appends a new
edge into the growing new individual, is a basic procedure

in the initiation procedure and the crossover procedure. Let
G=(V,E) be the transportation graph, T=(VT,ET) the
growing tree where VT is the growing node set and ET is
the growing edge set, PT the set of node of whose demand
(capacity) is not fully satisfied (exhausted), EUB the
nonbasic edge set, and D(u) the residual amount of node u.
AppendEdge procedure is below:

procedure AppendEdge (VT, ET, PT, EUB, V, E)
If PT ≠φThen

Select randomly a node u from the set PT;
If ∃ (u,v)∈E-EUB, and v∈{V-VT} Then

Select randomly an edge (u,v) from the set E-EUB,
and v∈{V-VT};

Else
Select randomly an edge (u,v) from the set EUB;
EUB←EUB-(u,v);
D(u)←D(u)+x(u,v);
D(v)←D(v)+x(u,v);

End If
Else

Select randomly a node u from the set VT where∃ (u,v)
∈E, and v∈{V-VT};

End If
x(u,v)←min(D(u),D(v));
D(u)←D(u)-x(u,v);
D(v)←D(v)-x(u,v);
VT←VT∪{v};
ET←ET∪{(u,v)};
If D(u)=0 and u∈PT Then PT←PT-{u}; End If
If D(v)≠0 Then PT←PT∪{v}; End If

One AppendEdge procedure can not only add a new
edge (u,v) into T, but also satisfy (exhaust) fully the
demand (or the capacity) of node u or node v. In fact, the
number of node in the set PT is always 1 before the
finishing last time application of AppendEdge procedures
whether in the initiation procedure or in the crossover
operator. So time of choosing one node from set PT is thus
constant. If a new edge (u,v)∈E-EUB can’t be found, then
an extra task is removing a corresponding edge from set
EUB (row 6~9 in AppendEdge procedures). Representing
the graph G with adjacency list allows fast identification of
the edges adjacent to each newly connected node, the
identification operator’s time is O(|E|).

3.3. Initiation

As mentioned in section 3.1, the optimal solution of the
TPDPLC problem need not be an extreme point of the
convex set defined by constraints. It can occur within the
convex set. However, we create only the extreme point
solution for the initiation population, that is, the flow
amount of each nonbasic arc is zero and sub-chromosome

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

186

z =φ in the initiation individuals. Since one AppendEdge
procedure adds a new basic variable edge into T, |V|-1
times AppendEdge procedures can create a new individual
satisfying all constraints from scratch. It is known easily
that the edges of sub-chromosome f must be sorted by the
pattern of root first search.

3.4. Crossover

Given the parents P1 and P2. Let S1 denote offspring
individual will be created. To avoid complex repair
operator, we developed following single point crossover
operator based on sorted edge set representation.
Setp1: Choosing a random parent to be basic parent, for

example, P1. A location k (0<k<|EP1|) is randomly
chosen in basic variables sub-chromosome f of P1.
The edge pointed at by locate k is ek = (uk, vk);

Setp2: Visiting sequentially edges of sub-chromosome f
(P1) of P1 from the location k, we can get a
sub-tree T(P1, k) of spanning tree denoted by
sub-chromosome f (P1). T(P1, k) = (VT(P1,k), ET(P1,k))
where |ET(P1,k)| < |EP1|. The root of sub-tree T(P1, k)
is vk;

Step3: Adding all nonbasic edge (u, v)∈EUB (P1) where u
∈VT(P1,k) - {vk} or v∈VT(P1,k) - {vk} and EUB (P1) is
equivalent to sub-chromosome z (P1) into EUB (S1);

Step4: |EP1| - |ET(P1,k)| - 1 times AppendEdge procedures are
used to append |EP1| - |ET(P1,k)| - 1 basic edges to
sub-tree T(P1,k)∪{ek}. In the appending process,
if P2 has a feasible edge e = (u’, v’) where u’∈
PT(P1,k), e ∈ EP2 - ET(P1,k), AppendEdge (VT(P1,k),
ET(P1,k), PT(P1,k), VP2, EP2) is used to append feasible
edge e to growing T. Otherwise, AppendEdge
(VT(P1,k), ET(P1,k), PT(P1,k), V, E) will be used to
append feasible edge e∈E - EP2 - ET(P1,k) from
graph G.

Demand (capacity) of every element is satisfied
(exhausted) in set VT(P1,k) because T(P1, k) is sub-tree of
spanning tree T. So, the only parent node uk of edge ek is
unsatisfied or unexhausted in all nodes of T(P1, k)∪{ek}.
|EP1| - |ET(P1,k)| - 1 nodes must be inserted into sub-tree
T(P1, k)∪{ek} using |EP1| - |ET(P1,k)| - 1 times AppendEdge
procedures, and a new individual can be created. Moreover,
the edges of sub-tree T(P1, k)∪{ek} must be sorted by the
pattern of root-first search because all of these are inherit
from parent individual P1. All edges of another sub-tree
Tsub created by |EP1| - |ET(P1,k)| - 1 times AppendEdge
procedures, of which root is node uk, are also sorted by the
same pattern. If all edges of sub-tree Tsub are appended to
the edge set of sub-tree T(P1, k)∪{ek}, we can get a new
offspring individual that all edges of sub-chromosome f
are sorted by the root first search pattern.

3.5. Random pivot mutation

The network simplex method is an efficiently method for
solving minimum cost flow problem. It pivots from the
current basic feasible solution to a better adjacent one
through adding an entering basic variable and removing a
leaving basic variable. The idea that new solutions can be
found by only a small change in the parent individual is
suitable for the mutation operator of the genetic algorithm
for solving the TPDPLC problem. Given parent individual
P whose spanning tree is T = (VT, ET), we choose
randomly an element (i, j) from the nonbasic edge set E -
ET as entering edge, instead of choosing a nonbasic edge
which can improve the objective value at the fastest rate in
the network simplex method. A circle cl is obtained after
edge (i, j) is added to spanning tree T. However, it is not as
simple as it might seem to choose a leaving edge (r, s)∈cl
because bound of the flow on each edge (u, v)∈cl is not
fixed and can be any value in bound set Bu,v as mentioned
in section 2. The following procedure is used to choose an
edge to leave spanning tree T.
Step1: To entering edge (i, j)∈cl，we choose randomly

the value of ki,jmaxUi,j where ki,j∈{1,…,NBi,j} and
ki,jmaxUi,j ≠ x(i,j). If ki,jmaxUi,j < x(i,j) ， then
ki,jmaxUi,j is set to the lower bound L(i, j) of edge (i,
j). The difference △i,j = x(i, j) - ki,jmaxUi,j is used
to estimate whether edge (i, j) should be the
leaving edge. On the contrary, If ki,jmaxUi,j > x(i, j)，
then ki,jmaxUi,j is set to the upper bound U(i, j) of
edge (i, j). The difference △i,j = ki,jmaxUi,j - x(i, j)
is used to estimate whether edge (i,j) should be the
leaving edge;

Step2: If we number all edges in circle cl from edge (i, j)，
we can get edge set Podd in which the index of each
edge is odd and edge set Peven in which the index of
each edge is even. To ∀ (r, s) ∈ Podd, if
ki,jmaxUi,j<x(i, j), kr,smaxUr,s is set to upper bound
U(r, s) where kr,s∈{1,…,NBr,s} and kr,smaxUr,s >
x(r,s); If ki,jmaxUi,j > x(i,j), kr,smaxUr,s is set to
lower bound L(r, s) where ki,j∈{1,…, NBr,s} and
kr,smaxUr,s<x(r, s). On the contrary, to ∀ (r, s)∈
Peven, if ki,jmaxUi,j < x(i,j), kr,smaxUr,s is set to lower
bound L(r, s) where kr,s ∈ {1, … ,NBr,s} and
kr,smaxUr,s<x(r, s); If ki,jmaxUi,j>x(i, j), kr,smaxUr,s

is set to upper bound U(r, s) where ki,j∈{1,…,
NBr,s} and kr,smaxUr,s>x(r, s);

Step3. Selecting edge (r, s) ∈ cl so that diff(r,s) =
min{min{x(u, v) - L(u, v) | (u, v)∈cl and bound of
the flow on edge (u, v) is the lower bound},
min{U(u,v) - x(u, v) | (u, v)∈cl and bound of the
flow on edge (u, v) is the upper bound}} where
diff(r, s) denotes the difference between x(r, s) and
bound of the flow on edge (r, s). If (u, v)∈cl and

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

187

bound of flow on edge (u, v) is lower bound, then
x(u, v) = x(u, v) - diff(r, s); If (u, v)∈cl and bound
of the flow on edge (u, v) is upper bound, then x(u,
v) = x(u, v) + diff(r, s);

Step4. When (r,s) ≠ (i,j), if x(i, j)∈EUB(P1), we remove
edge (i, j) from EUB(P1); If x(r,s) ≠ 0, we add
edge (r, s) into EUB(P1).

The above pivot operator breaks the order of edges in
individual P if (r, s) ≠ (i, j), so the edge set of T after
pivoted need to reschedule in order to recover the normal
order. The below procedure is used to implement the task.
Assume leaving edge (r, s) is the kth edge of the sorted
edge set (sub-chromosome f) of individual P before
pivoted, Visiting sequentially edges of T from the location
k (not including edge (r, s)), we can get a sub-tree T(T,
k)=(VT(T,k),ET(T,k)) of spanning tree T. Another sub-tree T -
T(T, k) can be obtained if sub-tree T(T, k) is removed from
spanning tree T. Sub-tree T - T(T, k) and sub-tree T(T, k)
are connected through edge (i, j). Assume node i lies in the
node set of sub-tree T - T(T, k), and node j lies in the node
set of sub-tree T(T, k), next task will transfer sorted edge
set ET(T,k) of T(T, k) of which root is node s into sorted edge
set E’T(T,k) of which root is node j. The detail procedure is
below:

Visiting sequentially edges of set ET(T,k) from the edge
of which son node is node j to edge ek+1, we can obtain a
track l = (ej, ej-1, … , ez). To any two adjacent nodes ex

and ex+1 (j ≤ x ≤ z-1) in l, father node of edge ex is son
node of edge ex+1 and father node of edge ez is node vk.
Then father node and son node of every edge in l are
exchanged and all edges from edge ej to ek+1 are insert into
E’T(P1,k) while track l is obtained.
Let Vl be the node set of track l, the element number of set
Vl is z-j+2. Any edge of which father node is one element
of set Vl denotes a flag edge in edge set ET(T,k). Visiting
each edges of set ET(T,k) from the last edge el to edge ej+1,
and inserting the segment that consist of edges from edge
el to the first flag edge (including the first flag edge) and
the segments that consist of edges between two flag edges
(including the flag edge closer to edge ej+1) into E’T(P1,k),
we finish the rescheduling task.

An example of mutation operator is shown in Fig. 2.
Sorted edge set of spanning tree T in parent individual P is
{(1,2), (2,4), (4,8), (4,9), (2,5), (5,10), (1,3), (3,6), (3,7),
(7,11), (11, 13), (7,12)} before the mutation is executed.
Edge (10,13) and edge (1,3) are selected as the entering
edge and the leaving edge respectively. Then, the sub-tree
T(T,7) = {(3,6), (3,7), (7,11), (11, 13), (7,12)} is
rescheduled to T’(T,7) = {(13,11), (11,7), (7,3), (3,6),
(7,12)}. Appending all edge of T’(T,7) and edge (10,13)
into the T-T(T,7), we can get the new individual T’ whose
sorted edge set is {(1,2), (2,4), (4,8), (4,9), (2,5), (5,10),
(10,13), (13,11), (11,7), (7,3), (3,6), (7,12)}.

 Finding sub-tree T(T, k) can be finished in O(|ET(T,k)|)
time as mention in section 3.1. Moreover, It can be found
that the rescheduling sorted edge set of tree can also be
finished in O(|ET|) time from above described procedure.
So, the mutation operator is efficient.

Fig. 2 spanning tree before and after mutated

4. Computational results

In the computation tests, three problem sizes, measured by
m×n, are used: 5×10, 10×10, 10×20. All the problems
are fully connected. The total supply (demand) for three
problem size are 5000, 10000, and 15000 respectively.
Two kinds of experiments were distinguished. The first
kind of experiment was performed in order to obtain
influences of the number of segments in piecewise linear
cost function on algorithm’s performances. The test
instances of each problem size were generated randomly.
Within each test instance, four maximum numbers of
segments were employed (2, 4, 6, 8) and other parameters
were fixed. The net increased fixed costs between two
adjacent segments were integers ranging 1200 through
2400. The variable unit costs on each segment were
integers between 3~8.

Since a strong correspondence between the difficulty
of an instance and the F/C ratio of the fixed costs to the
variable costs of the optimal solution for the fixed charge
transportation problem, we want also to know influences
of the fixed cost on computational performance for the
TPDPLC problem. It is the reason that we performed the
second kind of computational experiment. Within each test
instances, the maximum number of segments was fixed to
4. The variable unit cost on each segment was any integers
between 3~8. The net increased fixed costs between two
adjacent segments can be any integers from four different
ranges: 100~400, 400~1600, 1600~6400, 6400~12800.
Our genetic algorithm and the matrix encoding genetic
algorithm were coded in Java programming language. All
computation tests were performed on the PC that the main
frequency of CPU is Pentium (R)4 2.50GHz, operation
system is Windows XP.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

188

In our genetic algorithm, the population size was fixed
at 100. The crossover rate and the mutation rate were 0.3
and 0.1 respectively. The pressure of tournament was 2.
The generation limits was 2000. If the best individual of
the next generation doesn’t improve the current best
solution, the worst individual of the next generation would
be replaced by the current best solution. The evolutionary
computing would be terminated if continuous 100
generation can not improve the current best solution. In the
matrix encoding genetic algorithm, the crossover rate and
the mutation rate were 0.05(c1=0.35,c2=0.65) and 0.2
respectively. The pressure of tournament was 2. The
population sizes were 40. The generation limits was
10000.

In all test experiments, the solution quality difference
between algorithm A1 and algorithm A2 was measured by
Diff_obj(A1, A2) = optimalA1 - optimalA2 where optimalA1
and optimalA2 are the optimal solution obtained by
algorithm A1 and algorithm A2 respectively. If
Diff_obj(A1, A2) > 0, algorithm A1 can obtained better
solution quality than algorithm A2 and vice versa.
Similarly, the computational time differences between
algorithm A1 and algorithm A2 were measured by
Diff_time(A1, A2) = timeA1 - timeA2 where timeA1 and timeA2
are the computational time consumed by algorithm A1 and
algorithm A2 respectively. If Diff_ time(A1, A2) > 0,
algorithm A1 consumed more computational time than
algorithm A2 and vice versa.

4.1. Results of the first kind of experiments

Let SES-GA and MA-GA denote our genetic algorithm
based on sorted edge set coding and the matrix encoding
genetic algorithm respectively. Diff_obj(SES-GA, MA-GA)
for the first kind of computational experiments are showed
in Fig. 3. Objective function values of each test problem
are the average of 5 runs. SES-GA algorithm can obtained
better solution qualities than MA-GA algorithm on each
test problem because all Diff_obj(SES-GA, MA-GA) values
are positive as shown in Fig. 3. The differences on solution
qualities become larger while the number of segments
increases. The tendency becomes more and more apparent
if the problem sizes increase. In fact, the difficulty of an
instance is in direct proportion to the number of segments
for SES-GA whose genetic operators are relative to the
number of segment. On the contrary, the genetic operators
of MA-GA are not dependent on the number of segment.
However, the fact shows that MA-G can not obtained
better solution quality than SES-GA though the number of
segments increases.

Other important information in Fig. 3 is that solution
quality differences Diff_obj(SES-GA, MA-GA) become
larger and larger while the size of problem increase. It
proves that SES-GA is more suitable to solve the problems
with large size than MA-GA.

Fig. 3 average differences of solution quality

4.2. Results of the second kind of experiments

Diff_obj(SES-GA, MA-GA) and Diff_time(MA-GA,
SES-GA) for the second kind of computational
experiments are showed in Fig. 5 and Fig. 6 respectively.
The solution quality and computation efficiency of
SES-GA are both better than those of MA-GA. The strong
tendencies that the larger fixed cost leads to the larger
differences on the solution quality for problems with the
same size and the same number of segment are shown in
Fig. 5. Solution quality differences Diff_obj(SES-GA,
MA-GA) and computational time differences
Diff_time(MA-GA, SES-GA) are also larger and larger
while the size of problem increase in the

Fig. 4 differences of computational time

Fig. 5 average differences of solution quality

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

189

second kind of experiments. However, it seem as if
computational time difference Diff_time(MA-GA, SES-GA)
are not sensitive to the values of the fixed cost for
problems with the same size and the same number of
segment, as shown in Fig. 6.

Fig. 6 differences of computational time

5. Conclusions

In this paper, we analyzed a transportation problem with
discontinuous piecewise linear cost function and
developed a genetic algorithm to solve it. Our genetic
algorithm exhibits better optimization effect on solution
quality and efficiency than the matrix encoding genetic
algorithm. It should be the main reasons that our genetic
algorithm utilizes the structure of spanning tree in the
basic feasible solution and the possible values of the
nonbasic variables are restricted to the flow bounds. The
compact coding representing the basic feasible solution is
another important factor.

In addition, the genetic algorithm developed in the
paper can be applied to solve the fixed charge
transportation problem as well as. It should be more
effective and efficient because the flow bounds on edges
are determinate.

Future research may concentrate on find some adaptive
mechanisms to drive the evolutionary process away from
local optima. It is also meaningful that extend our
algorithm to other practical application areas, for example,
the facility location and network design problems.

References
[1] Z Michalewicz,. and G.A. Vignaux, and M. Hobbs, “A

nonstandard genetic algorithm for the nonlinear
transportation problem,” ORSA J. Comput. vol.3,
pp.307-316, 1991.

[2] J.M. Rousseau, “A cutting plane method for the fixed cost
problem,” Doctoral dissertation, Massachusetts Institute of
Technology, Cambridge, MA, 1973.

[3] K.G. Murty, “Solving the fixed charge problem by ranking
extreme points,” Oper. Res., vol.16, pp.268-279, 1968.

[4] P.G. McKeown, “A vertex ranking procedure for solving the
linear fixed charge Problem,” Oper. Res. vol.23,
pp.1183-1191, 1975.

[5] U.S. Palekar, M.K. Karwan, and S. Zionts, “A branch and
bound method for the fixed charge transportation problem,”
Manage. Science, vol.36, pp.1092-1105, 1990.

[6] F. Ortega, and L.A. Wolsey, “A branch-and-cut algorithm
for the single commodity, uncapacitated, fixed-charge
network flow problem,” Networks, vol.41, pp.143-158,
2003.

[7] U.S. Shetty, “A relaxation decomposition algorithm for the
fixed charge network problem,” Nav. Res. Log., vol.32,
pp.327-340, 2003.

[8] D.I. Steinberg, “The fixed charge problem,” Nav. Res. Log.,
vol.7, pp.217-236, 1970.

[9] M. Sun, and P.G. McKeown, “Tabu search applied to the
general fixed charge problems,” Ann. Oper. Res., vol.41,
pp.405-420, 1993.

[10] M. Sun, J.E. Aronson, P.G. McKeown, and D. Drinka, “A
tabu search heuristic procedure for the fixed charge
transportation problem,” Eur. J. Oper. Res., vol.106,
pp.441-456, 1998.

[11] J. Gottlieb, and L. Paulmann, “Genetic algorithms for the
fixed charge transportation problem,” In: Proceedings of the
1998 IEEE International Conference on Evolutionary
Computation, IEEE Press, pp.330-335, 1998.

[12] Y. Li, M. Gen, and K. Ida, “Fixed charge transportation
problem by spanning tree-based genetic algorithm,” Beijing
Math., vol.4, pp.239-249, 1998.

[13] A. Balakrishnan, and S. Graves, “A Composite Algorithm
for a Concave-Cost Network Flow Problem,” Networks,
vol.19, pp.175-202, 1989.

[14] E.H. Aghezzaf and L.A. Wolsey, “Modeling Piecewise
Linear Concave Costs in a Tree Partitioning Problem,”
Discrete Appl. Math. vol.50, pp.101-109, 1994.

[15] R. Cominetti, and F. Ortega, “A Branch & Bound Method
for Minimum Concave Cost Network Flows Based on
Sensitivity Analysis,” Working paper, Departamento de
Ingenieria Matematica, Universidad de Chile, Santiago,
1997.

[16] L. Chan, , A. Muriel and D. Simchi-Levi, “Supply Chain
Management: Integrating Inventory and Transportation,”
Working paper, Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston,
IL, 1997.

[17] K.L. Croxton, B. Gendron, and T.L. Magnanti, “Models and
Methods for Merge-in-Transit Operations,” Trans. Science
vol.37, pp.1-22, 2003.

[18] D. Kim and P.M. Pardalos, “A Dynamic Domain
Contraction Algorithm for Nonconvex Piecewise Linear
Network Flow Problems,” J. Global Optim., vol.17,
pp.225-234, 2001.

[19] V. Gabrela, A. Knippelb, M. Minouxb, “Exact solution of
multicommodity network optimization problems with
general step cost functions,” Oper. Res. Lett. vol.25,
pp.15-23, 1999.

[20] K. Holmberg, and J. Ling, “A Lagrangean Heuristic for the
Facility Location Problem with Staircase Costs,” Eur. J.
Oper. Res. vol.97, pp.3-74, 1997.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

190

[21] K. Holmberg, “Solving the Staircase Cost Facility Location
Problem with decomposition and Piecewise Linearization,”
Eur. J. Oper. Res. vol.75, pp.41-61, 1994.

[22] A. Balakrishnan, T.L. Magnanti, and P. Mirchandani,
“Network Design, Annotated Bibliographies in
Combinatorial Optimization,” Edited by M. Dell'Amico, F.
Ma_oli, and S. Martello (eds.), John Wiley & Sons, New
York, NY, pp.311-334, 1997.

[23] T.G. rainic, A. Frangioni and B. Gendron, “undle-based
Relaxation Methods for Multicommodity Capacitated Fixed
Charge Network Design Problems,” screte Applied
Mathematics, vol.112, pp.73-99, 2001.

[24] T.L. Magnanti, P. Mirchandani and R. Vachani, “Modeling
and Solving the Two-Facility Capacitated Network Loading
Problem,” Oper. Res. vol.43, pp.142-157, 1995.

[25] C.C. Palmer, and A. Kershenbaum, “Representing trees in
genetic algorithms,” In: Proceedings of the First IEEE
Conference on Evolutionary Computation, David Schaffer,
Hans-Paul Schwefel, and David B. Fogel, Eds, IEEE Press,
pp.379-384, 1994.

[26] F.N. Abuali, R.L. Wainwright, and D.A. Schoenefeld,
“Determinant factorization: A new encoding scheme for
spanning trees applied to the probabilistic minimum
spanning tree problem,” In: Proceedings of the Sixth
International Conference on Genetic Algorithms, Larry J.
Eshelman, Ed, Morgan Kaufmann, pp.470-477, 1995.

[27] G.R. Raidl, and B.A. Julstrom, “Edge-sets: An effective
evolutionary coding of spanning trees,” IEEE T. Evolut.
Comput., vol.7, pp.225-239, 2003.

[28] W.M. Hirsch, and G. B. Dantzig, “The fixed charge
problem,” Nav. Res. Log. vol.15, pp.413-424, 1968.

Su Sheng is a Ph.D. student at the
School of Computer Science and
Technology, Harbin Institute of
Technology. He obtained his M.S.
degree from Harbin Institute of
Technology. His main research
interests include CIMS, ERP, SCM,
logistics, production planning and
scheduling.

Zhan Dechen is a professor and
Ph.D. supervisor at the School of
Computer Science and Technology,
Harbin Institute of Technology. He
received his Ph.D. from Harbin
Institute of Technology. His main
research interests include CIMS,
ERP, IDSS. He published over
forty papers.

Xu Xiaofei is a professor and Ph.D.
supervisor at the School of
Computer Science and Technology,
Harbin Institute of Technology. He
received his Ph.D. from Harbin
Institute of Technology. His main
research interests include CIMS,
ERP, IDSS. He published about
one hundred and fifty papers.

