
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

194

Manuscript received July 25, 2006.
Manuscript revised July 30 , 2006

A Novel Data Structure for String Matching Applicable in Network
Processing

Nasser Yazdani and Hossein Mohammadi

Router Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Summary
 We address prefix matching problems which constitute the
building block of some applications in the computer realm and
related area. It is assumed there are strings of an alphabet Σ
which are ordered. The data strings can have different lengths and
some of them can be prefixes of others. A well known application
of prefix matching is layer 3 IP switching in which routers forward
an IP packet by checking its destination address and finding the
longest matching prefix from a database. In layer 4 switching, the
source and destination addresses are used to classify packets for
differentiated service and Quality of Services (QoS). We believe
the fundamental issue preventing applying the usual tree
structures such as B-tree to the prefix matching problem is the lack
of a systematic method to compare and sort strings of different
lengths. We introduce a simple scheme for comparing and sorting
strings of different lengths first. Then, since the usual data
structures can not be applied directly to the sorted strings, we
manipulate data and tune the tree structures. We propose twp tree
structures and devise all related procedures to build trees and
process queries. A binary prefix tree is introduced and which can
be extended to static and dynamic m_way prefix trees.
Keywords
 Prefix tree, IP Lookup, Packet Classification

Introduction

 Rapid growth of the Internet has faced researcher with
some new challenging problems. This growth has affected
our work, communication and social life very deeply. Every
one wants to join this new and exciting world by creating
his/her own website. Then, the number of hosts on the
Internet is growing everyday and consequently, the data
traffic is exploding. On the other hand, some new
applications such as multimedia, hypertext data, video
conferencing, remote imaging, etc., which are very data
intensive contribute to this traffic explosion. All these
demand for higher bandwidth on the communication line
and fast and efficient methods for the traditional computer
network problems.

To keep up with these waves of demands and
increased traffic, the speed of the communication lines has
been increased from 10 Mbps (Megabit per second) to
gigabit per second. A new connection based technology,
ATM, has been emerged. However, since the huge
investment on the relatively old Ethernet technology is

already on place, and certainly it is not going to leave the
scene very soon, the gigabit Ethernet technology has been
developed. Even though the gigabit Ethernet has borrowed
some new ideas and technology from ATM, it is still
faithful to its core idea and remains connectionless. This
implies the routers which forward IP datagrams must
determine the next destination for each data packets. To do
this, the routers search the IP routing tables to find the
address of the next hop to which the packet is going to be
forwarded on the path towards the final destination. With
current trend in the network technology finding the next
hop for each datagram becomes harder and harder.
Increasing number of hosts on the Internet expands the
global network and number of hops in the Internet. Then,
the size of the routing table grows everyday and requires
faster access methods. Unfortunately, increasing the speed
of data link worsen the situation since the time to send a
datagram decreases with the links speed. Then, we cut in
the middle of two factors which together require smaller
search time in a bigger set. Advances in the semiconductor
technology which improves the processing capability of
new CPU chips can pay off in some degree. However, since
the links speed grows faster than the processing speed and
the size of data is growing on the other hand, it sounds the
IP lookup problem can be a serious bottleneck.

In this paper, we prose a new indexing and searching
scheme for the IP lookup problem. Unlike most of the
previous proposed methods, our method is independent
from IP address size or length and can be scaled to 6IPv
protocols with 128 bit address without any extra memory
space, except for the data elements, and search time. The
proposed method is based on the binary search tree with the

NLog2 search time and N memory space where N the
number of data elements. Interestingly, our method does
not consider any assumption about the distribution of length
of data. Implementing the proposed method in software or
hardware is easy and, indeed, straight forward. The rest of
the paper has been organized as the following.

The rest of the paper organized as follows. In section
two, we formally define the problem and explain the IP
lookup problem which motivates us to accomplish this
work. In section three, a formal method is given for
comparing strings of different lengths and sorting them

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

195

based on this scheme. We apply the binary search tree
structure to the prefix matching problem in section 4. The
most basic procedures to build the index tree and process
queries are devised in this section. Section 5 reviews related
works and tries to explain the base of the previous methods
and concludes the paper.

2. Motivation and Problem Definition

Increasing the speed of communication lines from 10
Mbs to several gigabits per second has brought the IP
lookup problem to the attention of researchers as a
bottleneck in the Internet communication in the last years.
Figure 1 illustrates the problem. Each IP packet contains its
destination address. Routers must determine for each
packet the address of the next hop to which the packet must
be forwarded. Routers do this by checking the destination
address and finding the longest matching prefix in its
database. Table 1 shows an example of this database. The
database consists of IP address prefixes and their
corresponding hops. For example, assuming the destination
address of the packet is 001011000110 , the packet is sent
to hop 10 since the prefix *10110001 is the longest
matching prefix with the packet destination address. This
problem is more crucial now due to the rapid growth of the
Internet traffics. The number of hosts on the Internet is
growing and the data traffic is exploding. Routers must find
the longest matching prefix in a larger data set, due to
increase in number of LANs, in a smaller amount of time.
For instance, assuming the IP routing database has one
hundred thousand prefixes and the link speed is 2.5 Gbp,
routers must be able to find the longest matching prefix in
200 nanoseconds.

Figure 1: IP Lookup in Routers

This problem motivates us in proposing efficient
Prefix Trees data structures. Prefix Trees can be used in
applications which involve matching strings of different
lengths. In devising Prefix Trees we assume there are
strings of an alphabet Σ which are ordered. The strings are
not necessarily of the same lengths. In particular, besides
the exact match queries; we are also interested in the
following queries.

• To find the longest string which is a prefix of a
given query string.

• To find the smallest prefix of a given query string.

• To list all the strings which are prefixes of a given
query string.

• To find all the strings such that a given query
string is a prefix of them.

The items 1 and 3 are important in IP routing lookup
and packet classification in the TCP/IP protocols, and
indeed, they are the core of layers 3 and 4 switching.

In the following, we propose two tree structures for the
prefix matching problem. First, a binary search tree is
devised which uses)(NO memory. This data structure is
efficient in memory usage if the search time is not a
bottleneck. We extend the binary search data structure to

waym_ tree and propose a scheme for static data sets.

Table 1: A sample Database of Prefixes for IP lookup problem
Prefix Next hop

10* 7
01* 5
110* 3

1011* 5
0001* 0
01011* 7
00010* 1

001100* 2
1011001* 3
1011010* 5
0100110* 6

01001100* 4
10110011* 8
10110001* 10
01011001* 9

3. Background and basic issues

The most common data structure devised for the string
matching problem is trie which is based on the
"thumb-index" scheme on a large dictionary [15]. A trie is
essentially an m_way tree. Each internal node of a trie has
m branches, each branch corresponds to a character in the
alphabet. Each data string in a trie is represented by a leaf
and its value corresponds to the path from the root to the
leaf. Figure 2 shows an example for the strings of table 1
where m is 2 and the alphabet is only {0,1}. The blank
internal nodes are considered as place holders since they do
not represent any data element. We have relaxed the
condition of representing of each data element by a leaf
node since some data elements are prefixes of others. A
nice property of this data structure is that it is so easy to list
all prefixes of a given string. We can start from the root and
follow the branches corresponding to the characters in the
query string to leaf at each internal node. black nodes in
Figure 2, is a prefix in the path from the root to the end leaf.
While giving a good search time to find prefixes of a query

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

196

string, the following shortcomings can be identified in the
trie structure of Figure 2.

Figure 2: A trie structure for the prefixes in table 1. Bold numbers

represent next hops.

• The blank nodes, i.e., the place holders, do not
correspond to any data element in the data set. They
consume memory and add to the hight of the trie and,
consequently, prolong the search process.

• The search time corresponds to the length of data
elements. For instance, for the IP lookup problem, in
the worst case, this can be (32)O in IPv4 and (128)O
in IPv6. Therefore, even a small set of data may require
a long search time.

• The number of branches corresponds to the number of
characters in the alphabet. This makes the data
structure inflexible.

Different solutions have been proposed to overcome

these shortcomings. Knuth in [15] proposed to continue
branching at the first characters as long as each data
element can be uniquely identified. This compresses the last
part of the trie and can save time and space with little extra
work. He also shows the average search time for large N is
only)(NlogO M for random data where N is the number
of data elements and M is the number of characters in the
alphabet. Random data here means the data elements are
uniformly distributed. The total space required for building
the trie is proportional to MN/ln M. Patricia tree [13]
compresses the total path by eliminating each internal node
with only one child and, consequently, skipping some
characters and increasing the node utilization. Some
recently proposed methods, [21], [20] and [17], try to check
several characters instead of one in order to reduce the hight
of the tree while minimizes the memory usage.
Nevertheless, none of the proposed methods completely
eliminates the redundant space. This is the problem we are
going to tackle. As previously explained, we are going to
apply regular tree structures to the prefix matching problem.
Before discussing any of these data structures, we need to
address the sorting strings of different lengths" which is
fundamental to the proposed methods. We have employed
the idea of m_way prefix tree for developing

software-based IP lookup methods in [4],[5] and
Hardware-Assisted methods in [6], [7] and network
processor architectures in [8],[9].

4. Sorting strings of different lengths

Why can't we apply the well known tree structures like
the binary search tree to the prefix matching problem? Why
are there blank nodes in the trie of Figure 2? The answer is
that there is no well known method to sort strings of
different lengths, specially, when the strings are prefixes of
each others. We can apply the binary search tree to the
numbers and texts since they can be sorted. Indeed, sorting
acts like a function which gives the relative position of each
data element in the sorted space. Then, the sorted space can
be divided so that in each search a limited number of data
elements are compared with the query datum. Therefore,
we must find a sort function for strings of different length
which takes any string and find its position with respect to
others. The position of each string must be unique and the
sort function must not map two different data elements to
the same position. Before defining the sorting function, it is
worth noting that the characters in the alphabet are assumed
to be ordered. This is not a limitation to our method since
any alphabet can be sorted at the machine level. With this
assumption in mind and assuming the fact that strings can
be prefixes of others, in the following, we define a simple
method for comparing two strings of different lengths.
Regarding this definition, we define a sort mechanism.

Definition 1: Assume there are two strings
naaaA K21= and mbbbB K21= where ia and jb are

characters of alphabet Σ Also assume there is a character
⊥ which belongs toΣ . Then,
• If mn = , two strings have the same length, the values

of A and B are compared to each other based on the
order of characters in Σ .

• if mn ≠ (assume mn <), then, the two substrings
naaa K21 and nbbb K21 are compared to each other.

The substring with bigger (smaller) value is considered
bigger (smaller) if two substring are not equal. If

naaa K21 and nbbb K21 are equal, then, the

1)(+n th character of string B is checked. We

consider AB ≤ if 1+nb th is equal or before ⊥ in the
ordering of characters in Σ , and AB > otherwise.

The ⊥ character should be chosen in such a way that

the probability of any character(s) in the lower order or
upper order of ⊥ be is roughly equal. For instance, in the
English alphabet, assuming the probability of a character to
be in the range MA − or ZN − in a text to be roughly
%50 , M can be considered as ⊥ . Then, BOAT is

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

197

smaller than GOAT and SAD is bigger BALLOON. CAT is
considered bigger than CATEGORY since the fourth
character in CATEGORY, E, is smaller than M. Or in the
binary alphabet, {0,1} , assuming ⊥ is 0 , clearly, 1101 is
greater than 1011 and smaller than 11101 , and 1011 is
greater than 101101. Therefore, definition 1 gives us the
necessary tool to compare and determine the relative
standing of all strings respect to each others. This may not
be mathematically or in the usual text matching context
correct, but it is a convention to determine the relative
position of any query string. It is straight forward to show
that based on definition 1, the position of each string can be
determined uniquely and it is impossible for two strings to
be mapped to the same position unless they are identical.
By applying definition 1, the prefixes in table 1 can be
sorted in the ascending order as the following:

 This is the key idea in proposing our methods. As long
as we know how to sort strings, all well known index
structures can be applied to the string matching problem.
Before explaining any specific method or data structure, it
is better to define our interpretation of matching two
strings of different lengths precisely.

 Definition 2 Assume there are two strings
naaaA K21= and mbbbB K21= where ia and jb are

character of alphabetΣ . Then, A and B are matching if
mn = and two strings are identical, or (assuming nm >),

two naaa K21 and nbbb K21 substrings are the same.
Otherwise, A and B are not matching.

4. Binary Search Tree

Regarding definition 1, applying the binary search tree
data structure to the string prefix matching problem seems
straight forward. However, this is not the case and it
requires tackling more subtle issues. Figure 3 shows the
result of applying the binary search tree to the strings
(prefixes) of table 1. This data structure works well to find
the longest matching prefix of string 001011000110 . The
thick lines there show the search path for this string. The
search is the same as in any binary search tree, starting from
the root, comparing the query string with its value and
following a subtree based on the comparison result. The
search must be followed to the leaves since we are looking
for longest matching prefix. This data structure is superior
to the trie structure of figure 2 if it can be proved to work
correctly.

Figure 3: A binary balance tree for the prefixes in table 1.

The search fails to find the longest matching prefix of
string 001011000010 even though there are two
matching prefixes 10 and1011 . Why? The reason is that
the prefixes are ranges and not just a data point in the
search space. For instance, string 10 includes all of the
strings starting with 10 in table 1. However, they have
been treated as the points in sorting and building the index
tree. We prove in the following that this method works if
none of the data element is a prefix from another. Before
proceeding further, it is important to define two additional
concepts which are frequently encountered in the rest of
this paper.

Definition 3 Two strings A and B are disjoint if
they are not a prefix (or substring) of the other.

Definition 4 A string S is called an enclosure if there
exists at least one data string such that S is a prefix of that
string.

As an example, BAT and PHONE are disjoint, but
DATE is an enclosure of DATED and DATELINE . As
another example, 1011 is an enclosure in the data set of
table 1. We call these elements enclosures since they
include other data strings in their spaces. An enclosure
represents its data space as a point in the data set. For
instance, all data strings in table 1 which are included in the
range of 1011 , such as 1011001 , 1011010 , and 1011
itself are considered as a point represented by 1011 . A data
element may be included in an enclosure or be disjoint with
all other elements.

Lemma 5 Assume there is a set of strings which are
disjoint. Then, a binary tree built based on definition 1 can
correctly find the matching prefix(es) of any query string.

Proof: First, we claim if there is a matching prefix
with a given query string, it must be unique. Assume there
are more than one matching prefix. Then, since the prefixes
of a string must match each other the shorter string will be
enclosure of others and this contradicts our assumption that
all data elements are disjoint. Next, we claim that the
matching prefix and the query string will map to the same
place in the index tree and will follow the same path.
However, this is clear from the fact that the query and the
prefix strings are disjoint with the rest of data set. Therefore,
the query string will follow exactly the same path as the
matching prefix when it is added (or searched) into the
index tree.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

198

We modify the binary search tree in order to handle a
data set of strings with enclosures. What is really done in
building a binary tree is dividing the data space into half
recursively. We assume each subtree in the binary tree as a
data space represented by the element in the root of the
subtree. Each enclosure is also considered as a point which
includes all matching strings in its data space. Then, the
data strings are sorted and the binary tree is built as usual by
recursively splitting the data space into two at each step. If
the split point are just a single string the building process is
followed as usual. However, when the split point is an
enclosure, all included data strings are distributed in the
right and left subtree regarding definition 1 and the property
of the binary search tree. It is important to emphasize that
an enclosure may be chosen as split point, or root, even
though there are some other disjoint data elements.
However, this does not change anything since the included
data elements are distributed in subtrees with other disjoint
data. In other words, the subtree rooted in an enclosure is
not exclusive. Nevertheless, the data elements included in
an enclosure space are always guaranteed to be in the
subtree rooted by the enclosure, but not all data in the
subtree have to be in the enclosure space. The building
process is applied to the subspaces recursively.

Figure 4: The first step sorting for the prefixes in table 1

Figure 5: Sorting elements in the left subspace of figure 4.

Before going to the formal definition of procedures to
build the binary search tree for the string prefix matching
problem, we first apply it to the data set of Table 1. Figure 5
shows the result of sorting in the first step. There are only
five disjoint elements, 00,01,100001,00011 and110 , and
01 is the median and taken as the split point. Since 01 is
an enclosure, all elements contained in it are distributed in
the two subspace and put on the left subspace since all of
them are smaller. Figure 5 illustrates applying procedure to
the left subspace and Figure 6. shows the final binary tree.
As the reader may notice, the tree is not balance and search,
in the worst case, takes one step more compare to the binary
tree of Figure 3. However, this guarantees to not miss any
matching prefix as we will prove it formally.

Figure 6: Our proposed binary tree for the elements in table 1.

In the following, we give formal procedures for
building the index structure. First, we start with sorting
strings based on our definition of the string comparison and
enclosures.

4.1. Sorting strings with enclosures

We propose two procedures for sorting a set of strings
with different lengths which potentially can contain
enclosures. Both procedures assume each enclosure has a
bag in which all elements contained in its space are put.
Clearly, the sorting procedure is based on definition 1.

 The worst case running time of this procedure is
)(2NO where N is the the number of elements in the list.

This is when all data elements are disjoint and iN
i∑ −1

1=
comparisons are needed. The best case running time is

)(NO when the first string(s) is an enclsoure of others and
consequently, the rest of data are put in its bag. This
procedure does two things. It sorts the data strings, while
filling enclosures with thier data elements. We call this
process enclosurizing and formally defining all related
procedures to build the Perfix Binary Tree. It is important
to remind that the enclosurizing process works in just one
level, while the string set can have different levels like
shells of an onion. Therefore, we need to apply the
enclosurizing process recursively in order to build the
prefix tree as it will be discussed later.

Even though we do not have a precise mathematical
analysis of average runnning time of the above sort
procedure, it is expected to be slow since it uses the idea of
bubble sort. Therefore, it is better to develop another sort
algorithm which uses the idea of quick sort [10]. Even
though the worst and best case running time of this
procedure, Sort procedure 2, is the same as sort procedure 1,
the average case seems to be faster. The main idea in Sort
procedure 2 is to divide the data space into three, instead of
two, if the split point is an enclosure. In this way, smaller
data strings are put in the left side of the partition point, the
larger data strings in the right side. Finally, the matching
elements, the strings which are in the space of the split
string, are put on its bag. If the split point is disjoint with the
rest of data, the regular quick sort method is used. One
qustion still remains. How do we identify the split element?
We suggest to use the element with the minimum length at

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

199

each step . It will be proven later that this idea works. The
intuition behind using the element with minimum length is
to force enclsoures to be split points. Therefore, at each step
more elements can be excluded from the sort process which
makes the sort process faster. Furthermore, this can
guarantee the final result is enclosurized; all data elements
in the space of enclosures are put in their bags and excluded
from the data list. The MinLength function in the
following sort procedure gets a list of strings and returns the
one with the minimum length.

The last line in the algorithm concatenates the results
of sorts from the left to the right subspaces and put it in the
List . It is obvious the worst case running time of this
algorithm is)(2NO since its worst case is the worst case of
quick sort [10]. However, it best case is different and is

)(NO . This is due to the fact that the first element can be a
enclosure of the rest and the list can be processed once. The
average running time is the average running time of quick
sort implying)lg(NNO . The algorithm spends more time
to process at each step,)(2NO , to find the element with
minimum length and compare elements with the split point.
However, the number of recurisve calls are smaller since
some data element are eliminated at each step. The worst
case of recursive calls is the quick sort recursive calls when
all elements are disjiont. In this case, the average running
time is longer, i.e.,)lg(NNO .

Theorem 6 Sort procedure 2 correctly sort and
enclosurize a data set of strings of different lengths.

Proof: Correctly sorting data strings is obvious from
the well known quick sort algorithm. In each step, the
process tries to find the most probable enclosure point, the
minimal length element. Then, it partitions the data space
based on the split point and puts matching elements in the
bag. Therefore, at the end, by recusively applying algorithm
the final result is sorted. Now, we must show the data set are
enclosurized, i.e, all elements in the spaces of enclosures
are put in the corresponding bags and are out of the list.
Assume this is not the case and there is a string, A , which
is in the space of an enclsoure C and has not been placed in
C 's bag. This can only be possible if A and C fall in
different subspaces in the partitioning data set. However,
this is impossible because at each step we split the data
space with respect to the string with the minimal length.
Therefore, A and C both have to be in the same subspace
with respect to the split point. There are two cases: 1) A
and C match the split element then, they will be placed in
the bag of the split point. (2) they are disjoint. In either case,
A and C stay in the same partition until the space is

partitioned by C and A is put in its bag. It is worth noting
that the key point here is spliting based on the minimal
length string. Otherwise, it can not be guaranteed that A
and C will stay in the same partition.

4.2. Building tree

The prefix binary search tree can be built as usual after
sorting the data strings. The building process is the same as
any binary search tree. Any one of the discussed sorting
procedures can be used to sort the data srings first. There is
a subtle difference between the prefix and the usual binary
search tree. In the ordinary binary search tree the data
elements are sorted once in the begining and they remian
sorted until the end. However, in the prefix tree, the strings
in the enclosures' bags are not sorted. Furthemore, the sort
procedures enclosurize data elements only one level
whereas some strings in the bags may be enclsoures of
others. Therefore, we need to apply the sort process
recursively to the subsapces. In the following, we use a
general Sort procedure to formaly define the BuildTree
algorithm which takes a set of strings as the input and
returns a pointer to the root of the index structure. The user
can choose any of the sort algorithms discussed above.
However, the algorithm based on the quick sort should be
faster. The BuildTree procedure is given in a recursive
format again, but implementing it in a procedural form is
straightforward.

Building Tree Procedure:

The most time cosuming part of the BuildTree

procedure is Sort , specially in the first call. Using the
second sort algorithm with average running time
proportional to)lg(nnO , the average running time of
BuildTree can be approximated by the following
recurrense.

 nnnTnT lg/2)(2=)(+
Solving this recurrence yields the average running

time of the procedure as)lg(2 nnO [10]. However, if the
data strings are sorted ones, in the next calls, the procedure
can be made faster. This can be done due to the fact that in
the next recursive call of BuildTree , the data strings are
sorted except when the partition point is an enclosure. The
situation can be improved by keeping the smaller and

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

200

bigger strings in bags separated. This does not take extra
time and it can be done in the partitioning time. The second
improvement can be achieved by sorting the smaller and
bigger strings in the split point's bag and concatenating
them with the rest. Since the number of elements in the bag
are small compare to the size of data strings, the time saved
in this way can be considerable. The following lemma gives
an appropriate base for revising BuildTree .

Lemma 7 Assume A is a string and B an enclosure
such that A is not in the space of B . Then, all elements
contained in B space are in the same sorting rank respect
to A as B . In other words, all elements enclosed in B are
bigger than A if AB > , and smaller otherwise.

Proof: Let kaaaA ⋅21= and lbbbB ⋅21= and BA < .

Then, if lk ≤ implies kaaa ⋅21 is smaller than kbbb ⋅21
according to definition 1. However, the length of any
included string C in B is bigger than l and contains

lbbb ⋅21 prefix at the beginning. This directly implies
that AC > . If lk > then laaa ⋅21 is smaller than lbbb ⋅21
by the assumption. Let C , mccc ⋅21 , be a string in B , then,
the first l characters of C are the same B . Since lbbb ⋅21

is bigger than laaa ⋅21 , extending both strings by any
character in Σ will keep the same sort order based on
definition 1.

The BuildTree procedure can be modified based on
this lemma as follows. It is assumed the strings in List are
already sorted by a Sort procedure.

Building Tree Procedure 2

leftBag and rightBag contain strings which are
smaller and bigger respectively than the enclsoure in its bag.
Symbol & represents concatenation of two strings. The
running time of the algorithm depends on the input data. In
the best case, strings are disjoint and the algorithm does not
need to call Sort function. It is easy to show the running
time is)(NO and overall running time of BuildTree is
proportional to Sort or)lg(NNO . Since it is not expected
the leftBag and rightBag lists contain many strings

compare to the size of the whole data, the running time of
BuildTree is not expected to exceed)lg(NNO .

4.3. Query processing

Query processing in the proposed binary search tree is
straightforward. The tasks of queries 1, 2 and 3, finding the
longest, smallest and all prefixes of a given query strings,
from the motivation and problem definition section are
almost identical. Therefore, we only give a formal
algorithm for the first one, i.e., the longest matching prefix
problem. Next, we propose a formal procedure that finds all
strings for which a given query string is a prefix. The search
process for the longest matching prefix is simple and almost
the same as the search in binary search tree. The procedure
returns the longest matching prefix if there is any and
NULL otherwise.

The longest prefix search procedure

In the IP lookup problem str is a packet IP address
and the data elements in the tree nodes are network prefixes.
It is worth noting that the Search procedure always
substitues the matching prefix in the upper level with the
matching prefix in the lower level. This is a nice property
which prevents from comparing the lengths of the maching
prefixes and back tracking mechanism.

Theorem 8 Assume there is a binary search tree of
strings built by the BuildTree procedure, then, the above
search algorithm will find the longest matching prefixes
with a given query string if there is any.

Proof: First we must show the search processs will
find the answer if there is any. Then, we need to show this is
the longest matching prefix. If all elements in the tree are
disjoint, then the tree is a normal binary tree and according
to lemm 1 the search will find the prefix which is the
longest. This is true when there is only one matching prefix
which is disjoint with the rest of strings in the index tree.
Assume there are more than one matching prefixes in the
data set. The smallest one will enclose others in its data
space and the second one the rest and so on, like the shells
of an onion. According to lemma 7, the query string will
map to the space of the smallest matching prefix first.
However, since this prefix is the split point and is the root of
subtree, the search process will visit it. This is also true for

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

201

all other matching prefixes. Let us see what will happen to
the last or the longest prefix. There are two cases. First, the
longest prefix is disjoint with the rest at the most interior
space or at the most bottom subtree. In this case, the search
will find it according to lemma 1. Secondly, the longest
matching prefix itself encloses some other prefixes which
do not match with the query string. In this case, Search will
visit the root and will find the longest matching prefix.

As explained previously, finding the smallest
matching prefixes is the same except the algorithm must
quit when it find the first matching prefix. The procedure
can find all matching prefixes by reporting each of them
instead of substituing them with the longer one at each step.

4.4. Insertion

The insertion process is the same as any usual binary
search tree when the data set are disjiont or the new string is
not an enclosure of any string which is already in the index
tree. The process starts from the root and follows the search
path and adds it as a child of the last node in the search path.
This takes)(hO where h is the height of the tree. The
formal routine for this process can be found in many data
strucutre and algorithm book, e.g. [10]. When the string to
be added is an enclosure of any string in the index tree, we
will encounter a problem. The problem raises from the fact
that in the proposed tree an enclosure must be in a higher
level than the strings contained in its data space. This
property is a must in order to guarantee that we will not
miss any matching string in the query processing. We
propose two solutions for this issue and give our formal
procedure for the insertion based on the proposed solution.
Then, we formally prove the insertion procedure satisfies
the prefix index tree property.
1. The first solution for adding an enclusore is to follow

the search path and when it finds the first string which
is contained in the new string, insert the new string in
this place and make the contained element a child of
the inserted node.

2. In the second solution, the search path is followed until
we find the first contained node. Then, the contained
string is replaced with the prefix. Next, the replaced
string is reinserted in the index tree. By replacing a
node with a new element, the data in the sbutree may
not remain sorted. Therefore, we need to sort the
subtree by moving its data elements around the new
inserted string.
The first solution is easy and fast, however, it increases

the height of the tree and prolongs the overall search time.
The second solution takes more time since we need to move
some data element, which can be time cosuming, but it may
give a smaller height and better search time. We give our
formal insertion procedure according to the second solution.
The insertion procedure based on the first method is simple
and strightforward from the procedure given here.

Insertion Procedure

The deAllocateNo function allocates a new node and
Move recursively moves all data elments in the subtree
compare to the given query string. It is important to note
that reinsertion of the replaced element does not need to
start from the root of the index tree and it can be inserted in
the subtree rooted in the replaced node. The following
theorem proves the given insertion procedure work
correctly.

Theorem 9 The Insertion procedure given above
statisfies the requirements of the proposed prefix binary
search tree.

 Proof: If the inserted string is not an enclosure of any
node, it will be added to the bottom of the tree and the
procedure will terminate at the first "if" statement. We must
show if there is any enclosure in the index tree for the new
added string, the inserted string will be added to the subtree
of that enclosure. This is easy to concieve since based on
lemma 7 the new string will map to the enclosure space in
the sort process (or the search process). If the enclosure
already contains some other prefixes in its data space, it is a
split point and search path will go thourgh it. If the
enclosure does not contain any data element, then, the
search path will find it based on the sort definition. In any
case, the new string will be inserted in the subtree rooted at
the enclosure. Let us assume that a new string A which is
going to be inserted to the index structure is an enclosure of
some data elements in the index tree. We must show A
will be added in a level higher than its enclosed strings and
in the meanwhile, all enclosed data elements are in a
subtree rooted in A . We start reasoning by looking at the
insertion process which starts from the root by comparing

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

202

A with the data string in the root. There are three cases.
First, two strings are disjiont. Then, A is either smaller or
bigger. If it is bigger, the data elements in the left subtree
are disjiont with A and can not be enclosed in it. Therefore,
by following search in the right subtree, we do not violate
any prefix tree property. The second case is when two
strings match but A does not enclose the string in root.
Again, the new string is either smaller or bigger. Let assume
it is smaller. This means the character after the matching
characters is smaller than ⊥ according to definition 1.
However, the character in the position after the matching
characters of two strings, A and root, from all data strings
in the right subtree are bigger than ⊥ if they are enclosed
in the root. Therefore, they are disjoint with A . If the
strings in the right subtree are not enclosed in the root string
they are disjoint with A and root. In any way, they cannot
be enclosed in A . Therefore, the insertion process does not
violate any property. The third case is when A is an
enclosure of the string in the root. In this case, the root is
replace by A , and the property of being enclosers in higher
levels than their enclosed strings are kept in this way. Since
this is applied recursively from the top to the bottom, the
insertion process keeps the prefix binary tree proporty
satisfied. The insertion process can stop at the first enclosed
element since the shorter prefixes are in the upper level and
if the new element encloses a shorter prefixe, it will enlcose
the longer ones in its data space as well.

5. Related Work and Conclusion Remarks

[1] is a rich source for the pattern and string macthing
problems and related algorithms. The general prefix string
matching problem in which one is interested in finding the
longest prefix of a pattern that starts at each position of a
text string is addressed in the pattern matching litreture.
This problem is a general case of the problems we address
here and can be solved in a linear time by adopting the
string matching algorithm of Knuth, Morris and Pratt [14].
[3] studies the exact complexity and tight comparison
bounds of this problem. For matching data of different
lengths, the reader can refer to [2] which is dealing with the
problem of matching sequences of different lengths.

The main scheme for the prefix string matching data
structure which is the base of other methods and intesively
discussed in the litreture is trie [15]. A trie structure is
based on the "thumb-index" on a large dictionary in which a
word can be located by checking consecutive letters of a
string from the begining to the end. From the tree point of
view, a trie is essentially an waym_ tree whereas a branch
in each node corresponds to a letter or character of alphabet
Σ . Any string is represented by a path from the root to the
leaf corresponding to letters in the pattern. Figure 2 shows a

trie in {0,1} alphabet set. As discussed previously, the time
and space complexity of the trie structure is well known and
has been discussed in[15].

The IP lookup problem has been a hot research topic in
the last few years and contributed to some new methods for
the prefix matching problem in the {0,1} alphabet. As
expected, the base of most of these methods is the binary
trie [18] or the radix tree [10]. The main problem with trie
approach, in general, and the binary trie in particular is
keeping some nodes which do not correspond to any data
element. This wastes the space and prolong the search
process. The worst case search time of this approach is

)(WO where W is the length of the longest string or IP
address.

Patricia Trie modifies the binary trie by eliminating
most of the unnecessary nodes [13]. The scheme has been
implemented in the BSD kernel [19]. Patricia Trie is the
base of several new methods which have been proposed in
the last years. These approaches try to check several
characters, or several bits, at each step, instead of checking
only one character. Since checking several characters may
deteriorate memory usage and leave many memory space
unused [21], all these approaches try to minimize the
memory waste. V. Srinivasan and G. Varghese in [20]
proposed to expand the original prefixes (strings) into an
equivalent set of prefixes with fewer lengths and then,
apply a dynamic programming technique to the overall
index structure in order to optimize memory usage. [17]
proposed a specific case of [20] by locally optimizing
memory usage in each step. Finally, a new scheme from
Lulea University of Technology, [11], endeavors to reduce
the size of data set (routing table) so that it fits in the cache.
All these multibit trie schemes is designed for the IP lookup
problem and work well with the existing size of data,
number of prefixes in the lookup table, and IP address
length which is 32 bit currently. Nevertheless, we believe
they will not scale well for the larger size of data or longer
string, for instance, the next generation of IP (Ipv6) with
128 bit address.

Works in the longest matching prefix string in the IP
lookup context go on. For instance, the DP-Trie, Dynamic
Prefix Tries, [12], proposed by researcher from IBM, is
another version of the binary tree data structures. The data
structure tries to compact the Patricia Trie by keeping
prefixes themselves and the index of bit position differing
in the subtries of each node. [16] exploited almost the same
idea by applying binary search tree scheme and extending it
to a multiway tree by treating each prefix as a range and
identifying each range with L (low) and H (high).
Considering the fairly uniform distribution, the average
search time on both of these methods should be)(2 NlogO
in binary tree and)(NlogO m in case of m_way tree. The
Prefix Trees data structures proposed in this paper is similar
to these schemes in concept.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

203

References
[1] Alberto Apostolico and Zvi Galil, "Pattern Matching
Algorithms", Oxfor Univ. Press, 1997.
[2] Tolga Bozkaya, Nasser Yazdani and Z. Meral Ozsoyoglu,
"Sequence Matching of different lengths", 6th Int. Conference on
Information and Knowledge Management (CIKM'97), 1997.
[3] D. Breslauer, L. Colussi and L. Toniolo, "Tight Comparison
Bounds for the String Prefix Matching Problem", Proceeding of
Combinatorial Pattern Matching, 4th Symposium, 1993.
[4] Nasser Yazdani, Hossein Mohammadi, "IP Lookup in
Software for Large Routing Tables Using DMP-Tree Data
Structure" Proceeding of the 9th Asia Pacific Conference on
Communications (APCC) 2003
[5] Nasser Yazdani, Hossein Mohammadi, "A Fast and Scalable
IP Lookup Scheme: an Effort to Employ Powerful Data
Structures", Submitted to the IEEE/ACM Transaction on
Networking. 2006.
[6] Hossein Mohammadi, Nasser Yazdani, Behnam Robatmili,
Mehrdad Nourani, "Hardware Assisted Software-based IP Lookup
for Large Routing Tables", Proceeding of the 9th International
Conference on Networks (ICON), 2003, Sydney, Austuralia
[7] Hossein Mohammadi, Nasser Yazdani, "Accelerating
Computation Bounded IP Lookup Methods by Adding Simple
Instructions", Lecture Notes in Computer Science (LNCS), Vol.
3262, pp. 473 - 482, 2004
[8] Hamid Reza Ghasemi, Hossein Mohammadi, Behnam
Robatmili and Nasser Yazdani "Augmenting General Purpose
Processors for Network Processing" , In proceeding of the Second
IEEE International Conference on Field-Programmable
Technology (FPT 2003), Tokyo, Japan.
[9] Hossein Mohammadi, Nasser Yazdani, "A Genetic-Driven
Instruction Set for High Speed Network Processors" In proc. of
IEEE International Conference on Computer Systems and
Applications, pp. 1066- 1073, March 2006.
[10] Thomas H. Cormen, Charles E. Leiserson and Ronald L.
Riverst, "Introduction to Algorithms", The MIT press, 1990.
[11] Mikael Degermark, Andrej Brondnik, Svante Carlson and
Stephen Pink, "Small Forwarding Tables for Fast Routing
Lookups", Proceeding of SIGCOMM 1997.
[12] W.Doeringer, G. Karjoth and M. Nassehi, "Routing on
Longest-Matching Prefixes.", IEEE/ACM Trans. Networking, vol.
4, no.1, pp. 86-97, Feb. 1996.
[13] G. H. Gonnet and R. A. Baeza-Yates, "Handbook of
Algorithms and Data Structures.", Addison Wesley, 2th Edition,
1991.
[14] D. E. Knuth, J. H. Morris and V. R. Pratt, "Fast pattern
Matching in Strings", SIAM J. Comput., Vol. 6, p. 322-350, 1977.
[15] Donald E. Knuth, "The Art of Programming", Third Volume,
Sorting and Searching, Addison Wesley, 1973.
[16] B. Lampson, V. Srinivasan and G. Varghese, "IP Lookups
Using Multiway and Multicolumn Search.", 1998.
[17] S. Nilsson and G. Karlsson, "Fast Address Look-Up for
Internet Routers.", Proceedings of IEEE Broadband
Communication 98, Apr. 1998.
[18] S. Nilsson and G. Karlsson, "Implementing a Dynamic
Compressed Trie.", Proceedings of WAE'98, Saarbrucken,
Germany, Aug. 1998.
[19] Sklower, K., "A Tree-Based Routing Table for Berkeley
Unix", Proceeding of the Winter Usenix Conference, 1991.
[20] V. Srinivasan and George Varghese, "Fast Address Lookups

using Controlled Prefix", Proceedings of ACM Sigmetrics, Sep.
1998.
[21] Johanaton Turner "Design and Analysis of Switching
systems", Washington University, St. Louis,Missouri, Jan. 99.
[22] Marcel Waldvogel, George Varghese, Jon Turner, Bernhard
Plattner, "Scalable High Speed IP Routing Lookups", Proceedings
of ACM Sigcomm, Sep. 1997.

Dr. Nasser Yazdani has a PhD in
computer science and engineering from
Case Western Reserve Univ, Cleveland,
Ohio, USA. Before his Ph.D. he got his
bachelor in computer engineering from
Sharif University of Technology,
Tehran, Iran and worked in Iran
Telecommunication Research Center
(ITRC) as a researcher and

developer. After his Ph.D. he worked in several
companies and research institutes in the USA. In
2000, he joined the ECE Department of University
of Tehran, Tehran, Iran, as an associate professor.
Dr. Yazdani initiated different research projects and
labs in high speed networking. His research interest
includes: Networking, packet switching, access
methods, Operating Systems and Database Systems.

Hossein Mohammadi received his BS in
Computer Science and Engineering from
University of Theran in 2002, he joined
to the Router Laboratories as one of the
founder members in 2001 then received
his MSC from the same university in
2004. Currently, he is a Ph.D. candidate
and he is working as a research assistant
in the Router Laboratory as well as a
lecturer in

Operating Systems in the ECE school. He is also a
member of the core team which is developing the
first Iranian IP router named as RAHYAB. His
research interests include indexing algorithms,
mobility modeling and distributed optimization.

