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Summary  
 We address prefix matching problems which constitute the 
building block of some applications in the computer realm and 
related area. It is assumed there are strings of an alphabet Σ  
which are ordered. The data strings can have different lengths and 
some of them can be prefixes of others. A well known application 
of prefix matching is layer 3 IP switching in which routers forward 
an IP packet by checking its destination address and finding the 
longest matching prefix from a database. In layer 4 switching, the 
source and destination addresses are used to classify packets for 
differentiated service and Quality of Services (QoS). We believe 
the fundamental issue preventing applying the usual tree 
structures such as B-tree to the prefix matching problem is the lack 
of a systematic method to compare and sort strings of different 
lengths. We introduce a simple scheme for comparing and sorting 
strings of different lengths first. Then, since the usual data 
structures can not be applied directly to the sorted strings, we 
manipulate data and tune the tree structures. We propose twp tree 
structures and devise all related procedures to build trees and 
process queries. A binary prefix tree is introduced and which can 
be extended to static and dynamic m_way prefix trees.  
Keywords  
 Prefix tree, IP Lookup, Packet Classification 

Introduction 

 Rapid growth of the Internet has faced researcher with 
some new challenging problems. This growth has affected 
our work, communication and social life very deeply. Every 
one wants to join this new and exciting world by creating 
his/her own website. Then, the number of hosts on the 
Internet is growing everyday and consequently, the data 
traffic is exploding. On the other hand, some new 
applications such as multimedia, hypertext data, video 
conferencing, remote imaging, etc., which are very data 
intensive contribute to this traffic explosion. All these 
demand for higher bandwidth on the communication line 
and fast and efficient methods for the traditional computer 
network problems. 

To keep up with these waves of demands and 
increased traffic, the speed of the communication lines has 
been increased from 10 Mbps (Megabit per second) to 
gigabit per second. A new connection based technology, 
ATM, has been emerged. However, since the huge 
investment on the relatively old Ethernet technology is 

already on place, and certainly it is not going to leave the 
scene very soon, the gigabit Ethernet technology has been 
developed. Even though the gigabit Ethernet has borrowed 
some new ideas and technology from ATM, it is still 
faithful to its core idea and remains connectionless. This 
implies the routers which forward IP datagrams must 
determine the next destination for each data packets. To do 
this, the routers search the IP routing tables to find the 
address of the next hop to which the packet is going to be 
forwarded on the path towards the final destination. With 
current trend in the network technology finding the next 
hop for each datagram becomes harder and harder. 
Increasing number of hosts on the Internet expands the 
global network and number of hops in the Internet. Then, 
the size of the routing table grows everyday and requires 
faster access methods. Unfortunately, increasing the speed 
of data link worsen the situation since the time to send a 
datagram decreases with the links speed. Then, we cut in 
the middle of two factors which together require smaller 
search time in a bigger set. Advances in the semiconductor 
technology which improves the processing capability of 
new CPU chips can pay off in some degree. However, since 
the links speed grows faster than the processing speed and 
the size of data is growing on the other hand, it sounds the 
IP lookup problem can be a serious bottleneck. 

In this paper, we prose a new indexing and searching 
scheme for the IP lookup problem. Unlike most of the 
previous proposed methods, our method is independent 
from IP address size or length and can be scaled to 6IPv  
protocols with 128 bit address without any extra memory 
space, except for the data elements, and search time. The 
proposed method is based on the binary search tree with the 

NLog2  search time and N  memory space where N  the 
number of data elements. Interestingly, our method does 
not consider any assumption about the distribution of length 
of data. Implementing the proposed method in software or 
hardware is easy and, indeed, straight forward. The rest of 
the paper has been organized as the following. 

The rest of the paper organized as follows. In section 
two, we formally define the problem and explain the IP 
lookup problem which motivates us to accomplish this 
work. In section three, a formal method is given for 
comparing strings of different lengths and sorting them 
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based on this scheme. We apply the binary search tree 
structure to the prefix matching problem in section 4. The 
most basic procedures to build the index tree and process 
queries are devised in this section. Section 5 reviews related 
works and tries to explain the base of the previous methods 
and concludes the paper. 

2. Motivation and Problem Definition 

Increasing the speed of communication lines from 10 
Mbs to several gigabits per second has brought the IP 
lookup problem to the attention of researchers as a 
bottleneck in the Internet communication in the last years. 
Figure 1 illustrates the problem. Each IP packet contains its 
destination address. Routers must determine for each 
packet the address of the next hop to which the packet must 
be forwarded. Routers do this by checking the destination 
address and finding the longest matching  prefix in its 
database. Table 1 shows an example of this database. The 
database consists of IP address prefixes and their 
corresponding hops. For example, assuming the destination 
address of the packet is 001011000110 , the packet is sent 
to hop 10  since the prefix *10110001  is the longest 
matching prefix with the packet destination address. This 
problem is more crucial now due to the rapid growth of the 
Internet traffics. The number of hosts on the Internet is 
growing and the data traffic is exploding. Routers must find 
the longest matching prefix in a larger data set, due to 
increase in number of LANs, in a smaller amount of time. 
For instance, assuming the IP routing database has one 
hundred thousand prefixes and the link speed is 2.5 Gbp, 
routers must be able to find the longest matching prefix in 
200 nanoseconds. 

 

 
Figure 1: IP Lookup in Routers 

This problem motivates us in proposing efficient 
Prefix Trees data structures. Prefix Trees can be used in 
applications which involve matching strings of different 
lengths. In devising Prefix Trees we assume there are 
strings of an alphabet Σ  which are ordered. The strings are 
not necessarily of the same lengths. In particular, besides 
the exact match queries; we are also interested in the 
following queries. 

• To find the longest string which is a prefix of a 
given query string.  

• To find the smallest prefix of a given query string.  

• To list all the strings which are prefixes of a given 
query string.  

• To find all the strings such that a given query 
string is a prefix of them.  

The items 1 and 3 are important in IP routing lookup 
and packet classification in the TCP/IP protocols, and 
indeed, they are the core of layers 3 and 4 switching. 

In the following, we propose two tree structures for the 
prefix matching problem. First, a binary search tree is 
devised which uses )(NO  memory. This data structure is 
efficient in memory usage if the search time is not a 
bottleneck. We extend the binary search data structure to 

waym_  tree and propose a scheme for static data sets. 

Table 1: A sample Database of Prefixes for IP lookup problem 
Prefix    Next hop  

10* 7 
01* 5 
110* 3 

1011* 5 
0001* 0 
01011* 7 
00010* 1 

001100* 2 
1011001* 3 
1011010* 5 
0100110* 6 

01001100* 4 
10110011* 8 
10110001* 10 
01011001* 9 

3. Background and basic issues 

The most common data structure devised for the string 
matching problem is  trie which is based on the 
"thumb-index" scheme on a large dictionary [15]. A trie is 
essentially an  m_way tree. Each internal node of a trie has 
m  branches, each branch corresponds to a character in the 
alphabet. Each data string in a trie is represented by a leaf 
and its value corresponds to the path from the root to the 
leaf. Figure 2 shows an example for the strings of table 1 
where m  is 2 and the alphabet is only {0,1}. The blank 
internal nodes are considered as place holders since they do 
not represent any data element. We have relaxed the 
condition of representing of each data element by a leaf 
node since some data elements are prefixes of others. A 
nice property of this data structure is that it is so easy to list 
all prefixes of a given string. We can start from the root and 
follow the branches corresponding to the characters in the 
query string to leaf at each internal node. black nodes in 
Figure 2, is a prefix in the path from the root to the end leaf. 
While giving a good search time to find prefixes of a query 
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string, the following shortcomings can be identified in the 
trie structure of Figure 2. 

 
Figure 2: A trie structure for the prefixes in table 1. Bold numbers 

represent next hops. 

• The blank nodes, i.e., the place holders, do not 
correspond to any data element in the data set. They 
consume memory and add to the hight of the trie and, 
consequently, prolong the search process.  

• The search time corresponds to the length of data 
elements. For instance, for the IP lookup problem, in 
the worst case, this can be (32)O  in IPv4 and (128)O  
in IPv6. Therefore, even a small set of data may require 
a long search time.  

• The number of branches corresponds to the number of 
characters in the alphabet. This makes the data 
structure inflexible.  

 
Different solutions have been proposed to overcome 

these shortcomings. Knuth in [15] proposed to continue 
branching at the first characters as long as each data 
element can be uniquely identified. This compresses the last 
part of the trie and can save time and space with little extra 
work. He also shows the average search time for large N  is 
only )( NlogO M  for random data where N  is the number 
of data elements and M  is the number of characters in the 
alphabet. Random data here means the data elements are 
uniformly distributed. The total space required for building 
the trie is proportional to MN/ln M. Patricia tree [13] 
compresses the total path by eliminating each internal node 
with only one child and, consequently, skipping some 
characters and increasing the node utilization. Some 
recently proposed methods, [21], [20] and [17], try to check 
several characters instead of one in order to reduce the hight 
of the tree while minimizes the memory usage. 
Nevertheless, none of the proposed methods completely 
eliminates the redundant space. This is the problem we are 
going to tackle. As previously explained, we are going to 
apply regular tree structures to the prefix matching problem. 
Before discussing any of these data structures, we need to 
address the sorting strings of different lengths" which is 
fundamental to the proposed methods. We have employed 
the idea of m_way prefix tree for developing 

software-based IP lookup methods in [4],[5] and 
Hardware-Assisted methods in [6], [7] and network 
processor architectures in [8],[9]. 

4. Sorting strings of different lengths 

Why can't we apply the well known tree structures like 
the binary search tree to the prefix matching problem? Why 
are there blank nodes in the trie of Figure 2? The answer is 
that there is no well known method to sort strings of 
different lengths, specially, when the strings are prefixes of 
each others. We can apply the binary search tree to the 
numbers and texts since they can be sorted. Indeed, sorting 
acts like a function which gives the relative position of each 
data element in the sorted space. Then, the sorted space can 
be divided so that in each search a limited number of data 
elements are compared with the query datum. Therefore, 
we must find a sort function for strings of different length 
which takes any string and find its position with respect to 
others. The position of each string must be unique and the 
sort function must not map two different data elements to 
the same position. Before defining the sorting function, it is 
worth noting that the characters in the alphabet are assumed 
to be ordered. This is not a limitation to our method since 
any alphabet can be sorted at the machine level. With this 
assumption in mind and assuming the fact that strings can 
be prefixes of others, in the following, we define a simple 
method for comparing two strings of different lengths. 
Regarding this definition, we define a sort mechanism. 

Definition 1: Assume there are two strings 
naaaA K21=  and mbbbB K21=  where ia  and jb  are 

characters of alphabet Σ  Also assume there is a character 
⊥  which belongs toΣ . Then,   
• If mn = , two strings have the same length, the values 

of A  and B  are compared to each other based on the 
order of characters in Σ .  

• if mn ≠  (assume mn < ), then, the two substrings 
naaa K21  and nbbb K21  are compared to each other. 

The substring with bigger (smaller) value is considered 
bigger (smaller) if two substring are not equal. If 

naaa K21  and nbbb K21  are equal, then, the 

1)( +n th character of string B  is checked. We 

consider AB ≤  if 1+nb th is equal or before ⊥  in the 
ordering of characters in Σ , and AB >  otherwise.  

    
The ⊥  character should be chosen in such a way that 

the probability of any character(s) in the lower order or 
upper order of ⊥  be is roughly equal. For instance, in the 
English alphabet, assuming the probability of a character to 
be in the range MA −  or ZN −  in a text to be roughly 
%50 , M  can be considered as ⊥ . Then, BOAT is 
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smaller than GOAT and SAD is bigger BALLOON. CAT is 
considered bigger than CATEGORY since the fourth 
character in CATEGORY, E, is smaller than M. Or in the 
binary alphabet, {0,1} , assuming ⊥  is 0 , clearly, 1101  is 
greater than 1011  and smaller than 11101 , and 1011  is 
greater than 101101. Therefore, definition 1 gives us the 
necessary tool to compare and determine the relative 
standing of all strings respect to each others. This may not 
be mathematically or in the usual text matching context 
correct, but it is a convention to determine the relative 
position of any query string. It is straight forward to show 
that based on definition 1, the position of each string can be 
determined uniquely and it is impossible for two strings to 
be mapped to the same position unless they are identical. 
By applying definition 1, the prefixes in table 1 can be 
sorted in the ascending order as the following:   

 

 This is the key idea in proposing our methods. As long 
as we know how to sort strings, all well known index 
structures can be applied to the string matching problem. 
Before explaining any specific method or data structure, it 
is better to define our interpretation of  matching  two 
strings of different lengths precisely. 

  Definition 2 Assume there are two strings 
naaaA K21=  and mbbbB K21=  where ia  and jb  are 

character of alphabetΣ . Then, A  and B  are matching if 
mn =  and two strings are identical, or (assuming nm > ), 

two naaa K21  and nbbb K21  substrings are the same. 
Otherwise, A  and B  are not matching.    

4. Binary Search Tree 

Regarding definition 1, applying the binary search tree 
data structure to the string prefix matching problem seems 
straight forward. However, this is not the case and it 
requires tackling more subtle issues. Figure 3 shows the 
result of applying the binary search tree to the strings 
(prefixes) of table 1. This data structure works well to find 
the longest matching prefix of string 001011000110 . The 
thick lines there show the search path for this string. The 
search is the same as in any binary search tree, starting from 
the root, comparing the query string with its value and 
following a subtree based on the comparison result. The 
search must be followed to the leaves since we are looking 
for longest matching prefix. This data structure is superior 
to the trie structure of figure 2 if it can be proved to work 
correctly. 

 
Figure 3: A binary balance tree for the prefixes in table 1. 

The search fails to find the longest matching prefix of 
string 001011000010  even though there are two 
matching prefixes 10  and1011 . Why? The reason is that 
the prefixes are  ranges and not just a data point in the 
search space. For instance, string 10  includes all of the 
strings starting with 10  in table 1. However, they have 
been treated as the points in sorting and building the index 
tree. We prove in the following that this method works if 
none of the data element is a prefix from another. Before 
proceeding further, it is important to define two additional 
concepts which are frequently encountered in the rest of 
this paper. 

Definition 3 Two strings A  and B  are disjoint if 
they are not a prefix (or substring) of the other.   

Definition 4 A string S  is called an  enclosure if there 
exists at least one data string such that S  is a prefix of that 
string.   

As an example, BAT  and PHONE  are disjoint, but 
DATE  is an enclosure of DATED  and DATELINE . As 
another example, 1011  is an enclosure in the data set of 
table 1. We call these elements enclosures since they 
include other data strings in their spaces. An enclosure 
represents its data space as a point in the data set. For 
instance, all data strings in table 1 which are included in the 
range of 1011 , such as 1011001 , 1011010 , and 1011  
itself are considered as a point represented by 1011 . A data 
element may be included in an enclosure or be disjoint with 
all other elements. 

Lemma 5 Assume there is a set of strings which are 
disjoint. Then, a binary tree built based on definition 1 can 
correctly find the matching prefix(es) of any query string.   

Proof: First, we claim if there is a matching prefix 
with a given query string, it must be unique. Assume there 
are more than one matching prefix. Then, since the prefixes 
of a string must match each other the shorter string will be 
enclosure of others and this contradicts our assumption that 
all data elements are disjoint. Next, we claim that the 
matching prefix and the query string will map to the same 
place in the index tree and will follow the same path. 
However, this is clear from the fact that the query and the 
prefix strings are disjoint with the rest of data set. Therefore, 
the query string will follow exactly the same path as the 
matching prefix when it is added (or searched) into the 
index tree.             
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We modify the binary search tree in order to handle a 
data set of strings with enclosures. What is really done in 
building a binary tree is dividing the data space into half 
recursively. We assume each subtree in the binary tree as a 
data space represented by the element in the root of the 
subtree. Each enclosure is also considered as a point which 
includes all matching strings in its data space. Then, the 
data strings are sorted and the binary tree is built as usual by 
recursively splitting the data space into two at each step. If 
the split point are just a single string the building process is 
followed as usual. However, when the split point is an 
enclosure, all included data strings are distributed in the 
right and left subtree regarding definition 1 and the property 
of the binary search tree. It is important to emphasize that 
an enclosure may be chosen as split point, or root, even 
though there are some other disjoint data elements. 
However, this does not change anything since the included 
data elements are distributed in subtrees with other disjoint 
data. In other words, the subtree rooted in an enclosure is 
not  exclusive. Nevertheless, the data elements included in 
an enclosure space are always guaranteed to be in the 
subtree rooted by the enclosure, but not all data in the 
subtree have to be in the enclosure space. The building 
process is applied to the subspaces recursively. 

 
Figure 4: The first step sorting for the prefixes in table 1 

 
Figure 5: Sorting elements in the left subspace of figure 4. 

Before going to the formal definition of procedures to 
build the binary search tree for the string prefix matching 
problem, we first apply it to the data set of Table 1. Figure 5 
shows the result of sorting in the first step. There are only 
five disjoint elements, 00,01,100001,00011  and110 , and 
01  is the median and taken as the split point. Since 01  is 
an enclosure, all elements contained in it are distributed in 
the two subspace and put on the left subspace since all of 
them are smaller. Figure 5 illustrates applying procedure to 
the left subspace and Figure 6. shows the final binary tree. 
As the reader may notice, the tree is not balance and search, 
in the worst case, takes one step more compare to the binary 
tree of Figure 3. However, this guarantees to not miss any 
matching prefix as we will prove it formally. 

 
Figure 6:  Our proposed binary tree for the elements in table 1. 

In the following, we give formal procedures for 
building the index structure. First, we start with sorting 
strings based on our definition of the string comparison and 
enclosures. 

4.1. Sorting strings with enclosures 

We propose two procedures for sorting a set of strings 
with different lengths which potentially can contain 
enclosures. Both procedures assume each enclosure has a  
bag in which all elements contained in its space are put. 
Clearly, the sorting procedure is based on definition 1.  

  The worst case running time of this procedure is 
)( 2NO  where N  is the the number of elements in the list. 

This is when all data elements are disjoint and iN
i∑ −1

1=  
comparisons are needed. The best case running time is 

)(NO  when the first string(s) is an enclsoure of others and 
consequently, the rest of data are put in its bag. This 
procedure does two things. It sorts the data strings, while 
filling enclosures with thier data elements. We call this 
process  enclosurizing and formally defining all related 
procedures to build the  Perfix Binary Tree. It is important 
to remind that the enclosurizing process works in just one 
level, while the string set can have different levels like 
shells of an onion. Therefore, we need to apply the 
enclosurizing process recursively in order to build the 
prefix tree as it will be discussed later. 

Even though we do not have a precise mathematical 
analysis of average runnning time of the above sort 
procedure, it is expected to be slow since it uses the idea of 
bubble sort. Therefore, it is better to develop another sort 
algorithm which uses the idea of quick sort [10]. Even 
though the worst and best case running time of this 
procedure, Sort procedure 2, is the same as sort procedure 1, 
the average case seems to be faster. The main idea in Sort 
procedure 2 is to divide the data space into three, instead of 
two, if the split point is an enclosure. In this way, smaller 
data strings are put in the left side of the partition point, the 
larger data strings in the right side. Finally, the matching 
elements, the strings which are in the space of the split 
string, are put on its bag. If the split point is disjoint with the 
rest of data, the regular quick sort method is used. One 
qustion still remains. How do we identify the split element? 
We suggest to use the element with the minimum length at 
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each step . It will be proven later that this idea works. The 
intuition behind using the element with minimum length is 
to force enclsoures to be split points. Therefore, at each step 
more elements can be excluded from the sort process which 
makes the sort process faster. Furthermore, this can 
guarantee the final result is  enclosurized; all data elements 
in the space of enclosures are put in their bags and excluded 
from the data list. The MinLength  function in the 
following sort procedure gets a list of strings and returns the 
one with the minimum length.  

The last line in the algorithm concatenates the results 
of sorts from the left to the right subspaces and put it in the 
List . It is obvious the worst case running time of this 
algorithm is )( 2NO  since its worst case is the worst case of 
quick sort [10]. However, it best case is different and is 

)(NO . This is due to the fact that the first element can be a 
enclosure of the rest and the list can be processed once. The 
average running time is the average running time of quick 
sort implying )lg( NNO . The algorithm spends more time 
to process at each step, )(2NO , to find the element with 
minimum length and compare elements with the split point. 
However, the number of recurisve calls are smaller since 
some data element are eliminated at each step. The worst 
case of recursive calls is the quick sort recursive calls when 
all elements are disjiont. In this case, the average running 
time is longer, i.e., )lg( NNO . 

Theorem 6 Sort procedure 2 correctly sort and 
enclosurize a data set of strings of different lengths.   

Proof: Correctly sorting data strings is obvious from 
the well known quick sort algorithm. In each step, the 
process tries to find the most probable enclosure point, the 
minimal length element. Then, it partitions the data space 
based on the split point and puts matching elements in the 
bag. Therefore, at the end, by recusively applying algorithm 
the final result is sorted. Now, we must show the data set are 
enclosurized, i.e, all elements in the spaces of enclosures 
are put in the corresponding bags and are out of the list. 
Assume this is not the case and there is a string, A , which 
is in the space of an enclsoure C  and has not been placed in 
C 's bag. This can only be possible if A  and C  fall in 
different subspaces in the partitioning data set. However, 
this is impossible because at each step we split the data 
space with respect to the string with the minimal length. 
Therefore, A  and C  both have to be in the same subspace 
with respect to the split point. There are two cases: 1) A  
and C  match the split element then, they will be placed in 
the bag of the split point. (2) they are disjoint. In either case, 
A  and C  stay in the same partition until the space is 

partitioned by C  and A  is put in its bag. It is worth noting 
that the key point here is spliting based on the minimal 
length string. Otherwise, it can not be guaranteed that A  
and C  will stay in the same partition.            

4.2. Building tree 

The prefix binary search tree can be built as usual after 
sorting the data strings. The building process is the same as 
any binary search tree. Any one of the discussed sorting 
procedures can be used to sort the data srings first. There is 
a subtle difference between the prefix and the usual binary 
search tree. In the ordinary binary search tree the data 
elements are sorted once in the begining and they remian 
sorted until the end. However, in the prefix tree, the strings 
in the enclosures' bags are not sorted. Furthemore, the sort 
procedures enclosurize data elements only one level 
whereas some strings in the bags may be enclsoures of 
others. Therefore, we need to apply the sort process 
recursively to the subsapces. In the following, we use a 
general Sort procedure to formaly define the BuildTree  
algorithm which takes a set of strings as the input and 
returns a pointer to the root of the index structure. The user 
can choose any of the sort algorithms discussed above. 
However, the algorithm based on the quick sort should be 
faster. The BuildTree procedure is given in a recursive 
format again, but implementing it in a procedural form is 
straightforward. 

 
Building Tree Procedure: 

 
The most time cosuming part of the BuildTree  

procedure is Sort , specially in the first call. Using the 
second sort algorithm with average running time 
proportional to )lg( nnO , the average running time of 
BuildTree  can be approximated by the following 
recurrense.  

 nnnTnT lg/2)(2=)( +   
Solving this recurrence yields the average running 

time of the procedure as )lg( 2 nnO  [10]. However, if the 
data strings are sorted ones, in the next calls, the procedure 
can be made faster. This can be done due to the fact that in 
the next recursive call of BuildTree , the data strings are 
sorted except when the partition point is an enclosure. The 
situation can be improved by keeping the smaller and 
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bigger strings in bags separated. This does not take extra 
time and it can be done in the partitioning time. The second 
improvement can be achieved by sorting the smaller and 
bigger strings in the split point's bag and concatenating 
them with the rest. Since the number of elements in the bag 
are small compare to the size of data strings, the time saved 
in this way can be considerable. The following lemma gives 
an appropriate base for revising BuildTree . 

Lemma 7 Assume A  is a string and B  an enclosure 
such that A  is not in the space of B . Then, all elements 
contained in B  space are in the same sorting rank respect 
to A  as B . In other words, all elements enclosed in B  are 
bigger than A  if AB > , and smaller otherwise.    

Proof: Let kaaaA ⋅21=  and lbbbB ⋅21=  and BA < . 

Then, if lk ≤  implies kaaa ⋅21  is smaller than kbbb ⋅21  
according to definition 1. However, the length of any 
included string C  in B  is bigger than l  and contains 

lbbb ⋅21  prefix at the beginning. This directly implies 
that AC > . If lk >  then laaa ⋅21  is smaller than lbbb ⋅21  
by the assumption. Let C , mccc ⋅21 , be a string in B , then, 
the first l  characters of C  are the same B . Since lbbb ⋅21  

is bigger than laaa ⋅21 , extending both strings by any 
character in Σ  will keep the same sort order based on 
definition 1.            

The BuildTree  procedure can be modified based on 
this lemma as follows. It is assumed the strings in List  are 
already sorted by a Sort  procedure. 

 
Building Tree Procedure 2  

 
     

leftBag  and rightBag  contain strings which are 
smaller and bigger respectively than the enclsoure in its bag. 
Symbol &  represents concatenation of two strings. The 
running time of the algorithm depends on the input data. In 
the best case, strings are disjoint and the algorithm does not 
need to call Sort  function. It is easy to show the running 
time is )(NO  and overall running time of BuildTree  is 
proportional to Sort  or )lg( NNO . Since it is not expected 
the leftBag  and rightBag  lists contain many strings 

compare to the size of the whole data, the running time of 
BuildTree  is not expected to exceed )lg( NNO . 

4.3. Query processing 

Query processing in the proposed binary search tree is 
straightforward. The tasks of queries 1, 2 and 3, finding the 
longest, smallest and all prefixes of a given query strings, 
from the motivation and problem definition section are 
almost identical. Therefore, we only give a formal 
algorithm for the first one, i.e., the longest matching prefix 
problem. Next, we propose a formal procedure that finds all 
strings for which a given query string is a prefix. The search 
process for the longest matching prefix is simple and almost 
the same as the search in binary search tree. The procedure 
returns the longest matching prefix if there is any and 
NULL otherwise. 

 
The longest prefix search procedure 

 
 

In the IP lookup problem str  is a packet IP address 
and the data elements in the tree nodes are network prefixes. 
It is worth noting that the Search procedure always 
substitues the matching prefix in the upper level with the 
matching prefix in the lower level. This is a nice property 
which prevents from comparing the lengths of the maching 
prefixes and back tracking mechanism. 

Theorem 8 Assume there is a binary search tree of 
strings built by the BuildTree  procedure, then, the above 
search algorithm will find the longest matching prefixes 
with a given query string if there is any.   

Proof: First we must show the search processs will 
find the answer if there is any. Then, we need to show this is 
the longest matching prefix. If all elements in the tree are 
disjoint, then the tree is a normal binary tree and according 
to lemm 1 the search will find the prefix which is the 
longest. This is true when there is only one matching prefix 
which is disjoint with the rest of strings in the index tree. 
Assume there are more than one matching prefixes in the 
data set. The smallest one will enclose others in its data 
space and the second one the rest and so on, like the shells 
of an onion. According to lemma 7, the query string will 
map to the space of the smallest matching prefix first. 
However, since this prefix is the split point and is the root of 
subtree, the search process will visit it. This is also true for 
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all other matching prefixes. Let us see what will happen to 
the last or the longest prefix. There are two cases. First, the 
longest prefix is disjoint with the rest at the most interior 
space or at the most bottom subtree. In this case, the search 
will find it according to lemma 1. Secondly, the longest 
matching prefix itself encloses some other prefixes which 
do not match with the query string. In this case, Search will 
visit the root and will find the longest matching prefix.            

As explained previously, finding the smallest 
matching prefixes is the same except the algorithm must 
quit when it find the first matching prefix. The procedure 
can find all matching prefixes by reporting each of them 
instead of substituing them with the longer one at each step. 

4.4. Insertion 

The insertion process is the same as any usual binary 
search tree when the data set are disjiont or the new string is 
not an enclosure of any string which is already in the index 
tree. The process starts from the root and follows the search 
path and adds it as a child of the last node in the search path. 
This takes )(hO  where h  is the height of the tree. The 
formal routine for this process can be found in many data 
strucutre and algorithm book, e.g. [10]. When the string to 
be added is an enclosure of any string in the index tree, we 
will encounter a problem. The problem raises from the fact 
that in the proposed tree an enclosure must be in a higher 
level than the strings contained in its data space. This 
property is a must in order to guarantee that we will not 
miss any matching string in the query processing. We 
propose two solutions for this issue and give our formal 
procedure for the insertion based on the proposed solution. 
Then, we formally prove the insertion procedure satisfies 
the prefix index tree property.   
1. The first solution for adding an enclusore is to follow 

the search path and when it finds the first string which 
is contained in the new string, insert the new string in 
this place and make the contained element a child of 
the inserted node.  

2. In the second solution, the search path is followed until 
we find the first contained node. Then, the contained 
string is replaced with the prefix. Next, the replaced 
string is reinserted in the index tree. By replacing a 
node with a new element, the data in the sbutree may 
not remain sorted. Therefore, we need to sort the 
subtree by moving its data elements around the new 
inserted string.  
The first solution is easy and fast, however, it increases 

the height of the tree and prolongs the overall search time. 
The second solution takes more time since we need to move 
some data element, which can be time cosuming, but it may 
give a smaller height and better search time. We give our 
formal insertion procedure according to the second solution. 
The insertion procedure based on the first method is simple 
and strightforward from the procedure given here. 

 
Insertion Procedure 

    
  

The deAllocateNo  function allocates a new node and 
Move  recursively moves all data elments in the subtree 
compare to the given query string. It is important to note 
that reinsertion of the replaced element does not need to 
start from the root of the index tree and it can be inserted in 
the subtree rooted in the replaced node. The following 
theorem proves the given insertion procedure work 
correctly.   

Theorem 9 The Insertion procedure given above 
statisfies the requirements of the proposed prefix binary 
search tree.   

 Proof: If the inserted string is not an enclosure of any 
node, it will be added to the bottom of the tree and the 
procedure will terminate at the first "if" statement. We must 
show if there is any enclosure in the index tree for the new 
added string, the inserted string will be added to the subtree 
of that enclosure. This is easy to concieve since based on 
lemma 7 the new string will map to the enclosure space in 
the sort process (or the search process). If the enclosure 
already contains some other prefixes in its data space, it is a 
split point and search path will go thourgh it. If the 
enclosure does not contain any data element, then, the 
search path will find it based on the sort definition. In any 
case, the new string will be inserted in the subtree rooted at 
the enclosure. Let us assume that a new string A  which is 
going to be inserted to the index structure is an enclosure of 
some data elements in the index tree. We must show A  
will be added in a level higher than its enclosed strings and 
in the meanwhile, all enclosed data elements are in a 
subtree rooted in A . We start reasoning by looking at the 
insertion process which starts from the root by comparing 
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A  with the data string in the root. There are three cases. 
First, two strings are disjiont. Then, A  is either smaller or 
bigger. If it is bigger, the data elements in the left subtree 
are disjiont with A  and can not be enclosed in it. Therefore, 
by following search in the right subtree, we do not violate 
any prefix tree property. The second case is when two 
strings match but A  does not enclose the string in root. 
Again, the new string is either smaller or bigger. Let assume 
it is smaller. This means the character after the matching 
characters is smaller than ⊥  according to definition 1. 
However, the character in the position after the matching 
characters of two strings, A  and root, from all data strings 
in the right subtree are bigger than ⊥  if they are enclosed 
in the root. Therefore, they are disjoint with A . If the 
strings in the right subtree are not enclosed in the root string 
they are disjoint with A  and root. In any way, they cannot 
be enclosed in A . Therefore, the insertion process does not 
violate any property. The third case is when A  is an 
enclosure of the string in the root. In this case, the root is 
replace by A , and the property of being enclosers in higher 
levels than their enclosed strings are kept in this way. Since 
this is applied recursively from the top to the bottom, the 
insertion process keeps the prefix binary tree proporty 
satisfied. The insertion process can stop at the first enclosed 
element since the shorter prefixes are in the upper level and 
if the new element encloses a shorter prefixe, it will enlcose 
the longer ones in its data space as well.             

5. Related Work and Conclusion Remarks 

[1] is a rich source for the pattern and string macthing 
problems and related algorithms. The general prefix string 
matching problem in which one is interested in finding the 
longest prefix of a pattern that starts at each position of a 
text string is addressed in the pattern matching litreture. 
This problem is a general case of the problems we address 
here and can be solved in a linear time by adopting the 
string matching algorithm of Knuth, Morris and Pratt [14]. 
[3] studies the exact complexity and tight comparison 
bounds of this problem. For matching data of different 
lengths, the reader can refer to [2] which is dealing with the 
problem of matching sequences of different lengths. 

The main scheme for the prefix string matching data 
structure which is the base of other methods and intesively 
discussed in the litreture is  trie [15]. A trie structure is 
based on the "thumb-index" on a large dictionary in which a 
word can be located by checking consecutive letters of a 
string from the begining to the end. From the tree point of 
view, a trie is essentially an waym_  tree whereas a branch 
in each node corresponds to a letter or character of alphabet 
Σ . Any string is represented by a path from the root to the 
leaf corresponding to letters in the pattern. Figure 2 shows a 

trie in {0,1} alphabet set. As discussed previously, the time 
and space complexity of the trie structure is well known and 
has been discussed in[15]. 

The IP lookup problem has been a hot research topic in 
the last few years and contributed to some new methods for 
the prefix matching problem in the {0,1}  alphabet. As 
expected, the base of most of these methods is the binary 
trie [18] or the  radix tree [10]. The main problem with trie 
approach, in general, and the binary trie in particular is 
keeping some nodes which do not correspond to any data 
element. This wastes the space and prolong the search 
process. The worst case search time of this approach is 

)(WO  where W  is the length of the longest string or IP 
address. 

Patricia Trie modifies the binary trie by eliminating 
most of the unnecessary nodes [13]. The scheme has been 
implemented in the BSD kernel [19]. Patricia Trie is the 
base of several new methods which have been proposed in 
the last years. These approaches try to check several 
characters, or several bits, at each step, instead of checking 
only one character. Since checking several characters may 
deteriorate memory usage and leave many memory space 
unused [21], all these approaches try to minimize the 
memory waste. V. Srinivasan and G. Varghese in [20] 
proposed to expand the original prefixes (strings) into an 
equivalent set of prefixes with fewer lengths and then, 
apply a dynamic programming technique to the overall 
index structure in order to optimize memory usage. [17] 
proposed a specific case of [20] by locally optimizing 
memory usage in each step. Finally, a new scheme from 
Lulea University of Technology, [11], endeavors to reduce 
the size of data set (routing table) so that it fits in the cache. 
All these multibit trie schemes is designed for the IP lookup 
problem and work well with the existing size of data, 
number of prefixes in the lookup table, and IP address 
length which is 32 bit currently. Nevertheless, we believe 
they will not scale well for the larger size of data or longer 
string, for instance, the next generation of IP (Ipv6) with 
128 bit address. 

Works in the longest matching prefix string in the IP 
lookup context go on. For instance, the DP-Trie, Dynamic 
Prefix Tries, [12], proposed by researcher from IBM, is 
another version of the binary tree data structures. The data 
structure tries to compact the Patricia Trie by keeping 
prefixes themselves and the index of bit position differing 
in the subtries of each node. [16] exploited almost the same 
idea by applying binary search tree scheme and extending it 
to a multiway tree by treating each prefix as a range and 
identifying each range with L (low) and H (high). 
Considering the fairly uniform distribution, the average 
search time on both of these methods should be )( 2 NlogO  
in binary tree and )( NlogO m  in case of m_way tree. The 
Prefix Trees data structures proposed in this paper is similar 
to these schemes in concept. 
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