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Summary 
In this paper, a dynamical particle swarm algorithm with dimension 
mutation is proposed. First, we design a dynamically changing 
inertia weightω which can change dynamically based on the speed 
factor and the accumulation factor. The algorithm with dynamically 
changing inertia weight can solve complex and nonlinear 
optimization process that linearly decreasing weight algorithm 
(LDW) is not adapt. Second, in order to escape from the local 
optimum, a dimension mutation operator is designed. The degrees 
of convergence of every dimension are calculated from the 
beginning of mutation. The dimension of the minimal convergence 
degree is mutated according to some probability. Finally, the 
simulation experiments also prove its high efficiency 
Key words: 
Particle swarm optimization, dimension mutation, inertia weight 

1. Introduction 

Particle swarm optimization (PSO) originally developed by 
Kennedy and Eberhart [1] [2] is a population-based 
algorithm. PSO is initialized with a population of candidate 
solutions. Each candidate solution in PSO called particle, 
has associated a randomized velocity, moves through the 
search space, which is associated with the best solution 
(fitness) it has achieved so far, p best . Another “best” value 
tracked by the global version of the particle swarm 
optimizer is the overall best value, g best . The PSO has been 
found to be fast in solving nonlinear, non-differentiable, 
multimodal optimization problems 

Comparing with GA, PSO’s advantages lie on its easy 
implementation and few parameters to adjust. But, many 
problems need to be further researched, such as, how to 
adjust the parameter ω and how to overcome the original 
PSO’s liability to convergence to the local optimum. 

Inertia weight ω is a very important parameter in standard 
version [3], it can control algorithm’s ability of exploitation 
and exploration. In standard version, ω reduce gradually as 
the generation increasing. In the searching process, the 
searching space will reduce gradually as the generation 
increasing. Recently, Berhart and Shi design a linearly 
decreasing weight PSO algorithm [3] (LDW), because the 
searching space reduces step by step, not linearly, so the 
linearly decreasing weight ω cannot exactly reflect the 
searching process. Recently, some new algorithms have 
been developed to improve the property of ω [4] [5]. 
Like other evolutionary algorithms, the difficulty to escape 
from local optimum is still existed in PSO. Some 
researchers use the mutation operator [6] [7] to make the 
PSO break away from the local optimum. The PSO 
algorithm with mutation operator not only has great 
advantages of convergence property, but also can avoid the 
premature convergence problem.  
In this paper, a dynamical particle swarm algorithm with 
dimension mutation is proposed. Firstly, the speed factor 
and accumulation factor of the swarm are introduced in the 
new algorithm, and the inertia weight is formulated as the 
function of these factors. In each generation, the ω is 
changed dynamically according to the speed factor and 
accumulation factor. Secondly, in order to avoid the 
premature convergence, a dimension mutation operator is 
presented. The degree of convergence of every dimension is 
calculated in every generation from the beginning of 
mutation. Then the dimension of the minimal convergent 
degree is mutated according to some probability. Finally, 
simulation results show the efficiency of the new algorithm. 
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2. The Speed Factor and Accumulation Factor 
of the Swarm 

 
PSO initialized the flock of birds randomly over the 
searching space, every bird is called a “particle”. At each 
generation, each particle adjusts its velocity vector, based on 
its best solution (p best  ) and the best solution of its 

neighbors ( bestg ). The original PSO formulae are: 
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Where V is the velocity vector, presentp is the location 
vector, ω is the inertia weight in the range [0.1, 0.9]. 

1c and 2c are positive constants. 
If we need to search the global minimum, then 
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factor, it reflects the evolution speed. When h is small, the 
evolution speed is fast. After some iterations, h  is equal to 
1 then we said the algorithm is stagnant or find the global 
optimum. 

The other factor influences the property of algorithm is 
the accumulation degree of the swarm. We define 
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population size, n is the number of variables, L is the length 
of the maximum diagonal in the search space, idp  

indicates the dth coordinate of the ith particle, dp indicates 
the average values of all particles in the dth coordinate. The 
smaller the value of s, the more centralized the swarm is. 
When the swarm is centralized, it becomes difficult for the 
algorithm to break away from the local optimum.  

Based on above, we know that ω will change with the 
speed factor h and the accumulation factor s. When the 
evolution speed is fast, the algorithm will search in a large 
space. When the evolution speed is slow, the inertia weight 
ω will be decreased, so that the algorithm will search in a 
small space and find the optimum quickly. 

If the particles are dispersive, the swarm is not easy to 
plunge into the local optimum. But when particles are 
centralized, it becomes easy to plunge into the local 
optimum.  

From above, we know that ω will decrease when the 
evolution speed is slow and increase when particles are 
centralized, namely, s is small. So ω can be described as 
follows: 

sh sh ωωωω −−= 0                                      

Where, 10 =ω , )2.0,1.0(),6.0,4.0( ∈∈ sh ωω  

3. Dimension Mutation Operator 

When swarm is centralized, it is difficult for PSO to break 
away from the local optimum. In order to overcome the 
disadvantage, we use the dimension mutation operator. Let 
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convergence degree in the dth dimension. When the value of 
)(dl is small, it indicates the particles are centralized in the 

dth dimension. For every ),1( nd ∈ , we calculate 

)(dl and find the mind , let )(minarg
],1[min dld
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= . Then 

all particles in the d min th dimension are mutated according 
to some probability, the positions of all particles in this 
dimension are distributed in the range [ minmin ,ul ] 

 
4. The Proposed Algorithm 
 
Step1: Using orthogonal design method [8] to initialize a 
group of particles, including position and velocity. 
Step2: Calculate inertia weight ω according to the 
expression (3) 
Step3: for each particle, compare its fitness and its personal 
best position bestp , if its fitness is better, replace bestp with 
its fitness. 
Step4: for each particle, compares its fitness and the global 
best position bestg , if its fitness is better, replace bestg with 
its fitness. 
Step5: transform each particle’s velocity and position 
according to the expression (1) and (2). The new swarm is 
defined as 1O . 

Step6: given constant 0t , if 0tt ≥ (t is the current 
generation), go to step 7,else go to step2  
Step7: calculate mind and all particles in 1O  are 

dimension mutated according to the probability ratep . 

),( minminmin
ulrandxid = , ),1(,1 NiOxi ∈∈  

Step8: loop to step2 until a stopping criterion is met, usually 
a given maximum generations. 
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5. Simulation and discussion 

5.1 Test Function  

To evaluate the efficiency of the new algorithm (DPSO), we 
choose five benchmark minimization problems [9] as 
follows. 

(1)  Branin Function (n=2) 
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The best solution obtained by DPSO is (9.4249, 2.4701), the 
corresponding function value is 0.3979. 
(2) Goldstein-Price Function (n=2) 
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The best solution obtained by DPSO is (0.0001, -1), the 
corresponding function value is 3. 
(3) Six-Hump Camel-back Function (n=2) 
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The best solution obtained by APSO is (-0.08987, 0.712760), 
the corresponding function value is -1.031626. 
(4) Generalized Rastrigin’s Function (n=5) 
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The best solution obtained by APSO is (1.0e-003 * 
 -0.4291, -0.4277, 0.9562, 0.4816, -0.0400), the 
corresponding function value is 3.0055e-004. 
(5) Sphere Model (n=30) 
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The best solution obtained by APSO is (-0.0361, 0.0125, 

-0.0069, -0.0006, -0.0025,    0.0140, -0.0108, 0.0146, 
-0.0021, -0.0223), the corresponding function value is 
0.0025. 
 
5.2 Simulation Results 

DPSO, FEP ]9[ , CEP ]9[ and LDW ]3[ are applied to five 
testing function optimization problems and then the results 
are compared, which are given in table1. The changing 
charts of the best results with increasing of the generations 
are plotted respectively with LDW in figure 1-5. The DPSO 
is implemented using MATLAB. The parameters of DPSO 
are given as follows: 

02.0,5.0 == sh ωω , 01.0=rateP , 100 =t , 

221 == cc . 

For each test function, we execute the proposed algorithm 
DPSO 10 independent runs.  We record the mean of the 
objective functions of the best solutions in every run, 
denoted by mean and the standard deviation, denoted by Std. 
The beeline indicates DPSO and the dashed indicates LDW 
in figure1 to figure5 
 
 

Table 1 
 
function Global 

optimal 
 DPSO FEP CEP LDW 

1F  
0.398 Mean

Std 
0.3979 
0 

0.398 
1.5e-7 

0.398 
1.5e-7 

0.3979 
0 

2F  
3.000 Mean

Std 
3.000 
0 

3.02 
0.11 

3.0 
0 

3.000 
0 

3F  
-1.0316 Mean

Std 
-1.0316 
0 

-1.03 
4.9e-7 

-1.03 
4.9e-7 

-1.0316 
0 

4F  
0 Mean

Std 
0.0003 
0 

0.14 
0.40 

4.08 
3.08 

0 
0 

5F  
0 Mean

Std 
0.0025 
0 

5.7e-4 
1.3e-4 

52.2e-4 
15.9e-4 

0.0002 
0 

 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 

 

224 

 

 

 
 

 

 
It can be seen from table1.that DPSO can get more exact 
solutions than FEP and CEP for all five benchmark 
functions. It also can be seen that the DPSO shows 
considerably better stability than other three algorithms. 
From figure1 to figure5, it can be observed that DPSO 
constringency is faster and better than LDW, especially in 
earlier stage, the constringency of DPSO is more evident. 
The results presented are still preliminary, but show clearly 
that DPSO is effective to find the global optimum and it is 

faster than other three algorithms. Work in future is to 
investigate the influence of rateP to the property of DPSO 
 
6. Conclusions 

In this paper, a dynamical particle swarm algorithm with 
dimension mutation is proposed. Our main contributions: 
firstly, a dynamically changing inertia weightω which can 
change dynamically based on the speed factor and the 
accumulation factor is designed. The dynamical ω can 
improve the property of PSO, such as DPSO constringency 
is faster and better than LDW, especially in earlier stage. 

Secondly, in order to escape from the local optimum, a 
dimension mutation operator is designed. The experiment 
results indicate that the proposed algorithm is superior to 
other compared algorithms, especially the evolution speed. 
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