
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

221

A Dynamical Particle Swarm Algorithm with

Dimension Mutation

Jingxuan Wei1, Yuping Wang2

1School of Science, Xidian University, Xi’ an 710071, China

2School of Computer Science and Technology, Xidian University, Xi’ an 710071, China

Summary
In this paper, a dynamical particle swarm algorithm with dimension
mutation is proposed. First, we design a dynamically changing
inertia weightω which can change dynamically based on the speed
factor and the accumulation factor. The algorithm with dynamically
changing inertia weight can solve complex and nonlinear
optimization process that linearly decreasing weight algorithm
(LDW) is not adapt. Second, in order to escape from the local
optimum, a dimension mutation operator is designed. The degrees
of convergence of every dimension are calculated from the
beginning of mutation. The dimension of the minimal convergence
degree is mutated according to some probability. Finally, the
simulation experiments also prove its high efficiency
Key words:
Particle swarm optimization, dimension mutation, inertia weight

1. Introduction

Particle swarm optimization (PSO) originally developed by
Kennedy and Eberhart [1] [2] is a population-based
algorithm. PSO is initialized with a population of candidate
solutions. Each candidate solution in PSO called particle,
has associated a randomized velocity, moves through the
search space, which is associated with the best solution
(fitness) it has achieved so far, p best . Another “best” value
tracked by the global version of the particle swarm
optimizer is the overall best value, g best . The PSO has been
found to be fast in solving nonlinear, non-differentiable,
multimodal optimization problems

Comparing with GA, PSO’s advantages lie on its easy
implementation and few parameters to adjust. But, many
problems need to be further researched, such as, how to
adjust the parameter ω and how to overcome the original
PSO’s liability to convergence to the local optimum.

Inertia weight ω is a very important parameter in standard
version [3], it can control algorithm’s ability of exploitation
and exploration. In standard version, ω reduce gradually as
the generation increasing. In the searching process, the
searching space will reduce gradually as the generation
increasing. Recently, Berhart and Shi design a linearly
decreasing weight PSO algorithm [3] (LDW), because the
searching space reduces step by step, not linearly, so the
linearly decreasing weight ω cannot exactly reflect the
searching process. Recently, some new algorithms have
been developed to improve the property of ω [4] [5].
Like other evolutionary algorithms, the difficulty to escape
from local optimum is still existed in PSO. Some
researchers use the mutation operator [6] [7] to make the
PSO break away from the local optimum. The PSO
algorithm with mutation operator not only has great
advantages of convergence property, but also can avoid the
premature convergence problem.
In this paper, a dynamical particle swarm algorithm with
dimension mutation is proposed. Firstly, the speed factor
and accumulation factor of the swarm are introduced in the
new algorithm, and the inertia weight is formulated as the
function of these factors. In each generation, the ω is
changed dynamically according to the speed factor and
accumulation factor. Secondly, in order to avoid the
premature convergence, a dimension mutation operator is
presented. The degree of convergence of every dimension is
calculated in every generation from the beginning of
mutation. Then the dimension of the minimal convergent
degree is mutated according to some probability. Finally,
simulation results show the efficiency of the new algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

222

2. The Speed Factor and Accumulation Factor
of the Swarm

PSO initialized the flock of birds randomly over the
searching space, every bird is called a “particle”. At each
generation, each particle adjusts its velocity vector, based on
its best solution (p best) and the best solution of its

neighbors (bestg). The original PSO formulae are:

)2(

)1()(.)()(.)(

1

211

Tpresentpresent

presentbestpresentbestTT

VPP

PgrcpprcVV

TT
+=

−+−+=

−

−ω

Where V is the velocity vector, presentp is the location
vector, ω is the inertia weight in the range [0.1, 0.9].

1c and 2c are positive constants.
If we need to search the global minimum, then

)()(
1−

<
TT bestbest gFgF , F is the objective function. We

define
)(
)(

1−

=
T

T

best

best

gF
gF

h ,)1,0(∈h , h is called speed

factor, it reflects the evolution speed. When h is small, the
evolution speed is fast. After some iterations, h is equal to
1 then we said the algorithm is stagnant or find the global
optimum.

The other factor influences the property of algorithm is
the accumulation degree of the swarm. We define

)1,0()(1
1

2

1
∈−⋅

⋅
= ∑ ∑

= =

N

i

n

d
did pp

LN
s , where N is the

population size, n is the number of variables, L is the length
of the maximum diagonal in the search space, idp

indicates the dth coordinate of the ith particle, dp indicates
the average values of all particles in the dth coordinate. The
smaller the value of s, the more centralized the swarm is.
When the swarm is centralized, it becomes difficult for the
algorithm to break away from the local optimum.

Based on above, we know that ω will change with the
speed factor h and the accumulation factor s. When the
evolution speed is fast, the algorithm will search in a large
space. When the evolution speed is slow, the inertia weight
ω will be decreased, so that the algorithm will search in a
small space and find the optimum quickly.

If the particles are dispersive, the swarm is not easy to
plunge into the local optimum. But when particles are
centralized, it becomes easy to plunge into the local
optimum.

From above, we know that ω will decrease when the
evolution speed is slow and increase when particles are
centralized, namely, s is small. So ω can be described as
follows:

sh sh ωωωω −−= 0

Where, 10 =ω ,)2.0,1.0(),6.0,4.0(∈∈ sh ωω

3. Dimension Mutation Operator

When swarm is centralized, it is difficult for PSO to break
away from the local optimum. In order to overcome the
disadvantage, we use the dimension mutation operator. Let

),1(,
||

)(1 nd
N

pp
dl

N

i
did

∈
−

=
∑
= , which indicates the

convergence degree in the dth dimension. When the value of
)(dl is small, it indicates the particles are centralized in the

dth dimension. For every),1(nd ∈ , we calculate

)(dl and find the mind , let)(minarg
],1[min dld

nd∈
= . Then

all particles in the d min th dimension are mutated according
to some probability, the positions of all particles in this
dimension are distributed in the range [minmin ,ul]

4. The Proposed Algorithm

Step1: Using orthogonal design method [8] to initialize a
group of particles, including position and velocity.
Step2: Calculate inertia weight ω according to the
expression (3)
Step3: for each particle, compare its fitness and its personal
best position bestp , if its fitness is better, replace bestp with
its fitness.
Step4: for each particle, compares its fitness and the global
best position bestg , if its fitness is better, replace bestg with
its fitness.
Step5: transform each particle’s velocity and position
according to the expression (1) and (2). The new swarm is
defined as 1O .

Step6: given constant 0t , if 0tt ≥ (t is the current
generation), go to step 7,else go to step2
Step7: calculate mind and all particles in 1O are

dimension mutated according to the probability ratep .

),(minminmin
ulrandxid = ,),1(,1 NiOxi ∈∈

Step8: loop to step2 until a stopping criterion is met, usually
a given maximum generations.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

223

5. Simulation and discussion

5.1 Test Function

To evaluate the efficiency of the new algorithm (DPSO), we
choose five benchmark minimization problems [9] as
follows.

(1) Branin Function (n=2)

150,105
10

cos)
8
11(10)65

4
1.5()(

21

1
2

1
2
1221

≤≤≤≤−
+

−+−+−=

xx

xxxxxF
πππ

The best solution obtained by DPSO is (9.4249, 2.4701), the
corresponding function value is 0.3979.
(2) Goldstein-Price Function (n=2)

2,1,22
)]2736481232

18()32(30[)]36

1431419()1(1[)(

2
2212

2
11

2
21

2
221

2
2
11

2
212

=≤≤−
+−++−

×−+×++

−+−+++=

ix
xxxxxx

xxxxx

xxxxxxF

i

The best solution obtained by DPSO is (0.0001, -1), the
corresponding function value is 3.
(3) Six-Hump Camel-back Function (n=2)

,55

44
3
11.24)(4

2
2
221

6
1

4
1

2
13

≤≤−

+−++−=

ix

xxxxxxxxF

The best solution obtained by APSO is (-0.08987, 0.712760),
the corresponding function value is -1.031626.
(4) Generalized Rastrigin’s Function (n=5)

,12.512.5

],10)2cos(10[)(
5

1

2
4

≤≤−

+−= ∑
=

i

i
ii

x

xxxF π

The best solution obtained by APSO is (1.0e-003 *
 -0.4291, -0.4277, 0.9562, 0.4816, -0.0400), the
corresponding function value is 3.0055e-004.
(5) Sphere Model (n=30)

100100

)(
10

1

2
5

≤≤−

=∑
=

i

i
i

x

xxF

The best solution obtained by APSO is (-0.0361, 0.0125,

-0.0069, -0.0006, -0.0025, 0.0140, -0.0108, 0.0146,
-0.0021, -0.0223), the corresponding function value is
0.0025.

5.2 Simulation Results

DPSO, FEP]9[, CEP]9[and LDW]3[are applied to five
testing function optimization problems and then the results
are compared, which are given in table1. The changing
charts of the best results with increasing of the generations
are plotted respectively with LDW in figure 1-5. The DPSO
is implemented using MATLAB. The parameters of DPSO
are given as follows:

02.0,5.0 == sh ωω , 01.0=rateP , 100 =t ,

221 == cc .

For each test function, we execute the proposed algorithm
DPSO 10 independent runs. We record the mean of the
objective functions of the best solutions in every run,
denoted by mean and the standard deviation, denoted by Std.
The beeline indicates DPSO and the dashed indicates LDW
in figure1 to figure5

Table 1

function Global

optimal
 DPSO FEP CEP LDW

1F
0.398 Mean

Std
0.3979
0

0.398
1.5e-7

0.398
1.5e-7

0.3979
0

2F
3.000 Mean

Std
3.000
0

3.02
0.11

3.0
0

3.000
0

3F
-1.0316 Mean

Std
-1.0316
0

-1.03
4.9e-7

-1.03
4.9e-7

-1.0316
0

4F
0 Mean

Std
0.0003
0

0.14
0.40

4.08
3.08

0
0

5F
0 Mean

Std
0.0025
0

5.7e-4
1.3e-4

52.2e-4
15.9e-4

0.0002
0

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

224

It can be seen from table1.that DPSO can get more exact
solutions than FEP and CEP for all five benchmark
functions. It also can be seen that the DPSO shows
considerably better stability than other three algorithms.
From figure1 to figure5, it can be observed that DPSO
constringency is faster and better than LDW, especially in
earlier stage, the constringency of DPSO is more evident.
The results presented are still preliminary, but show clearly
that DPSO is effective to find the global optimum and it is

faster than other three algorithms. Work in future is to
investigate the influence of rateP to the property of DPSO

6. Conclusions

In this paper, a dynamical particle swarm algorithm with
dimension mutation is proposed. Our main contributions:
firstly, a dynamically changing inertia weightω which can
change dynamically based on the speed factor and the
accumulation factor is designed. The dynamical ω can
improve the property of PSO, such as DPSO constringency
is faster and better than LDW, especially in earlier stage.

Secondly, in order to escape from the local optimum, a
dimension mutation operator is designed. The experiment
results indicate that the proposed algorithm is superior to
other compared algorithms, especially the evolution speed.

Acknowledgment

 This research is supported by National Natural Science
Foundation of China (No.60374063).The first author is now
pursuing a PhD at Xidian University

References
[1] J. Kennedy, and R. Eberhart. “Particle swarm optimization”, in

Proceedings of the IEEE International Conference on Neural
Networks.IEEE Service Center, Piscataway, NJ, IV: 1995,
pp.1941-1948.

[2] J. Kennedy, R. Eberhart, and Y. Shi, “Swarm Intelligence”,
SanFrancisco: Morgan Kaufmann Publishers, 2001.

[3] Shi Y, Eberhart R, “A Modified Particle Swarm Optimizer” [C].
IEEE Int. Conf. on Evolutionary Computation, Piscataway: NJ,
IEEE Service Center, 1998, 69-73.

[4] Clerc M, Kennedy J. “The particle swarm: Explosion, stability,
and convergence in a multi-dimensional complex space” [J].
IEEE Transactions on Evolutionary Computation,6(1) 2002:
58-73.

[5] “Adaptive Particle Swarm Algorithm with Dynamically
Changing Inertia weight”, Journal of Xi’an Jiaotong University.
Vol. 39, Oct. 2005.

[6] L. S. Coelho, and R. A. Krohling, “Predictive controller tuning
using modified particle swarm optimization based on Cauchy
and Gaussian distributions”, in Proceedings of the 8th On-Line
World Conference on Soft Computing in Industrial
Applications. WSC8, 2003.

[7] Guojiang Fu, Shaomei Wang, “A PSO with Dimension
Mutation Operator”, Engineering Journal of Wuhan University.
4(2005): 79-83.

[8] Y. W. Leung and Yuping Wang, “An Orthogonal Genetic
Algotithm with Quantization for Global numerical
optimization.” IEEE transactions on evolutionary Computation,
Vol, 5, No.1, February 2001,pp. 41-53.

[9] Xin Yao, Yong Liu, “Evolutionary programming made faster”,
IEEE Trans. On Evolutionary Computation, vol.3, no3, July
1999:82-102.

