
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

225

Manuscript received June 5, 2006.
Manuscript revised June 25, 2006.

A New Solution for Data Extraction: GENE/LONE Method.

Benlahmar El Habib,† and Doukkali Sdigui Aziz ††, El ouerkhaoui Asmaa†††

University of Mohamed V souissi - Higher national school of data processing and analysis of the systems, Rabat Morocco

Summary
Although the Internet presents a wealth of information, it is not
totally usable. In fact, given that the Net is large in size and not
enough structured, localizing the relevant information is time
consuming.
Therefore, extracting data from the Internet, especially in public
sources and making it available for final users, programs or
applications is very much motivated, this paper is a contribution to
resolve and improve the extraction systems of web data.
Key words:
Data retrieval, XML, Gene/clone.

Introduction

In this paper, we propose a new approach based on the
analysis of the structure of results pages. We reduce human
intervention in the wrapper generation process to a simple
cut/paste operation.
The idea consists of extracting the smallest structure that
generates the global structure of the zone which contains
the pertinent information.
The smallest structure will be structured as the document’s
gene. Then, we use this gene to reproduce a structure and to
superimpose it to the results documents in order to extract
relevant data. In other words, from a gene we clone a
structure that uses an XSLT filter so as to get pertinent data.
Thus, the approach we adopt here is called “extraction by
the cloning method”
The gene structure is represented as a set of relevant data
characteristics, especially its textual and structural context.
This is done for the purpose of extracting the textual parts
of all the occurrences that have the same structural and
textual context as that of the “gene” structure. The idea is to
XMLisate (i.e. to convert an HTML format into an XML
one) results pages so as to give the document a standard
format [1] [2]. This, actually, makes the document legible,
comprehensible and useful. The user gives as an input a
set of example instances to extract. The context of each
example value (called context_value) and the context of
each instance (called context_value) are sought in a page
issued from the source, and from the context_value and
context_instance, the relevant nodes will be detected to get
to the relevant information in a search session.
Therefore, instead of seeking relevant information, we now
look for relevant nodes, namely those which include the
desired information

2 work context

In the year of 2000 our researcher team in the ENSIAS
started with extraction data. First of all, there was the
method of FDA (Final and determinist automat) which uses
definite robots [1], [2]. This method has been approved but
shows a lot of weakness, the most current is the fact of the
page's modification taking from web sites that affect our
application in the way that it fell. In the year of 2002, we
proposed the GENE/CLONE method [6], [7], [8], which
work out the weakness of the ancient method, but it also
bring some self weaknesses, however it brings better results
that the FDA methods
The most popular of the developed application that we have
done is the BERG project:
In the Berg Project we extract data from on-line telephonic
directory Meta motors.
Actually, there is today two laboratories versions for
WBerg : 1.0 and 2.0 [1], [2], and two versions declined on a
moving support: 1.0 and 2.0 that is presented in this paper.
[3].
Berg 1.0: This version of Berg uses definite robots to
display structures. For each target research we use a specific
code.
Berg 2.0: This version use XSLT filter to obtain relevant
information instead of using definite robots.
Wberg: After the Web versions of Berg, we proposed a
moving version Berg2.0, it is also based on XML
technology. In fact, we use this technology to standardize
the document format.

3 State of art

3.1 Wrappers based on labeled pages

Wrappers based on labeled pages are wrappers whose input
is the pages where the needed information is identified by
the user. Two of these wrappers are WIEN and STALKER
[11]; [12]; [13],

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

226

3.2 Final extraction patterns starting with the analysis
of documents

The appearance of semi-structured Web pages gives
regularity to these pages. The objective is to exploit this
regularity by analyzing the structure of the document. This
technique is generally called extraction of patterns starting
with the analysis of documents. Many approaches have
been proposed using this technique, two of which are the
IEPad [9] system and ROADRUNNER [10] system. This
technique is based on the idea of built patterns by exploiting
the regularity of the structured web pages. And starting with
these patterns we retrieve data

3.3 Relation extraction

This method relies on a duality between the patterns and
relations explained below. According to a set of relations
we find an occurrence in the document used in order to
build patterns. The correspondence between the relation and
patterns resides in the fact of generating a new tuple that
allows us to extract patterns from a text[3]; [4]; [5].

4. Approach

4.1 Presentation

The first step in the GENE/CLONE approach is to fill a
form in order to obtain information from the chosen source
(generally a web site) the form allows the construction of a
request which gives a response. The received information is
in an HTML format. These pages are not well structured
that’s why we proceed to an XMLisation of these pages
(transform pages from an HTML format to XML). The third
step is the most important, in this step we take an instance
from the chosen source in order to get its XPATH, this will
allows us to know where the relevant information are, Our
purpose is to get the sub-structure that contains the relevant
information. This structure will be called “target structure”.
And to get the smallest sub-structure which gives the whole
relevant structure, this sub-structure will be called “generic
structure”. As from this, we can have for every required
information an XPath, therefore instead of looking for an
information we look for a node where is the relevant
information.
This is a sort of cloning structure technique. To localize the
generic structure, we need to know the relevant information.
This is, actually, why we have decided to use examples.
Thus, the users make use of some examples to express their

need in terms of the pertinent information that is to be
extracted. Each example is called instance.
However, a relevant node can have one or more occurrences
that do not contain relevant information. Therefore, having
an idea about the node does not solve the problem. For this
purpose, we have to know the node’s parents, or its entire
paths.
Instance values do not always constitute the entire textual
content; they can present part of the textual content. For
example, the phone number in an on-line telephone
directory can be displayed after a “phone” string, or the
price in on-line sale sites can show up after the “price”
string and before “EUR” or “Dollars” strings. Hence, we
note the prefix ti the textual sub-string that comes after ti
and the ti suffix the sub-string that comes before ti.

4.2 Generation of the textual context

We define the suffix (idem. prefix) of a ti value as a sub-
string that comes after (idem. before) ti. However, this
definition is insufficient to generate suffixes and prefixes.
For example: let’s consider the string: “Tel.: 037998899
fax.: 037558898”. The suffix of the fax number is: “Tel:
03755889 Fax.: and the prefix of the phone number is:
“fax. : 037558895”. We note that the suffix and the prefix
contain instance values. We can not extract information
since these values do not figure in the suffix and prefix in
the other instance. For this reason, we define the valid
prefix and suffix.
Compared to existing methods, this approach has several
advantages. It needs no labeled pages, and it is adaptive.
Indeed, the rebuilding of the extraction rules following a
change of the source’s format include no labeling and the
data extracted before the format change can be used to build
a new extraction rule.
Let’s consider the previous example: “Tel.: 037558899
Fax.:037558898”, the initial prefix of the “037558899”
value is “fax.: 037558898”. Since it contains the
“037558898” value, and the prefix will be the suffix of the
“037558898” value, thus, the sub chain “fax.:”.
The initial suffix of the “037558898” value is
“tel.:037558899 fax.:” which contains the “037558898”
value. Therefore, the suffix will be replaced by the prefix
of this value which is the sub chain “fax.:”.
Often, the presence of suffixes and prefixes is used to give
the user the semantic meaning of the data appearing in the
page. For example, if the user finds the “tel.:” chain before
its number, he concludes that it is a phone number. The
suffix and prefix are obligatory, especially if a lot of
information that has the same format (phone, fax, mobile
numbers) is proposed. Thus, the prefix and suffix are used
as a label. Henceforth, we can use them to increase the
precision rate of our data extraction approach.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

227

However, a ti value of a t instance can appear several times
in documents. These values are called occurrences.
A ti value of t instance has a context; it is, for instance, the
prefix and the suffix of the value and the node which
contains the ti value in the textual content.
Therefore, we can divide the context of the value into two
contexts: the textual context by the couple (suffix, prefix)
and the structural context defined by the path which is the
XPath of the relevant node.

However, a value can have several occurrences and each
occurrence has its context. We defined the context of a ti
value as the set of contexts of different occurrences of ti.
Formally, a context_value can be considered as a C function,
which associates a ti value to a set of triples made of
(αpathij,suffixij,prefixij) where I presents the index of the I
value and j presents the index of the Oj occurrence.
An instance has a context which is in a larger context. It is
the global context where all the relevant information is. To
determine this context we use a set of example instances
(two or more).
Finally, we defined the generic contexts as the union of the
values context as well as the instance and global contexts.

4.3 The approach
Let’s consider a D document from an S source search, and
t=(t1 , Λ , tn) and t=(t’1 , Λ , t’n) two example instances.
To build extraction rules for relevant information on S, our
approach goes through the following phases:
1- pre-treatment of the document.
2- Seeking the occurrence of instance values.
3- Extraction of value contexts.
4- Extraction of instance contexts.
5- Construction of extraction rules.
The extraction rule construction process is defined by the
following functions:
- XMLisation: From the raw string of a document body, we
build an XML document or simply an XML tree.
- Seek: Seeking the set of occurrences of instance values in
the document.
- V_context: Extracting the values contexts of example
instances.
- I_context: Determining the contexts of example instances.
- R_construction: Constructing extraction rules.
- Extract: Applying extraction rules to the document or to
the XML structure.

Fig. 1 Schematic of extraction.

Pre-treatement of the document (XMLisation): In this
phase, we transform the structure of the HTML document
into an XML structure or XHTML. We do not consider the
entire document but only its body since the useful
information is there. But before making this transformation,
we delete some useless information that is often low level
markups. HTML markups are divided into two classes:
High level markups and low level ones.
Low level markups allow us to modify the appearance of a
text sub-string but they do not contain structural
information such as (<i>,</i>,) and script markups.
High level markups such as (<p>,<td>,) give
information about the structure of the data representation.
It is these markups that we keep.
In a search session within a search source, we only consider
the part of the document that is determined by the global
context.
Seeking occurrences: Let’s consider two examples of
instances (or more) t=(t1 , Λ ,tn) and t=(t’1 , Λ , t’n),

[]ni ,1∈∀ Once we have found ti occurrences, we
represent them by triplets in the following formats (Xpath,
Suffix, Prefix), where Xpath is the Xpath of the i
occurrence, and suffix and prefix are respectively the
textual prefix and suffix of the i occurrence.
The search of all the occurrences of a tuple that have a t
value (t=(t1 , Λ , tn)) consists of seeking all the
occurrences of each ti.
Let’s consider occ(ti) the set of ti occurrences. The
occurrences of the t tuple correspond to the Cartesian

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

228

product occ(t1)xΛocc(tn). The number of these occurrences
can be large if one of these values has many occurrences in
the page.
To reduce the number of generated occurrences for the
tuple of a value, we can define some heuristics. For
example, we consider that the more values belong to the
smallest sub-tree, the more they can belong to the same
tuple.
The search phase of occurrences consists of seeking the set
of occurrences of each instance in the set of the source
documents.
From a tuple in the document, the occurrences of t1 are
sought. The set of occurrences of the sub-tuple (t1,…,tn) are
looked for in a recursive way. In this case, any classical
algorithm for the search of strings either in a document or in
a tree can be used.
Extraction of context values: This function is used to
generate the context of the relevant information to be
extracted. For this purpose, we use two instance examples
(or more), and we determine the suffixes and prefixes of
each occurrence of ti and t’i values. Then we favor the
values that have the same structural context and the same
textual context.Let’s consider two instance examples. For
each i value, the t’i and t’i values have the same structural
and textual contexts. This proposal entails that the contents
of the pages issued from a web data source have been taken
from structured data belonging to a database and formatted
so that the same information of the same type can be
presented similarly.For example, in the on-line telephone
directory, the addresses’ context is identical in all instances.
This actually holds true for on-line selling websites. The
prices of products are displayed in the same way in the
document. Thus, they have the same structural context for
all relevant information instances. We note occ(ti) the set of
the ti values occurrences. The generation of the context of
values brings about a lot of problems, especially in cases in
which the ti and t’i values have one or more occurrences
that have the same textual and structural contexts.
Let’s consider, for example, the case of on-line telephone
directories, if two addr and addr’ addresses have two
occurrences in such a way that addr1 (addr2, respectively)
has the same context as the addr’1 occurrences (addr’2,
respectively). Once we compare the context of both
addresses, we encounter the following problem: “Which
occurrence is to be kept?” Following the definition of the
value context, two values of two instances of the same
position have the same context. In this case, however, addr2
and addr’2 have the same context and so do addr1 and
addr’1. In such as a situation, we consider both occurrences.
Let’s consider two values ti and t’i of the same position of
two instances t and t’. Every occurrence Oi of ti has to be
compared with each Ok occurrence of t’i. They have the
same textual and structural context. Therefore, we add the
context of the occurrence in the set of values context and

we delete the O’k occurrence from the set of t’i occurrences.
The same procedure is repeated until the set of t’i
occurrences is empty.
Extraction of the instance context: So as to generate the
smallest sub-structure that generates the generic structure
(i.e. which generates the sub-structure that includes all the
ti values), we determine in this phase the structural context
of all the relevant nodes.
The definition of the instance context states that it is the
smallest structure which contains all the t instance values.
However, the value_context of a ti value is not unique. In
fact, a value can have several occurrences and a set of
value_contexts.
Let’s consider Pi the set of structural contexts of the ti
value of a t instance. If card(Pi)=k, the ti value will appear k
times in the document and the t’i value of the second
example instance will also appear k times in such a way that
the textual and structural contexts of ti and t’i occurrences
will be equal two to two.
In this case, we have to choose the occurrence that
represents the relevant information. To solve this problem,
we opt for the closest occurrences. Therefore, we define the
distance between two nodes (two structures, respectively).
Construction of extraction rules: From the global context
we can localize the relevant structure, which is the sub
structure which contains all the pertinent information. Then,
from the context’s instance we can gain access to the sub-
structure which includes the entire relevant information
block, and for each block we access, via value contexts, to
the relevant information.
The instruction rules can be seen as an XSLT file. This
means that from the structural information that we have
generated, we can easily build an XSLT file and apply it to
the source documents after pre-treatment.

5. Experiment and results

To evaluate the performance of our system, we used more
than 500 downloaded pages from 10 sites. One of the first
fields on which we tested our approach is on-line telephone
directories. We made use of two largely widespread
parameters in the extraction: recall and precision.
Recall (R) is the percentage of data to be correctly extracted
from the corpus. This highlights the proportion of correct
extractions. Precision (P) is the percentage of data correctly
extracted by the wrapper, and this is what evaluates the
quality of the extractions.
Formally, considering TP the number of correct extractions,
FP the number of incorrect extractions, and FN the number
of data to be extracted but actually it is not. We can define
Recall and Precision as follows:
R =TP/TP + FN and P =TP/TP + FP
The results obtained are satisfactory. In all the experiments
on the directories, we used two authority examples for each

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

229

directory. The table below shows the results obtained from
some web sites:

Table 1: the recall and precision results
 TP FP FN R P
www.google.com 10 1 1 90% 90%
www.kelkoo.com 20 0 0 100% 100%
www.pagesjaunes.c
h

10 4 4 74% 74%

www.froogle.com 1 0 9 10% 10%
www.altavista.com 10 0 0 100% 100%
www.yellow.ca 19 0 0 100% 100%
www.bizrate.com 20 0 20 100% 100%

6. Application

6.1 WBerg application

We start apply the GENE/CLONE method in web
application, the first one namely BERG deals with on-line
directory. We entend from this apllication to extract some
information from entreprise Meta motor search engine such
as (phone, name of entreprise, fax number...). This
application gives satisfied results for a lot of countries.

Fig2. Configuration page for request module.

The first thing to do to configure the BERG application is to
enter the three required parameters: ‘_qui_’, ‘_ou_’,and
‘_quoi_’.
‘_Qui_’: refers to the seeking enterprise name.
‘_Ou_’: refers to the seeking enterprise location.
‘_Quoi_’: refers to the seeking enterprise category.
Once entered, we launch the research, in the back office;
our application use on-line directories to find the seeking

enterprise.
The first thing to do is to configure on-line directories for
every country we want to add in our BERG application. In
back office we fill the form proposed by this on-line
directory in order to build an XSLT filter so that we can use
it after to get similar information as from our own form.

Fig3. Configuration page for data extraction module

The figure 3 shows our proposed form, where we enter the
WHO (_qui_), WHERE (_ou_) and WHAT (_quoi_)
parameters to get the target enterprise.

Fig4. Result page

The figure 4 shows the result page, this page contains
specifically the entered parameters of the founded
enterprise. .

6.2 WAP application

The Moroccan telephonic agency IAM is actually financing
the BERG project. After using BERG on the web, the IAM
agency was interesting about a mobile migration for using
BERG on the WAP phone. The WAP application has given
good results and the main results behind this are the use of
XML documents that eased the use of extracted information.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

230

In figure 5.1 we proposed the form used by every customer
to enter his request, in figure 5.2 we show the response
form that contains the founded enterprise.

Fig 5.1- Open wave Phone interface (filling form)

Fig 5.2- Open wave Phone interface (response form)

7. Conclusion

In this article, we proposed a new approach for data
extraction from structured semi-documents.
The results we obtained have proven that our method allows,
in the large majority of cases, to build a wrapper quickly
using some authority examples.
Moreover, the format of the extracted instances is known
beforehand because it is similar to that of the instance given.
Thus, compared to the existing methods, our approach has
several advantages. It does not require the labeling of a set
of example pages, and it is adaptive.
In fact, the reconstruction of the extraction rules due to a
format change of the source requires no labeling.

Furthermore, the data extracted before the format change
can be used to build a new extraction rule.
We are currently extending the shape of the gene so that it
could also consider structural suffixes and prefixes. We
believe that this gene extension will enable us to increase
the performance of our Cloner system.

References

[1] El Habib BEN LAHMER, Abd Elaziz SDIGUI
 DOUKKALI, Mohammed OUMSIS. La Méta recherche
 générique: vers la génération des méta moteurs de
 recherche. CopStic'03 Rabat, Maroc.
[2] El Habib BEN LAHMER, Abd Elaziz SDIGUI DOUKKALI,
 Mohammed OUMSIS. Towards An Automatic Extraction Of
 Data from Half-Structured Documents. In ISCCSP2006.
[3] X. GAO et L. STERLING. Semi-Structured Data Extraction
 From Heterogeneous Sources. In Second International
 Workshop on Innovative Internet Information Systems
 (IIIS’99), Copenhagen, Denmark,1999.
[4] X. GAO et L. STERLING. AutoWrapper: automatic
 wrapper generation
 for multiple online services. In Proceedings of the Asia Pacic
 Web Conference, , Hong Kong, September 1999
[5] Heekyoung SEO, Jaeyoung YANG et Joongmin CHOI.
 Knowledge-based Wrapper Generation by Using XML. In
 IJCAI-2001
 Workshop on Adaptive Text Extraction and Mining,
 Seattle,Washington, August 2001.
[6] BEN LAHMER El Habib, Abd Elaziz SDIGUI DOUKKALI,
 Mohammed OUMSIS, 2004, WBerg un méta annuaire WAP,in
 isivc'04 Brest France.
[7] El Habib BEN LAHMER, Abd Elaziz SDIGUI DOUKKALI,
 Mohammed OUMSIS. La Méta recherche générique: vers la génération

des méta moteurs de recherche. CopStic'03 Rabat, Maroc.
[8] El Habib BEN LAHMER, Abd Elaziz SDIGUI DOUKKALI,
 Mohammed OUMSIS. Towards An Automatic Extraction Of Data from

Half- Structured Documents. In ISCCSP2006.
[9] Chia-Hui CHANG et Shao-Chen LUI. IEPAD : Information Extraction
 based on Pattern Discovery. In Proceedings of the ACM WWW10
 Conference. ACM Press, 2001.
 [10] Valter CRESCENZI, Giansalvatore MECCA et Paolo MERIALDO.
 RoadRunner: Towards Automatic Data Extraction from Large Web
 Sites. In The VLDB Journal, pages 109–118, 2001
[11] Nickolas KUSHMERICK, Daniel S. WELD et Robert B.
 DOORENBOS.Wrapper Induction for Information Extraction. In Intl.
 Joint Conference on Artificial Intelligence (IJCAI), pages 729– 737,
 1997
[12] Nicholas KUSHMERICK. Wrapper induction: Efficiency and
 expressiveness. Artificial Intelligence, 2000.
[13] Nicolas KUSHMERICK. Wrapper Induction for Information
 Extraction. Thèse de Doctorat, University of Washington, 1997.

