
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

11

A Novel Fault Tolerant Protocol for Information
Propagation in Sensor Networks

Bidyut Gupta, Shahram Rahimi, and Arun Kumar

Southern Illinois University, Carbondale, IL 62901 USA

Summary
In this paper we have proposed a fault-tolerant protocol for fast
and robust propagation of information in sensor networks. The
proposed approach has been shown to offer better bandwidth
utilization as well as faster delivery of information in sensor
networks than some noted existing works. Fault-tolerance offers
robust data delivery to the sink by the deployed sensor nodes,
where the sink sensor serves as the gateway node to the external
environment.
Keywords:
Sensor networks, Source, Sink, Fault-tolerant routing

Introduction

Sensors are designed to detect events, collect data and are
equipped with data processing and communication
capabilities. The development of network of low-cost,
low-power, multifunctional sensors have received
increasing attention [1]. The sensing circuitry senses the
events in its vicinity related to the application to be dealt
with and the environment surrounding the sensor and
transforms them into an electric signal for transmission.
The research in the area of sensor networks is fast
increasing and so are its use in many different
applications from general engineering applications to
improving the safety and efficiency of traffic, agricultural
and environmental monitoring applications and also many
others like civil engineering, military applications and
health monitoring, surgery, etc [2]. The limitations in
power transmission, energy and computing power make
the sensor networks different from other wireless adhoc
or mesh networks. There are many other factors which
are to be considered when designing the routing protocol
such as the deployment of the nodes in the network [7],
the data delivery models, the nodes capabilities. For
instance, some sensors can be homogenous and others
heterogeneous, i.e., some nodes are of different
processing capabilities.

There are three different classes of the protocols which
are:

1) Data-centric protocols in which the sink queries to
certain regions and waits for the data from the sensors
located in the selected regions [5],
 2) Hierarchical protocols which help in solving the

scalability issues by reducing the load on the nodes by the
use of tired architecture and it also assists in efficient
maintaining of the energy consumption,
 3) Location-based routing which makes use of the
location information i.e., it deals with the applications
where the location of the sensor nodes is known and
using this information in routing makes such types of
protocols more reliable.

A sink besides being a sensor node similar to the other
sensor nodes in the network, has the added capability of
communicating with the outside network like laptop,
Desktop, Base Station where all the data are collected [3]
and further processed. An Event in a sensor network is
defined as any change in the current conditions where
these sensors are deployed. The sensor in the vicinity of
the location where the event occurs gathers the data,
stores it and forwards it to the sink node. The protocol
presented in this paper comes under the data-centric
protocol. In our proposed algorithm, we find a path
between a sink and an Event-source without much delay.
The first redundant path (i.e., the second best path) can be
used as a fault-tolerant path. The protocol should work
well for a network of any number of sensor nodes and it
will also handle the problems due to the neighboring node
failures or the link failures. The deployment of the nodes
in this protocol is random keeping in consideration that
the nodes are within the transmission range of each other
and all the nodes have the same processing capabilities
making it a homogeneous network.

This paper is organized as follows: in Section 2 we
explain in brief the related works in the data-centric
routing protocols and we state our problem formulation.
In Section 3, a clear idea of our approach is given with an
example. In Section 4, we have presented our fault
tolerant routing protocol and its performance. Section 5
draws the conclusion.

2. Related works

Directed Diffusion [4] is a data-centric approach where
the sink node broadcasts the data expected and the details
it wants to know, to the other sensor nodes and this
request is further propagated by other nodes. For this

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

12

purpose, the method uses a control packet called interest
[4]. The sink broadcasts the interest in the form of a query
to its neighbors; the query has in it the attribute-value
pairs based upon the properties of the objects or the
surroundings being sensed. The attribute-pair values are
dependent on the applications the sensors are being used
for and are defined based on name of the objects, interval,
duration, geographical area, etc.

The data sensed by the sensor nodes (present in their
cache) are compared with those arriving in the interest,
i.e., the expected data are compared with the collected
data. Besides, the interest packet also contains a gradient
field [4]. A gradient is the weight calculated between two
adjacent nodes and is characterized by data rate or
duration time, etc. A brief introduction of this protocol is
as follows; the query is broadcasted by the sink node to
its neighboring nodes. An intermediate node say, X
receives the interest from a node Y. Node X, before
forwarding this interest to its other neighbors, adds the
gradient between X and Y to the interest packet. In this
way, when the interest packet finally reaches the source,
the source gets the total weight (summation of all the
gradients in the gradient field) of the path that this packet
has traversed through from the sink. The source node
waits for a certain amount of time before which many
such interests may reach it. But the source selects a path
(the best path) based on the cumulative gradient. In other
words the source node waits to collect information (total
weight) of several paths to the sink. The path with the
minimum total gradient is considered to be the best path.
Then the collected information is delivered along this
path to the sink. Detailed explanation of its propagation is
not important for our work in this paper. However, one
note worthy point is that the source may have to wait for
a considerable amount of time to determine the best path;
hence it delays the data delivery.

A slight variation of the Directed Diffusion method is the
Gradient-Based Routing [6], where the number of hops is
noted when the interest is propagated through the network.
It was proposed to simplify the original Directed-
diffusion. In this method, each node has the knowledge of
the minimum number of hops from itself to the sink. This
parameter is called the height of the node. In this work [6],
the difference between a node’s height and that of its
neighbor has been considered as the gradient of the link
between those nodes.

Problem formulation:
In this work, we have proposed a protocol that
reduces the delay (to the minimum) at the source
sensor node during the determination of the best
(minimum) path between a sink and a source sensor
node. This ensures the faster delivery of data

compared to the works reported in [4], [6], where
the proposed algorithms take time to decide the
minimum path because the source needs time to
gather several requests via different paths. Besides,
the control information added to the interest packet
may cause inefficient utilization of bandwidth. Extra
information like the minimum number of hops is
necessary at each node in [6], to determine the best
possible path for data delivery to a sink. Besides, the
fault- tolerant property of our proposed approach
also offers robust routing.

3. An Outline of the Proposed Approach

We have proposed a fault- tolerant approach for the
propagation of the interest (which we call as ‘request’
packet) and the reply packet between a source and a sink.

Initially the Sink broadcasts a Request packet to all its
neighboring nodes which is propagated right through, till
the Source is reached. This Request may refer to some
physical properties of the surroundings and also the kind
of data expected. The parameters of this Request are
decided by the Sink node and for every such request, the
sink has the Timer to know the expiry limit. In our
approach, when the request is broadcast, each sensor node
appends its own id and deletes the previously appended
node id (from which this node has received the current
request) to the current path so that the source node and
the other intermediate nodes know which node to send
the reply packet next.

Thus all the nodes receiving the request will propagate it
further to their immediate neighbors. Now the Source
node will wait till its TTL (Time-to-Live) expires. This
TTL is the timer maintained in the source node and is
explained further. Its value is checked at the source node,
and it will wait to receive the request only till the time in
this timer expires. When the source node receives the
first request, it replies to the sink via the neighbor from
which it first received the request packet. In this way, the
source comes to learn about the best (minimum) path as
soon as it gets the first request. This makes the path
discovery fast. Each node knows the next node to send
the reply packet, towards the direction of the sink node.

Before its timer expires, if the source receives the second
request packet, it takes note of the node from which it has
received this request. This gives the information to the
source node about the second path which can later be
used (if necessary) to achieve fault-tolerant delivery of
data.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

13

Fig. 1 Request propagation from Sink to source

Fig. 2 Propagation of path 1-2-4-7

In Fig. 1, the sink broadcasts the Request to its neighbors
and the subsequent nodes follow suite. Without any loss
of generality, let us consider that 1 is the node which is
the one nearest to the event-location and hence
considered as the source. 7 is the sink broadcasting the
request packet and this packet is propagated till it reaches
1 (source sensor). In Fig. 2, we assume that the source
node 1 gets the first request from node 2 and so sends its
reply to node 2. This process is continued till the sink is
reached. It is noted that the roles of the nodes are reversed
while the reply packet is sent from the source to the sink.
Every node maintains a table to know the immediate
neighbors information corresponding to the different
paths passing through it. Now node 2 sends the reply
packet to its neighboring node 4 through this available
information (assuming that 7-4-2-1 is the best path) and
this procedure is followed at every sensor node along the
path till the sink is reached.

4. A Fault-Tolerant Protocol

4.1 Relevant data structures

The following data structures are used in our approach:
Source Table (ST):
This table is maintained in the source node in the path
and it consists of 3 parameters. Sink ID indicates the sink
from which the request has been broadcast. Next Node ID
gives the physical id of immediate neighbor which
forwarded the request packet to the source sensor node.
TTL is the Time-to-Live, the time for which the source
node waits for the request originating from the sink. This
means the source keeps the data for a time equal to TTL.

Sink Navigation Table (SNT):
This table is maintained by the intermediate nodes in the
path (between the source and the sink). Sink ID, again,
indicates the sink from which the request has been
broadcast. Next Node ID gives the physical id of its
immediate neighbor which has forwarded the request
packet to the current sensor node. The values of the next
node id and the previous node id are interchanged if a
failure along a path during reply packet propagation has
to be communicated to the source node. Moreover, it is
necessary to keep track of the previous node id, during
the reply packet propagation, because when an
unreachable node along a path has to be notified to the
source node, this parameter is made use of.

Request Packet (Prequest):
Request packet is propagated from node to node. The first
parameter is flag and if the value of this single byte is 0, it
indicates a request packet Prequest. TimerR is a preset
counter, i.e., the approximate upper bound before which
the sink expects a reply for the current request. Sink ID
indicates the sink from which the request has been
broadcast. Next Node ID gives the physical id of the
immediate neighbor which forwarded the request packet
to the current sensor node. Request Description is the
field that gives the properties or the parameters of the
object that sink looks forward to collect information
about. TimerR is decremented in each intermediate node
along the path to the source and also at the source sensor.

Reply Packet (Preply):
This packet will be sent along the best path found to the
sink. Reply packet has five parameters. The first
parameter is flag and if the value of this single byte is 1, it
indicates a reply packet, Preply, with data collected. Dcoll
has the data collected by the source TimerR is
decremented in each intermediate node along the path to
the sink. The parameters Sink ID and Next Node ID have
the same roles as described in Prequest (but the direction is
reversed).

flag = 1 TimerR Dcoll Sink ID Next Node
ID

Fault Tolerant Path Packet (PFTP):
We assume that a second best path is cached at the source
node. This is also a reply packet meant for data delivery,
but it is noteworthy that the path followed by this reply
packet is different than the one followed by Preply and is
used as a Fault Tolerant path between the sink and the
source. The first parameter flag = 2, indicates that this is a Sink ID Next Node ID TTL

Sink ID Previous Node ID Next Node ID

flag = 0 TimerR Sink
ID

Next
Node ID

Request
description

3

2

1

5

7

6

4

Event
Source

Sink

2

3

1

5

7

6

4

Event
Source

Sink

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

14

reply packet sent via the fault tolerant path along with the
data collected. It also contains the Sink ID and the next
node id to reach the sink and the TimerR.

Node Unreachable packet (PNUR)
This is a packet sent by an intermediate node to abort any
further data delivery if it finds that the next node along
the path to sink is unreachable. This is further propagated
to the source. Here the flag is set to 3. The packet is sent
to the previous node and this is continued till the source is
reached. TimerR is also sent in this packet.

4.2 An illustration

Fig. 3 Multiple path formation between the Source and the Sink

of our approach

Let us consider the sensor network of as shown in Fig. 3:
The sensor node G is the source and node A is the sink
broadcasting the request to its neighboring sensor nodes
B, K and C. These nodes will broadcast the request
further to their neighbors. In this case, B, K and C have
only one neighbor each. So node B forwards the request
to F; node K forwards to E and node C forwards to D. F,
E and D propagate the request to their only neighbor,
which in this case is the source node G.

In Fig. 3, consider that G receives the first request from
node A through the sensor nodes B and F. Before the
TTL expires, node G also receives the same request
through some other path, say via the nodes K and E, the
information about which is stored in its buffer. Node G
sends the collected data to the node (in a reply packet)
through which the first request packet is received. If node
A (the Sink) does not receive any reply packet till its
Timer expires, it rebroadcasts the request. In Fig. 3, the
Dotted lines indicate all the possible paths between the
Source and the Sink in the given network of nodes. This
approach can be easily carried out since the next node
information is known to each node.

For example, in Fig. 3, consider G-F-B-A to be the best
(minimum) path. Then G will know immediately that its
next hop will be F from the information available from
the Prequest packet, where, Sink ID =A and Next Node ID =
F and similarly node F will know about its connection
details to the node B. Thus G starts the data delivery to
the sink through a Preply packet. Before the TTL at G
expires, assume that another Prequest reaches here along the
nodes K and E. This can be used as the Fault-tolerant path.
We have also considered a case, i.e., say node B is
unreachable from the sensor node F and hence node F is
not able to transmit further via this path. So node F sends
a Node Unreachable packet (PNUR) to its previous node
(here, the source G), in which, it sets the flag to 3 to
indicate that the sink cannot be reached via this path, and
decrements the TimerR before sending this packet. Once
the source G gets this packet, it makes use of the fault-
tolerant for data delivery through the reply packet PFTP to
node E, setting the flag = 2, to indicate to the sink A that
this reply is done along the fault tolerant path. E further
unicasts this to K and then the reply finally reaches the
sink A.

4.3 The proposed protocol

Let us consider a network of n nodes being represented as
N1,N2,N3,….,Nn. If the ith node Ni becomes a sink, it will
also be denoted by Si, and if the ith node becomes a source
node, it will also be denoted by Nsource, where 1≤i≤n. The
request packet Prequest is broadcast by the sink node Si to
all its neighbors Nj and all these nodes in turn forward this
packet to their neighbors. This packet ultimately reaches
the Source node Nsource, which unicasts the reply packet
Preply to the immediate neighbor prev_node_id from
where the source received the request. As long as the
nodes along the path are reachable, this procedure is
repeated till Preply is delivered to the sink Si. Let flag be a
single byte indicating the packet type. Also we have
considered the fault-tolerant delivery of data, i.e., if the
reply packet does not reach the sink, because of any
failure along the best path source come to know about it
through the intermediate nodes. It then sends a reply
packet PFTP along the fault-tolerant path. Our algorithm
also mentions the case in which the fault-tolerant path
fails and the imminent responsibility of the source sensor
node, which stops any further delivery of data to the sink
node. The responsibilities at the sink node, the
intermediate nodes and the source node are stated in Fig.
4.

The paths cached in the source sensor node may be useful
for the future data gathering. For instance, let X be a
source sensor node providing data to the sink Y. If later,
X needs to contact Y (because of whatever reason), it can
do that following the minimum (best) possible path, or if
necessary following the second best path.

flag = 2 TimerR Dcoll Sink ID Next Node
ID

flag = 3 Previous Node ID TimerR

C
A,C

Event
Source G

F

D

B

E A

A,F

A,E

A,D

A,B

A, K

A

A

Sink

K
A

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

15

At any Sink node

 Set the timer, TimerR; // internal timer for the sink and a timer for the traveling packets.
 data_received = false; // a Boolean variable to know if a reply packet is received for the request.
 Broadcast the Prequest to the neighbors; // will be executed iff the sink has any new or pending request
 if (timer does not expire)
 if (data_received = true) // a reply packet is received.
 Forward the data received to the Base station;
 else rebroadcast the Prequest
At any source node:-
 while (TimerR does not expire)
 if (TTL ≠ 0)
 if (flag =0) // a request packet
 if (data_described = data collected) // this is the first request packet. This has come via the best path.
 Nsource = Nj;
 Decrement TimerR;
 Store the best path in the cache;
 Set flag =1;
 Unicast the reply with data to the next node; // this reply is done along the best path.
 // Now source waits for a time ‘t’ to get a same request again.
 if (same request is received again)
 decrement TimerR;
 set flag = 2;
 Store the second path in cache; // a fault tolerant path is found.
 if (flag =3) // some intermediate node along a path is not reachable
 if (Source already unicast the data along the fault-tolerant path)
 Source stops the reply propagation to its neighbors; // no more reply packet is sent.
 else
 decrement TimerR;
 Set flag =2;
 Unicast the reply with data along the second path; // this is the fault tolerant path
 if (TTL = 0)
 Set flag = 1;
 Data_collected = null;
 Decrement TimerR;
 Unicast the reply packet to sink; // this notifies the sink that the path is still available, but the source TTL has expired.
 At any intermediate node
 while (TimerR does not expire)
 if (flag =0) // data request packet
 prev_node_id = Nj-1;
 decrement TimerR;
 // Check if all the neighbors (Next nodes) are reachable
 if (reachable)
 Broadcast the request packet
 else // one of the neighbors is unreachable
 Stop propagating to that neighbor; // request is broadcast to all other neighbors that are reachable
 else if (flag =1) // reply packet with data along the first path.
 // Check if the next node is reachable
 next node id = previous node id; // the direction of propagation is reversed during the reply packet, so node ids are set accordingly.
 if (reachable)
 Decrement TimerR;
 Unicast the reply packet to the next node;
 else // the next node is unreachable
 Set flag =3;
 Decrement TimerR;
 Unicast to the previous node;
 else if (flag =2) // reply packet with data along the fault-tolerant path
 next node id = previous node id; // the direction of propagation is reversed during the reply packet, so node ids are set accordingly.
 // Check if the next node is reachable
 if (reachable)
 Decrement TimerR;
 Unicast the reply packet to the next node; // this is sent with just the path.
 else // the next node is unreachable
 Set flag =3;
 Decrement TimerR;
 Unicast to the previous node; // this packet will finally reach the source.

Fig. 4 Algorithms for the sink node, the intermediate nodes and the source node

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

16

At any source node:-
 while (TimerR does not expire)
 if (TTL ≠ 0)
 if (flag =0) // a request packet
 if (data_described = data collected) // this is the first request packet. This has come via the best path.
 Nsource = Nj;
 Decrement TimerR;
 Store the best path in the cache;
 Set flag =1;
 Unicast the reply with data to the next node;// this reply is done along the best path
 // Now source waits for a time ‘t’ to get a same request again.
 if (same request is received again)
 decrement TimerR;
 set flag = 4; // to indicate that this reply packet will not include the collected data.
 Store the second path in cache; // a fault tolerant path is found.
 Unicast PSPN to the next node; // this reply is done along the fault- tolerant path.
 if (flag =3) // some intermediate node along a path is not reachable
 if (Source already unicast the data along the fault-tolerant path)
 Source stops the reply propagation to its neighbors; // no more reply packet is sent.
 else
 decrement TimerR;
 Set flag =2;
 Unicast the reply with data along the second path; // this is the fault tolerant path
 if (TTL = 0)
 Set flag = 1;
 Dcoll = null;
 Decrement TimerR; // to make sure that this reply packet is not started after the timer in sink expires.
 Unicast the reply packet to sink; // this notifies the sink that the path is still available, but the source TTL has expired.

 At any intermediate node
 while (TimerR does not expire)
 if (flag =0) // data request packet
 prev_node_id = Nj-1;
 decrement TimerR;
 // Check if all the neighbors (Next nodes) are reachable
 if (reachable)
 Broadcast the request packet
 else // one of the neighbors is unreachable
 Stop propagating to that neighbor; // request is broadcast to all other neighbors that are reachable.
 else if (flag =1) // reply packet with data along the first path.
 // Check if the next node is reachable
 next node id = previous node id; // the direction of propagation is reversed during the reply packet, so node ids are set correctly.
 if (reachable)
 Decrement TimerR;
 Unicast the reply packet to the next node;
 else // the next node is unreachable
 Set flag =3;
 Decrement TimerR;
 Unicast to the previous node;
 else if (flag =2) // reply packet with data along the fault-tolerant path
 next node id = previous node id; // the direction of propagation is reversed during the reply packet, so node ids are set correctly.
 // Check if the next node is reachable
 if (reachable)
 Decrement TimerR;
 Unicast the reply packet to the next node;
 else // the next node is unreachable
 Set flag =3;
 Decrement TimerR;
 Unicast to the previous node; // this packet will finally reach the source.
 else if (flag =3) // PNUR is received because the path to sink, via the next node is no longer available.
 Decrement TimerR;
 Unicast the packet to the previous node;
 next node id = previous node id; // the direction is reversed during this packet propagation, so node ids are set correctly.
 else if (flag =4) // reply packet without data along the fault-tolerant path
 // Check if thenext node is reachable
 if (reachable)
 Decrement TimerR;
 Unicast PSPN to the next node; // this is sent with just the path and without the collected data.
 else // the next node is unreachable
 Set flag =3;
 Decrement TimerR;
 Unicast to the previous node; // this packet will finally reach the source.

Fig. 5 Enhanced Algorithms for the intermediate nodes and the source node

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

17

4.4 Further enhancement

The protocol can be enhanced in such a way that the sink
knows the information about both the paths. To achieve
this, the source node, after sending Preply packet to the
sink following the best path, must send another reply
packet along the fault-tolerant path, without including the
data collected. In this way, sink will have the information
about both the paths. Later if the sink needs similar kind
of data, it can contact the source first via the best path,
thus avoiding the broadcast of a request. If this path is
faulty, then the sink can use the fault-tolerant path to get
the data from the source. Our proposed protocol has been
expanded to realize this enhancement and the modified
protocol uses few additional data structures. There are
some minor modifications in the responsibilities of the
Source node and the intermediate nodes and this has been
shown in Fig. 5.

4.5 Comparison with [4] and [6]

Our protocol offers the fastest determination of the
shortest path compared to the works in [4], and [6],
since we use flooding. Besides, our protocol is fault-
tolerant unlike the works in [4], and [6]. We have
also incorporated the idea of aborting data delivery
as soon as any node along a path to a sink discovers
that the sink is not reachable. It offers efficient use
of the wireless bandwidth and energy of the sensors
nodes.

5. Conclusion

In this paper, we have presented a Fault-tolerant
routing protocol for information propagation in
sensor networks. The proposed protocol finds the
best possible path between a source sensor and a
sink sensor in the fastest possible manner (because
of the flooding), unlike in the works [4], [6], where
the source waits for some time to determine a best
(minimum) path. Observe that in our work, the
source is not involved in any kind of computation,
which is not true in [4], [6]. We have also used very
effective data structures for path discovery as well
as for making our protocol fault-tolerant. For this
purpose, the packet needs to have only the sink,
source, next node id and timer value. The use of this
small amount of data structures offers good
utilization of the limited wireless bandwidth
available in sensor networks. Thus the advantages of
our proposed protocols make them efficient, robust,
and suitable for the sensor networks.

References

[1] R. Min, et al., "Low Power Wireless Sensor
Networks", Proceedings of International Conference on
VLSI Design, Bangalore, India, January 2001.

[2] Mohammad Ilyas and Imad Mahgoub, Handbook of
Sensor Networks: Compact wireless and wired sensing
systems, CRC press.

[3] W. Heinzelman, “Application specific protocol
architectures for wireless networks”, PhD Thesis, MIT,
2000.

[4] C. Intanagonwiwat, R. Govindan and D. Estrin,
"Directed diffusion: A scalable and robust
communication paradigm for sensor networks",
Proceedings of the 6th Annual ACM/IEEE International
Conference on Mobile Computing and Networking
(MobiCom'00), pp. 56-67, Boston, MA, August 2000.

[5] K. Akkaya and M. Younis, “A survey of routing
protocols on Wireless Sensor Networks”, Ad Hoc
Network Journal, pp. 325-349, 2005.

[6] C. Schurgers and M.B. Srivastava, “Energy efficient
routing in wireless sensor networks”, Proceedings on
Communications for Network-Centric Operations:
Creating the Information Force, McLean, pp. 356-361,
VA, 2001.

[7] I. F. Akyildiz et al., “Wireless sensor networks: a
survey”, Computer Networks, Vol. 38, pp. 393- 422,
March 2002.

Bidyut Gupta received his PhD in
Computer Science and his MTech
degree in Electronics Engineering from
the University of Calcutta, India.
Currently, he is a professor of computer
science and the graduate director for
Computer Science department at the
Southern Illinois University Carbondale.

Shahram Rahimi received his
PhD in Scientific Computing and
his MS degree in Computer
Science from the University of
Southern Mississippi in 1998 and
2002 respectively, and his BS
from National University of Iran
(Tehran) in 1992. Currently, he is
an assistant professor at Southern

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

18

Illinois University and the Editor-in-Chief of the
International Journal of Computational Intelligence
Theory and Practic

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

