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Summary 
Multi-agent problem solving in a real-time environment is 
one of the hardest and most fascinating research area. In 
this paper, we propose a method for quick adaptation to 
changes in a problem in a real-time environment as an 
extension of an Asynchronous Weak-commitment (AWC) 
search algorithm. The basic idea of our proposing method is 
to limit the scope of search. Variables which are affected by 
changes could be modified their previously assigned values 
to adapt to the changes. For the adaptation to changes in a 
problem, we sacrifice the optimality of a solution. If an 
agent can increase its utility, it can simply modify its values. 
In the process, an agent emphasizes the local optimality 
without considering the global optimality. In a real-time 
environment, it is not practically important to globally 
optimize a solution. The quick adaptation to changes can be 
useful for such real-time problem. 
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Introduction 

There are many researches which try to apply multi-agent 
systems for various application domains. Multi-agent 
problem solving in a real-time environment is one of the 
most fascinating research issue [2]. In such environment, a 
problem could be dynamically changed over time, and then 
the property of a problem might be changed. Although 
agents should adapt to changes in a problem, there is a 
trade-off between the efficiency of the computation time 
and the quality of a solution. We have focused on the 
efficiency of the calculation to adapt to changes in a 
problem because in the real-time environment, where a 
problem might be changed in a shorter period, agents 
should respond to changes at the cost of the solution 
quality. 

Constraint Satisfaction Problem (CSP) is one of the 
promising framework for achieving multi-agent problem 
solving. It is not, however, efficient to deal with many 
real-time problems with dynamic changes because in the 
classical CSP, it is assumed that problems are static. 

Dynamic CSP is a framework in order to deal with such 
intractable problem. Many existing researches, however, 
has focused on solution quality which is in the light of the 
stability, consistency, and so on. The efficiency of problem 
solving has not been focused on. In this paper, we describe 
a real-time problem with constant changes and an 
adaptation method which allows us to obtain a solution 
quickly. 

We are assuming problems such as a disaster rescue 
problem based on multi-agent systems. For example, in a 
disaster rescue problem [5], agents are firstly assigned tasks, 
and resources. Then, they execute assigned tasks using the 
resources. While agents are working, there might be 
suddenly kinds of changes, e.g., coming of new agents, 
communication blackout, detection of new sufferers, and 
outbreak of fire, and so on. For these changes, agents 
should respond to such kinds of changes. However, it is not 
necessarily required that all agents change their ongoing 
tasks to respond to them. Additionally, in a real-time 
problem that agents must constantly recalculate their tasks, 
an exact/optimal solution at each moment is not required. 
This is because that the effectiveness of a solution in a 
real-time problem might be reduced due to changes. 
Therefore, in this paper, we propose a method to achieve 
quick adaptation to changes in a real-time problem. 

In this paper, we represent a real-time problem based 
on a Dynamic Distributed CSP. Changes in a problem is 
described as the modification of a set of constraints and 
variables, i.e., addition/deletion of constraints and variables. 
For quick adaptation to changes in a real-time problem, we 
extend the Asynchronous Weak-commitment search 
algorithm (AWC) [8]. The basic idea of our proposing 
method is to limit the scope of search. When some changes 
occur, a previous solution could be locally modified. 
Variables which are affected by changes could be modified 
their previously assigned values to adapt to the changes. 
According to our method, the number of variables which is 
required to modify each value could be decreased, and then 
agents affected by changes could quickly respond to them. 
For the adaptation to changes in a problem, we sacrifice the 
optimality of a solution. During a search process in our 
method, agents consider only each own utility. If an agent 
can increase its utility, it can simply modify its values. If not, 
the agent communicates  
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Fig.1. An Image of the Real-time Problem 

with neighbours to achieve an appropriate modification. In 
the process, an agent emphasizes the local optimality, thus 
the global optimality is not guaranteed. However, it is not 
important to globally optimize a solution since we assume 
an environment where a problem could be constantly 
altered. On the contrary, the quick adaptation to changes 
can be useful for such real-time problem. 

The structure of the rest of this paper is as follows. In 
the next section, we describe a real-time problem on which 
we have focused. In Section 3, we show the definition of 
Constraint Satisfaction Problem as preliminaries. In Section 
4, we describe the description of a real-time problem for our 
proposing method. Then, in Section 5, we show a quick 
adaptation method for changes in a real-time problem. In 
Section 6, we discuss some related researches. 

2. Real-time Problem 

We focus on the problem solving in a real-time 
environment in this paper. Figure 1 shows an example of a 
problem. In this example, several agents try to extinguish 
the fire and rescue sufferers. There are also some incidents 
which causes changes. The changes in a problem is mainly 
caused by incidents such as (1) Alteration of the number of 
agents, (2) Occurrence of new tasks, (3) Assignment of new 
resources. In a rescue problem, as an incident (1), new 
rescue agents could come in the process of rescue activities. 
Meanwhile, some agents withdraw from the activities due 
to fatigue, a sort of accidents, and so on. In this case, agents 
should determine how to cooperate with new comer and 
how to cover the lack up agents. As shown in Figure 1 (a), 
an agent which perceives new agent is coming should 
determine how to cooperate with the new one. In other 
cases, an agent might continue to execute assigned tasks 
and does not care the new agent. Figure 1 (b) shows a case 
that an agent which has worked together could withdraw in 
the process of a task. In this case, the remaining agent might 
search for other potential agents for cooperative work. As 
an incident (2), new tasks could suddenly emerge during an 

activities. When an agent detects new sufferers, outbreak of 
fire, and other kinds accidents, it must determine how it 
should do considering such unexpected tasks. As shown in 
Figure 1 (c), an agent finds unexpected casualty. In this 
case, the agent must determine whether it continues to 
execute its initial task or try to rescue the casualty instead of 
the initial task. As an incident (3), additional resources for 
activities could be newly assigned and sometimes existing 
resources could be exhausted. This case is similar with the 
case for the type of incident (1). As shown in Figure 1 (d), if 
an agent can get much more extinguisher, it might not need 
to work with others. 

Due to kinds of unexpected incidents, an agent might 
be occasionally required to modify how it work considering 
such incidents. However, all of agents might not be 
necessarily required to change ongoing tasks. For example, 
in Figure 1, assuming that an agent in (c) changes its task 
into the rescue of new casualty. Generally, there is the 
possibility that the optimal solution could be obtained as a 
result of the re-calculation by all agents. However, if the 
advantage of such optimal solution is not large enough, 
such optimization is practically waste of time. 

Because changes in a problem, we are considering in 
this paper, are unexpected, it is impossible to initially take 
such changes into account at problem modeling phase, and 
agents cannot anticipate the effect on the solution quality. 
For the problem solving in such uncertain environment, it is 
not important to obtain an optimal solution to the problem 
at each moment. This is because an optimal solution to a 
problem might be obsolete one at the next moment. The 
more desired property for the problem solving in a real-time 
environment is to quickly respond to the changes. For 
example in Figure 1, there is a case that new agent is 
coming after an agent in (c) stops achieving the initial target.  
In this case, it is a waste of time to try to obtain an optimal 
solution again among all agents considering the absence of 
an agent in (c) because in this example new agent, which 
can recover the absence, is coming at next step. Therefore, 
it might be reasonable for agents to execute each task 
continuously.  Accordingly, in some cases, the global 
optimization at each moment might be meaningless for a 
real-time problem due to uncertainty in such problem. 

Finally, we show the definition of a problem in a 
real-time environment in this paper: 
 
Definition 1 (The Real-time Problem) The real-time 
problem is constantly changing due to some kind of 
unexpected incidents. Since the property of a problem could 
be altered due to the changes, the solution in a moment 
could be obsolete. 
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3. Distributed Constraint Satisfaction 
Problem 

A classical Constraint Satisfaction Problem (CSP) is 
denoted as P = (X, D, C). Each term represents the 
following components: 
 
• a set of variables X = {x1, ..., xn} 

• a set of finite domains for each variables D = {d1, ..., 
dn} 

• a set of constraints C = {c1, ..., cn} 

A solution to the CSP, A, is an assignment of values to all of 
the variables which can satisfy all constraints. A classical 
CSP is static. The problem is fixed in advance and does not 
change afterwards. 

A Distributed CSP (DCSP) is the problem that each 
agent is assigned one or more variables and constraints [9]. 
Each agent is assigned a subproblem. The goal of each 
agent in a DCSP is to assign values which can satisfy all 
constraints. The goal of each agent is dependent on other 
agents’ goal since some variables included in each problem 
are related by inter-agent constraints. Therefore, agents 
must communicate with others to fix variable values. When 
all agents assign values of all own variables and such values 
satisfy all local constraints, a DCSP is solved. The 
Asynchronous Weak-commitment search algorithm 
(AWC) is one of the algorithm to solve a DCSP. In AWC, 
high priority agents can keep their values and the priority is 
dynamically changed. Agents communicate each other by 
using ok? and nogood messages. When an agent receives an 
ok? message, if an agent cannot find a value to its variable 
that is consistent with values of higher priority agents, the 
agent creates and sends a nogood. Actually, nogood is a 
constraint which can avoid an assignment which cannot 
satisfy all constraints. AWC is guaranteed to be complete 
by recording all nogoods. 

Dynamic CSP is an extension of a classical CSP [1]. If 
there are kinds of changes to a problem, i.e., 
addition/remove of constraints and variables, the problem is 
altered. The problems with dynamic changes can be defined 
as a sequence of static CSPs. In the sequence, each problem 
is generated from the previous one. Letting Pt be a static 
CSP at time step t, we can then represent the a Dynamic 
CSP DP as follows: 

 
DP = {P0,P1,...,Pt ,Pt +1,...} 

 
where Pt+1 is a problem generated from the previous 
problem Pt. More specifically, there is a function F which 
define how a problem is altered. The function F can 
generate Pt+1 from Pt, i.e., Pt+1 = F (Pt). F can be defined as a 

function to add/remove a subset of variables and constraints 
in the previous problem. 

We will describe a real-time problem as a Dynamic 
DCSP in this paper. As mentioned above, in a DCSP, each 
agent is assigned variables and constraints which are a part 
of a problem, then a problem at each moment can be solved 
based on AWC. However, assigned variables and 
constraints could be dynamically changed. Assuming that 
one variable represents an agent, for example, when new 
agent is added to a problem, some existing agents related to 
new one via constraints could be much constrained. On the 
other hand, when some agents are removed from a problem, 
related agents are relaxed because of the decrease of the 
number of constraints. We can solve a Dynamic DCSP by 
executing AWC for each problem, but it is time consuming. 

4. Problem Description 

We show the formal representation of a real-time problem 
considered in this paper. First, a real-time problem itself is 
described as RP = {P0, P1, ..., Pt, Pt+1, ...}. Pt, a problem at 
time step t, is denoted as Pt = (Xt, Dt, Ct), and Pt is a DCSP. 
For simplicity, we assume that one variable in a problem 
represents an agent. RP is a problem which could be 
constantly changed over time. Therefore, it might be 
difficult to achieve a solution to each DCSP which can 
satisfy all constraints. Because a problem at each time is 
generally over-constrained, some of agents should accept 
that some constraints are not satisfied with the solution. 

As we mentioned in Section 1, we do not consider all 
variables and constraints during the search process, but the 
limited number of them. That is, in fact, a subproblem is 
solved in the search process. The definition of a 
subproblem at time step t, St, is as follows: 
 
St = (SXt ,SDt ,SCt ) (SXt ⊆ Xt ,SDt ⊆ Dt ,SCt ⊆Ct )  
where SXt, SDt, SCt represent a subset of Xt, Dt, Ct, 
respectively. An agent which is subject to the search at t is 
Xt ∈ SXt (i = 0, ..., |SXt|) and a set of constraints related to Xt 

is Ct = {c0, ..., cn} ⊆  sct. An agent can evaluate its utility at a 
moment. The definition of the utility is as follows: 
 

u(c j ) =
f (t,c j ) + wc j

:if c j is satisfiedby At

0 :otherwise

⎧ 
⎨ 
⎩ 

 

 
That is, when a constraint cj is satisfied with a certain 
assignment A t, which is a solution to a problem at t, an 
agent can obtain the utility. The utility is defined as the 
combination of two factors, i.e., the time-depend value and 
the importance of a constraint. First, we suppose that the 
value of a constraint depends on the time. For example,  
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  1: procedure search(Starter, Actives, Th) 
  2:   broadcast ”activate(Starter, Th)” to agents in Actives 
  3:   wait until all active neighbours return ”ready” message 
  4:   search a solution using AWC considering utility condition 
 
   1: procedure extend scope(Extender) 
   2:   Consts := {c|a constraint related to starter} 
   3:   Satisfy := {d|Extender ’s value which can satisfy a  
         constraint in Consts} 
   4:   if Satisfy = ∅ then 
   5:     return nil 
   6:   else if Th = 0 
   7:     return nil 
   8:   else 
   9:     Di := Satisfy 
10:     Affected := {c|a previously satisfied constraint which  
            are dissatisfied with a value in Di}  
11:     if Affected = ∅ then 
12:       return nil 
13:     else 
14:       Ci := Ci ∪ Affected 
15:       New actives := a set of neighbours related to Ci 

16:     end if 
17:   end if 
18:   send ”reset” message to all active neighbours 
19:   Th := Th - 1 
20:   search(Extender , New actives, Th) 

       1: when i received (activate(Sender ,Th)) 
       2:   store Sender as a Starter 
       3:   store Th 
       4:   broadcast ”know(sender)” to all neighbours 
       5:   wait until all neighbours reply 
       6:   Ci := agent i’s constraint set 
       7:   for each neighbour j 
       8:     if j’s reply  = “replied(j, ∅)” then 
        9:       Cj := constraints related to j 
   10:       Ci := Ci – Cj  ∪ a constraint ”j takes its current value” 
   11:     end if 
   12:   end for 
   13:   send ”ready(i)” to Sender 
   14: end 
 
        1: when i received (know(Sender)) 
        2:   if i is activated by Sender then 
        3:     send back “replied(i, ∅)“ to Sender 
        4:   else 
        5:     send back “replied(i,i’s current value)“ to Sender 
        6:   end if 
       7: end 

Fig. 2. Basic Algorithm 

 

 
if it is known that an agent Xi withdraws within a minute, a 
constraint on the cooperation with Xi could not deserve to 
be satisfied. Additionally, a constraint has the importance 
of itself, which is regardless of the time. Accordingly, we 
define a function to set the utility as summation of the value 
considering the time, f (t, cj), and the importance of a 
constraint, wcj . Eventually, the utility of an agent Xi can be 
described as the following formula: 
 

U i = u(c j )
j

|C i |

∑  

 
An agent tries to increase its utility during the search 
process. However, although we will show in the next 
section, we do not consider a problem as an utility 
optimization problem. 

In this paper, we assume that a change occurs on one 
agent. To put it concretely, one new agent comes/withdraws 
or constraints related to one agent are added/removed. 
Accordingly, at each moment, only one agent has 
motivation to re-search a solution. 
 
 

5. The Adaptation Method for a Real-time 
Problem 

In this section, we describe a quick adaptation method for 
changes in a real-time problem. Our proposing method is 
basically based on an existing search algorithm, 
Asynchronous Weak-commitment search algorithm 
(AWC). Because, as we mentioned above, a problem at a 
moment would be over-constrained, the method accepts 
that some constraints are not satisfied. In order to obtain a 
solution, AWC search processes are iteratively executed. 
During the execution of AWC search, the number of 
variables and constraints which are considered in the AWC 
search process is limited within much less number of them. 
Therefore, the computation time for each search would be 
small. 

Figure 2 shows an algorithm for the quick adaptation. 
In the following, we present a sketch of each step of our 
algorithm. 
 
Step 1: An agent, Starter, which is added to a problem or 
modified its constraint set runs search procedure. Here, 
Actives is a set of neighbours of Starter. Th is a threshold  
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Fig. 3. An Example of the re-calculation 

that defines the limit of extension of the scope of search. If 
it is possible to extend the scope, i.e., 0 ≤  Th, Starter 
broadcasts activate message to activate neighbours (search 
procedure: Line 2 in Figure 2). A set of active agents 
corresponds to the scope of search. 
 
Step 2: An agent which receives active message, here we 
call receiver, broadcasts know message (search procedure: 
Line 4 in Figure 2) to figure out which agents are active. 
 
Step 3: An agent which receives know message replies. If 
an agent also receives activate message, it is active, then 
sends back an empty message. On the other hand, if an 
agent does not receive the message, it sends back its own 
assigned value. 
 
Step 4: Receiver temporarily eliminates constraints related 
to inactive agents. Additionally, receiver generates 
temporal hard constraints to keep existing value of inactive 
agents. Thus, although active agents do not communicate 
with inactive ones through the search process, the value of 
inactive agents can be considered. 
 
Step 5: Starter runs AWC search algorithm with only 
active agents. Supposing that the utility of an agent xi at 
time step t is described as U(i,t), during the search process, xi 

must satisfy the following condition: 
 

U(i,t−1) ≤ U( i,t )  
 

When an agent xi does not satisfy this condition, it must 
send nogood message to its active neighbours even if it 
satisfies several constraints. That is, xi must refuse an 
assignment which reduces its utility. 

Step 6: When an agent, Extender, cannot find a value 
which can increase its utility, it can try to extend the scope 
if the following conditions are satisfied: 
 
• There are potential values which can satisfy constraints 

related to Starter. 

• Th is more than 0 

For the extension, Extender temporarily replaces its domain 
with a set of value which can satisfy constraints related to 
Starter. Then, Extender checks whether the previously 
satisfied constraints are satisfied or not with the replaced 
domain. If there are constraints which are not satisfied with 
the domain, Extender considers an agent related to such 
constraints as an active one. After that, Extender runs 
search procedure with reset of existing nogood used in 
AWC. At this point, Extender becomes new Starter. 
 
When an algorithm successfully finds a solution or returns 
nil, the search process is completed. If the algorithm fails to 
find a solution, all existing agent are assigned their previous 
values again. 

Figure 3 shows an example of an execution based on 
the proposed algorithm. In this example, domains of three 
variables, X, Y, and Z are {x1, x2}, {y1, y2}, {z1, z2}, 
respectively. In the initial state, there are only three 
variables X, Y, and Z. Each of them is assigned x1, y1, and z1 

(Figure 3 (a)). New variable Q is added to X as shown in 
Figure 3 (b). As a Starter, Q sends activate message, and 
then X sends know message to Y and Z. Because both Y and 
Z do not receive know message from Q, the scope of search 
is only X and Q. Therefore, at this step, a sub-problem is St = 
({Z,Q}, {DXt ,DQt}, CXt ∪ CQt ). If X can assign another value 
x2 which can satisfy all constraints with Y = y1 and Z = z1, X 
can obviously satisfy the condition on the utility, namely its 
utility is increased. In that case, a solution is as Figure 3 (c). 
If X cannot find a solution, it tries to extend the scope. As 
well as Q, X sends activate message, then Y fixes its active 
neighbour. As shown in Figure 3 (d), the scope consists of 
X, Q, and Y. Here, we assume that only X = x2 can satisfy a 
constraint between Q, but cannot satisfy a constraint 
between Y with Y = y1. In this case, a sub-problem is St+1 = 
({X, Q, St =    ({x 2,Q}, {DXt ,DQt, CXt ∪ CQt}), {x1, DQt, DYt}, 
CXt+1 ∪ CQt+1 ∪ CYt+1). Figure 3 (e) shows a case which can 
successfully find a solution. 

6. Related Work 

There has been some researches on Multi-agent problem 
solving considering dynamic changes in a problem. 

Verfaillie and Schiex [6] proposed a method of using a 
previous solution to produce a new solution. Wallace and 
Freuder [7] proposed a method that assigns a penalty for 
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constraint violation. Miguel and Shen [3] proposed fuzzy 
rrDFCSP, which can represent an over-constrained, 
dynamic problem. These researches focused on the solution 
stability, but did not focus on the efficiency of the 
computation in a real-time environment. 

Modi et. al. proposed a constraint satisfaction method 
for a dynamic distributed constraint optimization problem 
[4]. Their work is close in spirit to our approach. However, 
they focused on how to optimize a solution, but we have 
focused on how to obtain a solution efficiently. 

7. Conclusion 

In this paper, we first described a real-time problem as a 
Dynamic Distributed CSP because classical CSP assumes 
static problems. Then, we extended an existing 
Asynchronous Weak-commitment search algorithm for 
quick adaptation to changes in a real-time problem. The 
main idea of our proposing method is to limit the scope of 
search at each moment. During the search process, each 
agent determines whether there is the possibility of 
increasing its own utility. Because the number of variables 
and constraints would be much smaller, the computation 
time could be reduced. Thus, according to our method, 
agents can quickly respond to changes.  

Our future work will include the sophistication of the 
method to obtain better quality solution. 
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