
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

107

Manuscript received July 5, 2006.
Manuscript reviced July 25, 2006.

A Quick Adaptation Method for
Constraint Satisfaction in a Real-time Environment

Hiromitsu Hattori and Takayuki Ito

Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 JAPAN

Summary
Multi-agent problem solving in a real-time environment is
one of the hardest and most fascinating research area. In
this paper, we propose a method for quick adaptation to
changes in a problem in a real-time environment as an
extension of an Asynchronous Weak-commitment (AWC)
search algorithm. The basic idea of our proposing method is
to limit the scope of search. Variables which are affected by
changes could be modified their previously assigned values
to adapt to the changes. For the adaptation to changes in a
problem, we sacrifice the optimality of a solution. If an
agent can increase its utility, it can simply modify its values.
In the process, an agent emphasizes the local optimality
without considering the global optimality. In a real-time
environment, it is not practically important to globally
optimize a solution. The quick adaptation to changes can be
useful for such real-time problem.

Key words:
Distributed Constraint Satisfaction Problem, Real-time problem,
Multi-agent Systems

Introduction

There are many researches which try to apply multi-agent
systems for various application domains. Multi-agent
problem solving in a real-time environment is one of the
most fascinating research issue [2]. In such environment, a
problem could be dynamically changed over time, and then
the property of a problem might be changed. Although
agents should adapt to changes in a problem, there is a
trade-off between the efficiency of the computation time
and the quality of a solution. We have focused on the
efficiency of the calculation to adapt to changes in a
problem because in the real-time environment, where a
problem might be changed in a shorter period, agents
should respond to changes at the cost of the solution
quality.

Constraint Satisfaction Problem (CSP) is one of the
promising framework for achieving multi-agent problem
solving. It is not, however, efficient to deal with many
real-time problems with dynamic changes because in the
classical CSP, it is assumed that problems are static.

Dynamic CSP is a framework in order to deal with such
intractable problem. Many existing researches, however,
has focused on solution quality which is in the light of the
stability, consistency, and so on. The efficiency of problem
solving has not been focused on. In this paper, we describe
a real-time problem with constant changes and an
adaptation method which allows us to obtain a solution
quickly.

We are assuming problems such as a disaster rescue
problem based on multi-agent systems. For example, in a
disaster rescue problem [5], agents are firstly assigned tasks,
and resources. Then, they execute assigned tasks using the
resources. While agents are working, there might be
suddenly kinds of changes, e.g., coming of new agents,
communication blackout, detection of new sufferers, and
outbreak of fire, and so on. For these changes, agents
should respond to such kinds of changes. However, it is not
necessarily required that all agents change their ongoing
tasks to respond to them. Additionally, in a real-time
problem that agents must constantly recalculate their tasks,
an exact/optimal solution at each moment is not required.
This is because that the effectiveness of a solution in a
real-time problem might be reduced due to changes.
Therefore, in this paper, we propose a method to achieve
quick adaptation to changes in a real-time problem.

In this paper, we represent a real-time problem based
on a Dynamic Distributed CSP. Changes in a problem is
described as the modification of a set of constraints and
variables, i.e., addition/deletion of constraints and variables.
For quick adaptation to changes in a real-time problem, we
extend the Asynchronous Weak-commitment search
algorithm (AWC) [8]. The basic idea of our proposing
method is to limit the scope of search. When some changes
occur, a previous solution could be locally modified.
Variables which are affected by changes could be modified
their previously assigned values to adapt to the changes.
According to our method, the number of variables which is
required to modify each value could be decreased, and then
agents affected by changes could quickly respond to them.
For the adaptation to changes in a problem, we sacrifice the
optimality of a solution. During a search process in our
method, agents consider only each own utility. If an agent
can increase its utility, it can simply modify its values. If not,
the agent communicates

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

108

Fig.1. An Image of the Real-time Problem

with neighbours to achieve an appropriate modification. In
the process, an agent emphasizes the local optimality, thus
the global optimality is not guaranteed. However, it is not
important to globally optimize a solution since we assume
an environment where a problem could be constantly
altered. On the contrary, the quick adaptation to changes
can be useful for such real-time problem.

The structure of the rest of this paper is as follows. In
the next section, we describe a real-time problem on which
we have focused. In Section 3, we show the definition of
Constraint Satisfaction Problem as preliminaries. In Section
4, we describe the description of a real-time problem for our
proposing method. Then, in Section 5, we show a quick
adaptation method for changes in a real-time problem. In
Section 6, we discuss some related researches.

2. Real-time Problem

We focus on the problem solving in a real-time
environment in this paper. Figure 1 shows an example of a
problem. In this example, several agents try to extinguish
the fire and rescue sufferers. There are also some incidents
which causes changes. The changes in a problem is mainly
caused by incidents such as (1) Alteration of the number of
agents, (2) Occurrence of new tasks, (3) Assignment of new
resources. In a rescue problem, as an incident (1), new
rescue agents could come in the process of rescue activities.
Meanwhile, some agents withdraw from the activities due
to fatigue, a sort of accidents, and so on. In this case, agents
should determine how to cooperate with new comer and
how to cover the lack up agents. As shown in Figure 1 (a),
an agent which perceives new agent is coming should
determine how to cooperate with the new one. In other
cases, an agent might continue to execute assigned tasks
and does not care the new agent. Figure 1 (b) shows a case
that an agent which has worked together could withdraw in
the process of a task. In this case, the remaining agent might
search for other potential agents for cooperative work. As
an incident (2), new tasks could suddenly emerge during an

activities. When an agent detects new sufferers, outbreak of
fire, and other kinds accidents, it must determine how it
should do considering such unexpected tasks. As shown in
Figure 1 (c), an agent finds unexpected casualty. In this
case, the agent must determine whether it continues to
execute its initial task or try to rescue the casualty instead of
the initial task. As an incident (3), additional resources for
activities could be newly assigned and sometimes existing
resources could be exhausted. This case is similar with the
case for the type of incident (1). As shown in Figure 1 (d), if
an agent can get much more extinguisher, it might not need
to work with others.

Due to kinds of unexpected incidents, an agent might
be occasionally required to modify how it work considering
such incidents. However, all of agents might not be
necessarily required to change ongoing tasks. For example,
in Figure 1, assuming that an agent in (c) changes its task
into the rescue of new casualty. Generally, there is the
possibility that the optimal solution could be obtained as a
result of the re-calculation by all agents. However, if the
advantage of such optimal solution is not large enough,
such optimization is practically waste of time.

Because changes in a problem, we are considering in
this paper, are unexpected, it is impossible to initially take
such changes into account at problem modeling phase, and
agents cannot anticipate the effect on the solution quality.
For the problem solving in such uncertain environment, it is
not important to obtain an optimal solution to the problem
at each moment. This is because an optimal solution to a
problem might be obsolete one at the next moment. The
more desired property for the problem solving in a real-time
environment is to quickly respond to the changes. For
example in Figure 1, there is a case that new agent is
coming after an agent in (c) stops achieving the initial target.
In this case, it is a waste of time to try to obtain an optimal
solution again among all agents considering the absence of
an agent in (c) because in this example new agent, which
can recover the absence, is coming at next step. Therefore,
it might be reasonable for agents to execute each task
continuously. Accordingly, in some cases, the global
optimization at each moment might be meaningless for a
real-time problem due to uncertainty in such problem.

Finally, we show the definition of a problem in a
real-time environment in this paper:

Definition 1 (The Real-time Problem) The real-time
problem is constantly changing due to some kind of
unexpected incidents. Since the property of a problem could
be altered due to the changes, the solution in a moment
could be obsolete.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

109

3. Distributed Constraint Satisfaction
Problem

A classical Constraint Satisfaction Problem (CSP) is
denoted as P = (X, D, C). Each term represents the
following components:

• a set of variables X = {x1, ..., xn}

• a set of finite domains for each variables D = {d1, ...,
dn}

• a set of constraints C = {c1, ..., cn}

A solution to the CSP, A, is an assignment of values to all of
the variables which can satisfy all constraints. A classical
CSP is static. The problem is fixed in advance and does not
change afterwards.

A Distributed CSP (DCSP) is the problem that each
agent is assigned one or more variables and constraints [9].
Each agent is assigned a subproblem. The goal of each
agent in a DCSP is to assign values which can satisfy all
constraints. The goal of each agent is dependent on other
agents’ goal since some variables included in each problem
are related by inter-agent constraints. Therefore, agents
must communicate with others to fix variable values. When
all agents assign values of all own variables and such values
satisfy all local constraints, a DCSP is solved. The
Asynchronous Weak-commitment search algorithm
(AWC) is one of the algorithm to solve a DCSP. In AWC,
high priority agents can keep their values and the priority is
dynamically changed. Agents communicate each other by
using ok? and nogood messages. When an agent receives an
ok? message, if an agent cannot find a value to its variable
that is consistent with values of higher priority agents, the
agent creates and sends a nogood. Actually, nogood is a
constraint which can avoid an assignment which cannot
satisfy all constraints. AWC is guaranteed to be complete
by recording all nogoods.

Dynamic CSP is an extension of a classical CSP [1]. If
there are kinds of changes to a problem, i.e.,
addition/remove of constraints and variables, the problem is
altered. The problems with dynamic changes can be defined
as a sequence of static CSPs. In the sequence, each problem
is generated from the previous one. Letting Pt be a static
CSP at time step t, we can then represent the a Dynamic
CSP DP as follows:

DP = {P0,P1,...,Pt ,Pt +1,...}

where Pt+1 is a problem generated from the previous
problem Pt. More specifically, there is a function F which
define how a problem is altered. The function F can
generate Pt+1 from Pt, i.e., Pt+1 = F (Pt). F can be defined as a

function to add/remove a subset of variables and constraints
in the previous problem.

We will describe a real-time problem as a Dynamic
DCSP in this paper. As mentioned above, in a DCSP, each
agent is assigned variables and constraints which are a part
of a problem, then a problem at each moment can be solved
based on AWC. However, assigned variables and
constraints could be dynamically changed. Assuming that
one variable represents an agent, for example, when new
agent is added to a problem, some existing agents related to
new one via constraints could be much constrained. On the
other hand, when some agents are removed from a problem,
related agents are relaxed because of the decrease of the
number of constraints. We can solve a Dynamic DCSP by
executing AWC for each problem, but it is time consuming.

4. Problem Description

We show the formal representation of a real-time problem
considered in this paper. First, a real-time problem itself is
described as RP = {P0, P1, ..., Pt, Pt+1, ...}. Pt, a problem at
time step t, is denoted as Pt = (Xt, Dt, Ct), and Pt is a DCSP.
For simplicity, we assume that one variable in a problem
represents an agent. RP is a problem which could be
constantly changed over time. Therefore, it might be
difficult to achieve a solution to each DCSP which can
satisfy all constraints. Because a problem at each time is
generally over-constrained, some of agents should accept
that some constraints are not satisfied with the solution.

As we mentioned in Section 1, we do not consider all
variables and constraints during the search process, but the
limited number of them. That is, in fact, a subproblem is
solved in the search process. The definition of a
subproblem at time step t, St, is as follows:

St = (SXt ,SDt ,SCt) (SXt ⊆ Xt ,SDt ⊆ Dt ,SCt ⊆Ct)
where SXt, SDt, SCt represent a subset of Xt, Dt, Ct,
respectively. An agent which is subject to the search at t is
Xt ∈ SXt (i = 0, ..., |SXt|) and a set of constraints related to Xt

is Ct = {c0, ..., cn} ⊆ sct. An agent can evaluate its utility at a
moment. The definition of the utility is as follows:

u(c j) =
f (t,c j) + wc j

:if c j is satisfiedby At

0 :otherwise

⎧
⎨
⎩

That is, when a constraint cj is satisfied with a certain
assignment A t, which is a solution to a problem at t, an
agent can obtain the utility. The utility is defined as the
combination of two factors, i.e., the time-depend value and
the importance of a constraint. First, we suppose that the
value of a constraint depends on the time. For example,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

110

 1: procedure search(Starter, Actives, Th)
 2: broadcast ”activate(Starter, Th)” to agents in Actives
 3: wait until all active neighbours return ”ready” message
 4: search a solution using AWC considering utility condition

 1: procedure extend scope(Extender)
 2: Consts := {c|a constraint related to starter}
 3: Satisfy := {d|Extender ’s value which can satisfy a
 constraint in Consts}
 4: if Satisfy = ∅ then
 5: return nil
 6: else if Th = 0
 7: return nil
 8: else
 9: Di := Satisfy
10: Affected := {c|a previously satisfied constraint which
 are dissatisfied with a value in Di}
11: if Affected = ∅ then
12: return nil
13: else
14: Ci := Ci ∪ Affected
15: New actives := a set of neighbours related to Ci

16: end if
17: end if
18: send ”reset” message to all active neighbours
19: Th := Th - 1
20: search(Extender , New actives, Th)

 1: when i received (activate(Sender ,Th))
 2: store Sender as a Starter
 3: store Th
 4: broadcast ”know(sender)” to all neighbours
 5: wait until all neighbours reply
 6: Ci := agent i’s constraint set
 7: for each neighbour j
 8: if j’s reply = “replied(j, ∅)” then
 9: Cj := constraints related to j
 10: Ci := Ci – Cj ∪ a constraint ”j takes its current value”
 11: end if
 12: end for
 13: send ”ready(i)” to Sender
 14: end

 1: when i received (know(Sender))
 2: if i is activated by Sender then
 3: send back “replied(i, ∅)“ to Sender
 4: else
 5: send back “replied(i,i’s current value)“ to Sender
 6: end if
 7: end

Fig. 2. Basic Algorithm

if it is known that an agent Xi withdraws within a minute, a
constraint on the cooperation with Xi could not deserve to
be satisfied. Additionally, a constraint has the importance
of itself, which is regardless of the time. Accordingly, we
define a function to set the utility as summation of the value
considering the time, f (t, cj), and the importance of a
constraint, wcj . Eventually, the utility of an agent Xi can be
described as the following formula:

U i = u(c j)
j

|C i |

∑

An agent tries to increase its utility during the search
process. However, although we will show in the next
section, we do not consider a problem as an utility
optimization problem.

In this paper, we assume that a change occurs on one
agent. To put it concretely, one new agent comes/withdraws
or constraints related to one agent are added/removed.
Accordingly, at each moment, only one agent has
motivation to re-search a solution.

5. The Adaptation Method for a Real-time
Problem

In this section, we describe a quick adaptation method for
changes in a real-time problem. Our proposing method is
basically based on an existing search algorithm,
Asynchronous Weak-commitment search algorithm
(AWC). Because, as we mentioned above, a problem at a
moment would be over-constrained, the method accepts
that some constraints are not satisfied. In order to obtain a
solution, AWC search processes are iteratively executed.
During the execution of AWC search, the number of
variables and constraints which are considered in the AWC
search process is limited within much less number of them.
Therefore, the computation time for each search would be
small.

Figure 2 shows an algorithm for the quick adaptation.
In the following, we present a sketch of each step of our
algorithm.

Step 1: An agent, Starter, which is added to a problem or
modified its constraint set runs search procedure. Here,
Actives is a set of neighbours of Starter. Th is a threshold

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

111

Fig. 3. An Example of the re-calculation

that defines the limit of extension of the scope of search. If
it is possible to extend the scope, i.e., 0 ≤ Th, Starter
broadcasts activate message to activate neighbours (search
procedure: Line 2 in Figure 2). A set of active agents
corresponds to the scope of search.

Step 2: An agent which receives active message, here we
call receiver, broadcasts know message (search procedure:
Line 4 in Figure 2) to figure out which agents are active.

Step 3: An agent which receives know message replies. If
an agent also receives activate message, it is active, then
sends back an empty message. On the other hand, if an
agent does not receive the message, it sends back its own
assigned value.

Step 4: Receiver temporarily eliminates constraints related
to inactive agents. Additionally, receiver generates
temporal hard constraints to keep existing value of inactive
agents. Thus, although active agents do not communicate
with inactive ones through the search process, the value of
inactive agents can be considered.

Step 5: Starter runs AWC search algorithm with only
active agents. Supposing that the utility of an agent xi at
time step t is described as U(i,t), during the search process, xi

must satisfy the following condition:

U(i,t−1) ≤ U(i,t)

When an agent xi does not satisfy this condition, it must
send nogood message to its active neighbours even if it
satisfies several constraints. That is, xi must refuse an
assignment which reduces its utility.

Step 6: When an agent, Extender, cannot find a value
which can increase its utility, it can try to extend the scope
if the following conditions are satisfied:

• There are potential values which can satisfy constraints

related to Starter.

• Th is more than 0

For the extension, Extender temporarily replaces its domain
with a set of value which can satisfy constraints related to
Starter. Then, Extender checks whether the previously
satisfied constraints are satisfied or not with the replaced
domain. If there are constraints which are not satisfied with
the domain, Extender considers an agent related to such
constraints as an active one. After that, Extender runs
search procedure with reset of existing nogood used in
AWC. At this point, Extender becomes new Starter.

When an algorithm successfully finds a solution or returns
nil, the search process is completed. If the algorithm fails to
find a solution, all existing agent are assigned their previous
values again.

Figure 3 shows an example of an execution based on
the proposed algorithm. In this example, domains of three
variables, X, Y, and Z are {x1, x2}, {y1, y2}, {z1, z2},
respectively. In the initial state, there are only three
variables X, Y, and Z. Each of them is assigned x1, y1, and z1

(Figure 3 (a)). New variable Q is added to X as shown in
Figure 3 (b). As a Starter, Q sends activate message, and
then X sends know message to Y and Z. Because both Y and
Z do not receive know message from Q, the scope of search
is only X and Q. Therefore, at this step, a sub-problem is St =
({Z,Q}, {DXt ,DQt}, CXt ∪ CQt). If X can assign another value
x2 which can satisfy all constraints with Y = y1 and Z = z1, X
can obviously satisfy the condition on the utility, namely its
utility is increased. In that case, a solution is as Figure 3 (c).
If X cannot find a solution, it tries to extend the scope. As
well as Q, X sends activate message, then Y fixes its active
neighbour. As shown in Figure 3 (d), the scope consists of
X, Q, and Y. Here, we assume that only X = x2 can satisfy a
constraint between Q, but cannot satisfy a constraint
between Y with Y = y1. In this case, a sub-problem is St+1 =
({X, Q, St = ({x 2,Q}, {DXt ,DQt, CXt ∪ CQt}), {x1, DQt, DYt},
CXt+1 ∪ CQt+1 ∪ CYt+1). Figure 3 (e) shows a case which can
successfully find a solution.

6. Related Work

There has been some researches on Multi-agent problem
solving considering dynamic changes in a problem.

Verfaillie and Schiex [6] proposed a method of using a
previous solution to produce a new solution. Wallace and
Freuder [7] proposed a method that assigns a penalty for

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

112

constraint violation. Miguel and Shen [3] proposed fuzzy
rrDFCSP, which can represent an over-constrained,
dynamic problem. These researches focused on the solution
stability, but did not focus on the efficiency of the
computation in a real-time environment.

Modi et. al. proposed a constraint satisfaction method
for a dynamic distributed constraint optimization problem
[4]. Their work is close in spirit to our approach. However,
they focused on how to optimize a solution, but we have
focused on how to obtain a solution efficiently.

7. Conclusion

In this paper, we first described a real-time problem as a
Dynamic Distributed CSP because classical CSP assumes
static problems. Then, we extended an existing
Asynchronous Weak-commitment search algorithm for
quick adaptation to changes in a real-time problem. The
main idea of our proposing method is to limit the scope of
search at each moment. During the search process, each
agent determines whether there is the possibility of
increasing its own utility. Because the number of variables
and constraints would be much smaller, the computation
time could be reduced. Thus, according to our method,
agents can quickly respond to changes.

Our future work will include the sophistication of the
method to obtain better quality solution.

References

[1] R. Dechter and A. Dechter. Belief maintenance in dynamic
constraint networks. Proc. of AAAI-88, pages 37–42, 1988.

[2] H. Hattori, T. Shintani, A. Isomura, Ito. T., and T. Ozono.
Stable solutions dealing with dynamics in scheduling based on
dynamic constraint satisfaction problems. Proc. of PRICAI-04,
pages 989–990, 2004.

[3] I. Miguel and Q. Shen. Fuzzy rrdfcsp and planning. Artificial
Intelligence Journal, 148(1-2):11–52, 2003.

[4] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed constraint
optimization. Proc. AAMAS-2003, pages 161–168, 1998.

[5] S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara,
A. Shinjoh, T. Koto, I. Takeuchi, H. Takahashi, F. Matsuo, M.
Hatayama, J. Nobe, and S. Shimada. The robocup-rescue project:
A robotic approach to the disaster mitigation problem. Proc. of
ICRA-2000, pages 4089–, 2000.

 [6] G. Verfaillie and T. Schiex. Solution reuse in dynamic
constraint satisfaction problems. Proc. of AAAI-94, pages
307–312, 1994.

[7] R. J. Wallace and E. C. Freuder. Stable solutions for dynamic
constraint satisfaction problems. Proc. of CP-98, pages 447–461,
1998.

[8] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization and
algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

[9] M. Yokoo. Distributed Constraint Satisfaction. Springer, 2001.

Hiromitsu Hattori received the B.E.,
M.E., and Doctor of Engineering from
Nagoya Institute of Technology in 1999,
2001, 2004, respectively. He has been a
research fellow of the Japan Society for
the Promotion of Science (JSPS) from
2004. From 2004 to 2005, he was a
visiting researcher at University of
Liverpool. From 2006, he has been a
visiting researcher at Massachusetts

Institute of Technology. His main research interests include
multi-agent systems, agent argumentation, agent-mediated
electronic commerce, and intelligent group decision support.

Takayuki Ito received the B.E., M.E, and Doctor of Engineering

from the Nagoya Institute of
Technology in 1995, 1997, and 2000,
respectively. From 1999 to 2001, he was
a research fellow of the Japan Society
for the Promotion of Science (JSPS).
From 2000 to 2001, he was a visiting
researcher at University of Southern
California. From 2001 to 2003, he was
an associate professor of Japan

Advanced Institute of Science and Technology. He joined
Nagoya Institute of Technology as an associate professor of
Graduate School of Engineering in 2003. He is a Founder, a
Senior Vice President, Chief Operating Officer of Wisdom Web
Co., Ltd. from 2004. From 2005 to 2006, he is a visiting
researcher at Harvard University and Massachusetts Institute of
Technology. His main research interests include multi-agent
systems, intelligent agents, group decision support systems, and
agent-mediated electronic commerce.

