
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

113

Partitionable Mobile File System over Ad-Hoc Networks

Weider D. Yu Yan Chen

San Jose State University, San Jose (Silicon Valley), California, USA

Summary
Most peer-to-peer file storage sharing systems work on wired networks.
Due to the multi-hop wireless communication nature in ad-hoc
networks, the development of mobile ad-hoc network file storage
sharing system faces many challenges. In this paper, a hypothetical
partitionable mobile file system (PMFS) is proposed. This new PMFS
is a distributed file storing/sharing system built on partitionable mobile
wireless ad-hoc networks. The main proposal of PMFS is focused on
the system performance and service availability over wireless ad-hoc
networks. To enhance performance and achieve efficient file storage
and retrieval, various techniques have been proposed on the system.
Overall, PMFS is aimed to be a more flexible and efficient file storage
system over partitionable mobile wireless ad-hoc networks.
Key words
Wireless ad-hoc networks, mobile networks, peer-to-peer file storage,
mobile file systems, file storing/retrieval, file sharing, mobile network
partition.

1. Introduction

The ability to communicate with the rest of the world
instantaneously has been the ultimate goal for the design of
network communication system. For such a large coverage, it
seems only realistic and achievable through wireless networks.
This becomes the driving force of all the wireless network
research done all over the world. Moreover, due to the popular
growing demand of file sharing through Internet, such as
Napster [1], Morpheus [2], Gnutella [3] and Freenet [4], this
idea of file storage and sharing through networks has been
extensively studied recently in peer-to-peer system. However,
to the best of our knowledge, no such file sharing system has
been studied in mobile wireless ad-hoc networks. The
combination of file storage management built on mobile
wireless ad-hoc networks increases the difficulty of such
design.

Unlike the conventional infrastructure-based wireless network,
ad-hoc network, as a distributed wireless network, is a set of
mobile wireless terminals communicating with each other
without any pre-existing fixed infrastructure. The mobile
wireless ad-hoc network has several unique features that
challenge the network operation, such as the routing algorithm,
Quality of Service (QoS), resource utilization, etc. Figure 1
depicts a small-scaled model of a wireless ad-hoc network. All
terminals, also referred to as mobile nodes, exchange
information among one another in a fully distributed manner
through wireless connections within the ad-hoc network. Due to
the mobility of

Fig. 1 A Small-scaled Model of a Wireless Model of a Wireless Ad-hoc
Network

these nodes, the network topology is under constant changes
without any centralized control in the system. These are several
main concerns that need to be considered when designing a
specific application-layer protocol based on wireless ad-hoc
networks.

In a wireless ad-hoc network, all the nodes are interconnected
by single-hop or multi-hop wireless connections. There is no
centralized administration or base station to coordinate the
behavior of each node in the network. As a result, each node
must be self-configurable in order to adapt to various network
topologies. And each node may function as a packet-level
router for other nodes in the same network [5]. They can assist
transmitting packets from a source to a destination through
wireless connections in a fully peer-to-peer fashion. At the
same time, because of the wireless connections, the service
coverage and bandwidth availability become critical issues in
the wireless channels. The limited transmission coverage
restricts the design of such network, because wireless signals
die out exponentially as the transmission distance stretches. On
the other hand, how to save the transmission bandwidth and
maximize its usage is also a major concern in ad-hoc network,
because it directly results the achievement of the effective and
efficient information access in such network. Both of these
challenges have attracted attentions from various research
groups in ad-hoc network laboratories around the world.

A main feature of ad-hoc networks is that all the nodes within
the network have the freedom to move around, which causes the
network topology to change dynamically and unpredictably.
This means any node may join or leave the network at any time.
Due to the lack of centralized control in the network, nodes rely

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

114

only on the neighbors in a self-organizing manner. Thus, it is
not an easy task to maintain the network connectivity and
service availability while the nodes behaviors are unknown.
However, quite a few researchers have proposed many
prediction schemes [6,7,8,9] to predict and model the nodes
mobility, and thus, to improve the network connectivity and
routing algorithms. Furthermore, in ad-hoc networks, this
topological dynamics can be described as frequent network
partitioning, due to the natural grouping behavior in mobile
user's movement. With some further study, several grouping
methods have been proposed, such as velocity grouping [6] and
physical location grouping [10]. These grouping models have
been introduced to provide a better prediction on the behavior
of ad-hoc networks. And at the same time, these models also
provide an easier solution to manage the mobile nodes in
different groups rather than single individual nodes. Figure 2
describes the ad-hoc network before and after partitioning
visually. As shown, group 2 is separated from group 1, and
forms another isolated ad-hoc network that is out of reach of the
original group 1. When network partition happens, all the
services in the previous network need to be maintained for all
the nodes in both partitions, so that the nodes should not be
aware of the network partitioning at all. Therefore, in Figure 2,
all the nodes in both group 1 and group 2 should have the same
services available in both before (Figure 2a) and after (Figure
2b) partitions.

Fig. 2 An Ad-hoc Network Model before and after

The focus of this paper is to improve the current file storage
sharing system over mobile wireless ad-hoc networks. An
advanced hypothetical system called Partitionable Mobile File
System (PMFS) is proposed here. As previously mentioned,
there are a number of existing peer-to-peer storage systems that
have been developed in the past, such as CFS [11], PAST [12],
Freenet [4], etc. Together, they address a wide range of
interesting technical aspects regarding peer-to-peer networks,
such as the decentralized control with distributed algorithm, the
efficiency of resource management, the delay in file storing and
retrieval, the robustness of the system against network failures,
the load balance among all the machines, and the scalability of
the system. All of these characteristics mentioned above in
peer-to-peer networks would also be our concerns for designing
the PMFS based on wireless ad-hoc networks. In other words,

the PMFS is targeted to adapt the existing peer-to-peer file
storage system into ad-hoc networks. Besides the smooth
adaptation, another main task in this paper is also to maximize
the performance of this storage system. Because of the mobile
and partitioning nature of the ad-hoc networks mentioned
earlier, the task is not as trivial as it may seem to be. Overall,
PMFS needs to adapt the existing peer-to-peer storage utility
into the wireless ad-hoc networks. The system stores and
retrieves files in a group-oriented manner with individual file
blocks. It modifies and extends an existing simple lookup
algorithm to allocate mobile nodes. And it also maintains the
storage service for lookup within mobile nodes, even after
network partitions.

The remainder of this paper is organized as follows. Section II
discusses related technologies, existing issues and basic
background concepts and definitions. Section III gives a detail
overview of PMFS system design, which explains each newly
proposed technique in more depth. Section IV presents the
results and analysis of PMFS. Finally, section V concludes this
paper.

2. Background Concepts and Definitions

In the mobile wireless ad-hoc networks, the network topology
dynamically changes due to the node mobility, unpredictable
partitioning and decentralized system. This network
characteristic directly increases the design complexity and
difficulty of any storage system over such mobile wireless
networks. For such storage system, it needs to work with the
decentralized system, and meanwhile, it also needs to provide
the storage reliability and persistence. Here, a few important
questions arise: How should this system manage its nodes
without centralized control, but yet, it can recover from network
partition? How should this system keep track of all the file
blocks among all the mobile nodes? How could this system
possibly save all the blocks reliably so that the files will not be
lost after network partitions? In order to have a complete and
functioning Partitionable Mobile File System, all the above
questions are the keys to the success of designing such file
system. Therefore, they will all be answered throughout this
paper.

2.1 Velocity Grouping

In a partitionable mobile file storage system, all the mobile
nodes need to be managed in the way such that all the file
blocks are stored reliably even with the network partitions. The
approach we use in PMFS is to group all the nodes according to
their similar velocities, called the Reference Velocity Group
Mobility (RVGM) model [6]. For simplicity and clarity, Table
1 lists a few important notations used throughout the paper.

(a) before partition (b) after partition

group 2

group 1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

115

Table 1: Notations used for Velocity Grouping

Notation Definition

m
maximum number of nodes allowed on one
velocity group

M
total number of dummy servers in one velocity
group

v i velocity of each node
v m mean velocity of a velocity group

(v x ,v y)
Cartesian representation of node velocity in x and
y axes

The basic idea behind RVGM model is the observation of how
"mobile users exhibit correlated mobility patterns in their
movements". In other words, frequent network partitions are
not totally untraceable in mobile wireless ad-hoc networks. All
the mobiles nodes tend to travel in some kind of group-based
movements. Thus, PMFS proposes the use of such velocity
grouping, RVGM.

2.2 Lookup Algorithm

The lookup algorithm in any file storage system is the key to the
system performance. There are many researches done on the
most efficient lookup algorithm. But to work with mobile
wireless ad-hoc network, the lookup algorithm in PMFS is
chosen to adapt an efficient and scalable lookup algorithm
proposed in [13]. The idea behind this algorithm is to minimize
the protocol overhead during the block lookup process in a large
scale mobile wireless ad-hoc network. It aims to reduce the
number of messages required for one lookup request, as well as
to minimize the total distance traveled by the lookup message.
However, because of the group-oriented design in PMFS, the
lookup algorithm also needs to be slightly modified in order to
fit PMFS needs.

The basic idea behind this lookup algorithm is based on Chord
[14]. Each file block is associated with a specific key and stored
in a particular node in the mobile wireless ad-hoc network. All
the nodes in the network are labeled with a unique node ID as its
identifier. All the node IDs and file block keys are mapped into
an m-bit identifier space using consistent hashing algorithm.
The identifier space may be viewed as a circular space with
operation based on module 2k. Each node is required to store the
file block whose key is mapped to the same identifier as that of
the identifier of the node. The node responsible for a block with
a certain key is called the successor node of that key. The
successor node is defined as the next node on the identifier
circle. Each node maintains a list of its successors, as well as a
figure table to speed up the block lookup process. The only
operation this algorithm achieves is that: given a file block key,
it will find the node responsible for this block.
The algorithm proposed by Li et al. in [13] is quite simple.
Based on their observation about the behavior of lookup
process in wireless ad-hoc network, they suggest allocating the
node identifiers based on the physical locations, rather than the

consistent hashing as in Chord. So if two nodes are close on the
identifier circles, they are physically close to each other as well.
Intuitively, this improvement directly reduces the average path
one lookup message need to travel geographically; meanwhile,
it also increases the possibility of nodes with more relevant
lookup routing information to provide a shortcut on the lookup
path, thus the number of lookup message required for one
request may be reduced.

2.3 Storage Management

Ideally, when one node is requesting to store a file within a
storage system, the obvious solution is to keep the file blocks as
physically close as possible. So the network bandwidth can be
minimized for this storing process. However, this solution is
impossible due to two issues. First, all the nodes within the
storage system can request these file blocks, from anywhere at
any time. Even though the storing process is optimized locally,
the retrieval process will be hectic in the system. Second, all the
nodes are constantly moving in wireless ad-hoc network. The
temporary physical neighbors can be farther apart from each
other a while later. Then it is rather complicated to keep track
of all the file blocks within this mobile network; the retrieval
process is not straight forward either.

One obvious observation worth mentioning here is that, in a file
sharing storage system like PMFS, the ratio of file being
retrieved is much higher than it being stored (which is only
once). Therefore we are willing to use more network
bandwidth and capacity in the block storing process, than it
being consumed in the retrieval process. Hence, our
performance optimization is mainly focused on the block
retrieval.

3. PMFS System Design

PMFS provides a read-only file storing/sharing system based on
mobile wireless ad-hoc networks. It consists of a large number
of mobile wireless nodes, which may serve as both server and
client at the same time. Each individual node has PMFS
software installed, while it also contributes its available storage
space for the system. If any node is unwilling to participate in
the storage contribution, it has the flexibility to behave as an
access point only to the PMFS storage system. In addition, any
node may change its contribution of storage space at any time.
Overall, regardless of the node functionality (client or/and
server) within the mobile wireless ad-hoc networks, users may
access any node at any time through the application interface, to
store or retrieve a specific file, providing the file name and
corresponding password.

The following are the user operations that PMFS supports in
application interface:

• Store: Boolean = store (filename, private password,
public password, time to keep). The user inserts a
specific file into PMFS, by providing the file name,
his/her private password and a public password for

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

116

Node 3

Storage
Layer

Lookup
Layer

Application
Interface

Application
Interface

Node 2

Storage
Layer

Lookup
Layer

Application
Interface

Node 1

Storage
Layer

Lookup
Layer

Group 1

Velocity Group 1

Lookup
Search

Storage
Management

Velocity Group 1

Lookup
Search

Storage
Management

Velocity Group 1

Lookup
Search

Storage
Management

the file, and also specifying how long the file is
expected to be kept in the system. In return, the user
receives a success or failure notice.

• Retrieve: file = retrieve (filename, public
password). This function is made for public users to
share the stored files in PMFS. By providing the
public password, any users may view the files from
any PMFS participating node that is connected to
the mobile wireless ad-hoc network.

• Check: filename = check (public password). If a
user only knows the public password for a file
without knowing its exact filename, this function
helps user to search for the corresponding filename.

• Update: boolean = update (filename, private
password). PMFS reserves the flexibility for the
original file publisher to update his/her file stored in
the system. PMFS will update the original file only
if the user provides the correct private password for
the corresponding filename.

Because of the node mobility and frequent network partition,
PMFS manages its mobile nodes in different groups according
to its similar velocities [6]. Figure 3 illustrates the basic
group-oriented structure of the PMFS system.

Fig. 3 Group-oriented PMFS System Structure

As shown in Figure 3, all the nodes are categorized in different
groups, and both the storage management and lookup search are
done independently within each group. Although the
communications between groups still exist (as shown in dashed
lines), since all the nodes are still free to talk to its neighbors,
PMFS tends to make the storage arrangement within its group
first, then it will contact the other groups for replications or
storage supports. However, faster file retrievals can be
achieved by communications between different groups through
local broadcasting.

Because the storage management and lookup search are
identical in all PMFS velocity groups, we may focus on one
group structure in detail for now. Within one PMFS group, all
nodes have two software layers: the lookup layer and storage
layer, as shown in Figure 4.

Fig. 4 Layered Structure in one PMFS Velocity Group

The PMFS individual group structure is similar to CFS, except
the lookup algorithm used in the lookup layer is adapted from
[13], in order to work with mobile ad-hoc networks more
efficiently. Instead of randomly mapping the nodes into the
identifier ring like CFS, PMFS assigns the node identifiers
within each group, based on the approximation of their physical
locations associated with the group creation time (group ID).
The objective of such algorithm is to reduce the number of
lookup messages required for one lookup request, and minimize
the distance the request message needs to travel. When users
access PMFS through application interface with the user
operation commands mentioned previously, the storage layer
receives the request from the interface. It passes the command
over to the lookup layer to find the corresponding nodes.
Meanwhile, the storage layer takes care of the main block
storage features, such as file block division, blocks distribution,
etc. For one PMFS velocity group, the functions of the two
software layers are listed as the following:

1. Storage Layer:

• Map filename with private password to an unique
private key, and map filename with public password
to a public key;

• Divide each file into blocks;
• Sign the root-block with the private key and use the

public key as its block ID;
• Provide all blocks with a unique block ID using

content-hash;
• Insert each block into PMFS storage layer using the

given public key and its block ID;
• Interact with lookup layer during node allocation for

storing or retrieving file blocks;
• Define and maintain the velocity groups;
• Provide reliable storage of individual blocks by

erasure coding within the group;
• Prevent data loss from network partitions;
• Responsible for the system performance: data

availability, bandwidth usage efficiency, load
balancing, and delay time.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

117

2. Lookup Layer:
• Assign node identifiers so the lookup algorithm is

maximized among mobile nodes in wireless mobile
ad-hoc networks;

• Decide nodes responsible for specific blocks within
a group, by consistent hashing to map both the node
identifier and the file block keys into identifier
space;

• Maintain the routing table for lookups.

3.1 Operations of the System

A. Velocity Grouping Technique

In PMFS, each node is assigned a unique identifier, and is
capable of monitoring its current position through either GPS
devices or any other signal sources. The position will be
presented as a two-dimensional Cartesian coordinate. Through
the history of its successive locations, each node can then
calculate its velocity, vi = (vx,vy). Then by exchanging the
velocity information between nodes, all the nodes will
eventually be categorized into different velocity groups. The
detailed mobility group identification is explained later on.

To identify the group patterns in the decentralized PMFS
system, we propose to adapt the same Sequential Clustering
(SC) algorithm for pattern recognition mentioned in [6]. In
order to find its correct mobility group upon the first joint in
PMFS, each node needs to perform a few operations following
the SC algorithm. First, each node needs to compare its own
velocity with all other mean group velocities vm, obtained from
its neighbors. The comparisons are done through the velocities
in the Cartesian domain. If any Cartesian distance between the
node velocity vi and one mean group velocity vm is within
certain threshold, the node is then classified and labeled as a
member of that group. Otherwise, a new group will be created,
with this node as the first member in the group. Similarly, all
the nodes will join PMFS classified as different velocity groups.

At the beginning of the PMFS setup, the first node to join the
system will be categorized as the first member of the first group.
As the number of nodes increases in the system, they all follow
the SC algorithm to identify its group numbers, with the
information provided by their neighbors, and with assistances
from their group dummy servers.

All the dummy servers are dynamically generated among each
individual group in PMFS, and maintained in a distributed
manner. Because of this dynamic generation of dummy servers,
each server is free to transfer its service instance to another
group member at any time. The reason we call them dummy
servers, is that no mobile node relies on them for either block
storing or retrieving. While all the nodes are moving in a
group-based velocity, the servers are only intended to help with
the group setup and to keep the group maintenance. And at the
same time, dummy servers exchange information among
themselves in order to keep each other updated. Another service

that dummy servers support is that they collect storage
information from all the mobile nodes within the group. Every
time when dummy server passes by its own group member, it
will ask the neighboring member for its most recent storage list.
However, it is almost impossible for one dummy server to meet
all its group members in the system. The storage lists only
remain as rough estimations for reference in dummy servers.
When two dummy servers within the same group pass by each
other, they update each other's group information accordingly,
such as the most recent vm and the most recent group storage list,
etc. This information exchange will improve the estimations,
but they may still not reflect the current group status in PMFS.

During the PMFS initial setup, the group joining process occurs.
The first node in the system is automatically selected as the
dummy server for the first group in the system. As the only
member in the group, this node stores its own velocity as the
mean group velocity. Also, it uses the current group creation
time as its unique group ID. Unless two groups are created at
the exact same time, this avoids the duplicated group IDs.
When the second node is added to the system, it will follow the
SC algorithm explained previously and find out its group
identity. If it belongs to the first group, it will then take the
group ID from the first group and piggyback its own velocity to
the dummy server, so that the mean group velocity can be
recalculated and broadcasted back; otherwise, it will create
another new group with different vm and group ID. Thus all the
nodes will eventually join the system using the mean group
velocity information obtained from its neighbors. During the
group joining process in PMFS, the founder of each group is
also referred to as the root server, since it becomes a dummy
server for the group automatically. Suppose each group has M
number of dummy servers. This is similar to the virtual
backbone selection in [16]. In the bootstrapping procedure, all
the nodes broadcast their existences to the network. Then each
rooter server from individual group will select M-1 group
members to form the dummy servers. Once the selection is
done, the root server will just become another regular dummy
server moving around freely like every other node.

In the group maintenance phase of PMFS, all the mean group
velocities are recalculated in dummy servers, with a record of
update time stamps. Each time stamp reflects the time of the last
update done on the vm. When a node joins the system, very
unlikely it will happen to have a group dummy server in the
neighborhood, because the ratio of M/m (number of dummy
server to the number of nodes in one group) is quite small. Thus,
every time after a new node joins a group, it needs to inform its
dummy server about its velocity vi, so that the new vm can be
calculated for the group. So it will keep on searching for any of
its group dummy servers until it actually finds one and sends in
its vi. Then the dummy server updates the mean group velocity,
and broadcasts periodically to its neighbors. Due to the
broadcast nature of mobile wireless ad-hoc network, each node
also periodically broadcasts its group ID and the mean group
velocity to other neighbors. Because every node, including the
dummy servers, stores vm associated with the time stamp, all the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

118

group nodes are free to exchange their most updated mean
group velocity among all the group neighbors.

Because of the node mobility in wireless ad-hoc network, each
node periodically broadcasts its group ID and vm, group mean
velocity, to its neighbors. If two nodes with different group IDs
happen to have similar velocities, the node with later group ID
(later creation time) will be merged into the other group. This
prevents the situation when two nodes with similar velocities
join the system farther apart, thus two different groups are
formed around them separately. But as they move closer
eventually, we want to minimize the total number of velocity
groups in the system. Thus the group created later will be
merged into the earlier group with similar group velocity.
Another important role of dummy servers is to predict the
network partition. From periodic broadcast, all the dummy
servers are aware of other neighbors' vm in other velocity groups.
Thus, similar to the velocity comparison done for group
classification in every node, each dummy server is constantly
comparing its vm with others. If the Cartesian comparison result
reaches certain threshold, it will broadcast a partition alert to all
the nodes in PMFS. Figure 5 depicts two scenarios of whether
or not dummy server will send out the partition alert.

Fig. 5 Partition Prediction

In Figure 5(a), the velocity difference between group 1 and
group 2 exceeds the threshold, thus the dummy server from
each group, whichever detects the partition first, will send out
the partition alert. On the other hand, the dummy servers in
Figure 5(b) will not detect the partition, because the mean group
velocities are relatively close to each other. However, the exact
threshold for such partition alert is beyond the scope of this
paper.

Upon the partition alert, PMFS needs to check all the different
file blocks stored in both partitions, so that it will transfer and
store the missing blocks accordingly.

B. Group-Oriented Lookup Algorithm

In order to manage file blocks more reliably, PMFS is
group-oriented, mainly to reduce the impact of the frequent
network partitions on PMFS in mobile wireless ad-hoc
networks. So the lookup layer in each node needs to recognize
its own group members first, before it assigns a unique node
identifier to another node. So, instead of assigning group ID
globally in the entire wireless ad-hoc network, PMFS manages
all the mobile nodes in velocity groups, and all the node
identifiers are assigned based on each group. In other words,
we apply the algorithm proposed in [13] to smaller units of
PMFS wireless mobile nodes in their velocity groups. And the
maximum number of nodes in each group is m = 2k , where k is
the number of bits assigned for node ID. Figure 6 illustrates the
node ID allocation algorithm applied to one PMFS group.

Fig. 6 Allocation of Node Identifiers
 in PMFS Velocity Group

As explained earlier, when a node joins PMFS, it first contacts
all its neighbors to determine its group ID. Due to the node
mobility in mobile wireless ad-hoc network, the node a1 joins
the group of node a0. The node a1 will be located farther apart
from a0 geographically, comparing to a2 and a0. a2 is another
node joins the same group through a0 after a1. This is a key
insight briefly mentioned in [13]. Therefore, each node in
PMFS always assigns the furthest ID available on the identifier
circle to its group member. After each assignment, the previous
identifier space is divided up into two regions, and each node is
then responsible for one region.

For example, as show in Figure 6, when the node a0 first creates
the group, it starts with first node ID 0. It is in charge of the
entire identifier circle from 0 to 2k. After the node a1 decides to
join the group based on the mean group velocity provided by a0,
a0 then assigns a1 as 2k-1. And now a1 is in charge of the upper
half of the identifier circle and a0 only has the bottom half left in

12 −k

12 −k

21 22 −− + kk

0

12 −k

Successor of
block key ()12,1 −k

3a

1a

2a

4a

0a

Group 1
Group 2
Dummy server of group 1
Dummy server of group 2 vm1

vm2
vm1 vm2

(a) Partition Alert (b) No Partition Alert

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

119

charge. And node a2 obtained its group ID from a0; then it took
over another half of a0's bottom half circle. Then all the nodes
follow the same pattern to join the group. And the identifier
circle responsibility is assigned in a clockwise order. Of course,
any node within one group will not assign node ID to nodes
from other groups. Every group in PMFS will use this algorithm
to assign its nodes within the velocity group. So each node is
recognized by node ID within the group, and uniquely
identified by both the group ID and node ID in the entire
system.

Mobile wireless ad-hoc network is always under frequent
network partitions. When a node leaves the group, its node ID
is returned to its predecessor. There is no extra overhead
introduced in the lookup layer. And when network partition
happens in PMFS, it does not have major impact on the lookup
layer either, because of the group-oriented design. We assume
most partition happens based on the velocity groups. If every
node in one group partitions from the previous network, its
routing table remains the same in the lookup layer within the
group.

C. Group-Oriented Storage Management

As depicted earlier in Figure 4, the basic software structure of
each PMFS mobile wireless node consists of two layers: storage
layer on top of lookup layer. The PMFS storage layer is
responsible for storing and retrieving individual file blocks
within its group, providing the corresponding unique block ID,
also referred to as the block key. The storage layer
communicates with the lookup layer to locate these blocks.
This structure is similar to Chord [14]. In fact, each group in
PMFS can be looked on as a mini storage system, which has
independent storing and retrieving capabilities on its own.
However, a single group will have poor performance in mobile
wireless ad-hoc network, due to the lack of the optimal
solutions for bandwidth efficiency and network partition issues.

On the other hand, Figure 3 illustrates the group correlations
among various groups. Because of the frequent network
partitions in mobile wireless ad-hoc network, it is crucial for
PMFS to keep enough replicas among its mobile nodes; hence
the file will not be lost after network partitions. Besides the
concern of data availability in ad-hoc networks, the efficient
usage of network bandwidth is another key factor that directly
affects the performance of PMFS. As the result, PMFS
proposes this group-oriented system structure.

PMFS attempts to optimize its performance in the storage layer.
Erasure coded replication [17] is used in a group base, in order
to improve data availability within individual groups. Block
replication is also provided between groups, to prevent data loss
through network partitions. Simple caching techniques are
implemented in PMFS to speed up the lookup process as well as
to minimize the multi-hop communications required. Group
communications through local broadcasting operations are
permitted to reduce the bandwidth consumption in block lookup
process as well. In other words, PMFS takes the advantage of

its group oriented structure and achieves its best performance
through group cooperation.

(a) Data Availability
In order to achieve higher data availability in mobile wireless
ad-hoc networks, PMFS storage layers deploy three different
techniques to ensure its reliable storage service.

Erasure Coded Replication
Erasure coding (EC) has been carefully studied in [17, 18],
where it has been proved to be highly efficient and durable in
terms of network bandwidth, storage capacity and fault
tolerance. Here, we propose the use of such erasure coded
replication scheme in each group of PMFS. The concept of this
scheme is simple. In PMFS, the storage layer of every node
divides each file in i blocks, and then encodes them into j blocks,
where i <= j. The ratio of j/i is called the stretch factor of the
erasure code, which reflects the amount of redundancy added to
the original file. After the encoding, the storage layer
distributes them to their key successors within the group for
block storage, just like other regular blocks. But the benefit
from this process is that the original file can be reconstructed
from any i of out of those j encoded blocks.

The benefits of this scheme applied to every PMFS group are
summarized as the following:

• Intuitively, the data availability is proportionally
improved through this replication. As the stretch
factor increases, the number of possible block
combinations, through which the file can be
reconstructed, has been increased. Thus, each PMFS
group can tolerate a certain degree of network failures
without affecting the file retrieval service to the end
users.

• At the same time, this flexible choice in our block
retrieving process also helps to save network
bandwidth. When the lookup layer searches for blocks
to reconstruct a requested file, it will first search for
the necessary number of blocks that are geographically
closer to itself1. This reduces the total lookup path for
one file retrieval, and thus saves the bandwidth in the
network traffic.

• And studies also show, for the same level of data
availability, this scheme significantly reduces the
storage required, comparing to direct block
replications.

• One last important reason, why erasure coded
replication is applied to PMFS in such a group-based
fashion, is to improve the data availability after
network partitions happen in mobile wireless ad-hoc
network. When one PMFS group is partitioned away
from the original network, erasure coding increases
the data availability within both partitions, because it
does so independently for each group.

1 This means the lookup layer will find the block keys that are closer to its

node ID on the identifier circle first.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

120

File Replication - Best Effort Replication
Comparing to erasure coding, file replication uses much more
network bandwidth and storage space. However, it is
unavoidable between PMFS groups, which are all built upon
wireless ad-hoc networks with frequent network partitions.
When a partition happens, erasure coding can increase the file
availability in every group, only if the file was actually stored in
the group previously. In other words, erasure coding does not
create file when it is missing. It only gives more possibility for
each PMFS group to reconstruct their files, even with some
missing or damaged blocks, suffering from either the network
partition or other network failures. Therefore, the
straightforward solution to this problem is to store one erasure
encoded copy of each file in every PMFS group within the
mobile wireless ad-hoc network.

However, keeping a copy of each file in every group within
PMFS is rather ideal. Due to the decentralized control, no node
is aware of how many groups currently existing in PMFS. Thus
each node will try individually to keep estimation on the
number of existing groups. When a node first joins PMFS and
obtains a group ID, it automatically starts a group list starting
from an empty list. Every time it receives a new group ID from
neighbor broadcasting, it saves the group ID in its group list.
And periodically, every node also compares its own group list
with neighbors' group lists, and updates its own list if any new
group ID is found. However, this only gives each node a rough
estimation on the number of currently existing PMFS groups.
PMFS neither has control in the group lists when a group leaves
the system, nor guarantees for every node to have an up-to-date
list when a new node joins.

In each file replication process, PMFS storage layer takes the
advantage of local broadcasting nature of wireless networks.
When storage layer in the node a receives a storing request from
application layer, it first broadcasts this request and its group ID
to all the neighbors, all the nodes from different groups will
reply by sending back their group IDs. Then the node a will
send a copy of the entire file to the node which replies back first
from each group. After all the neighbors receive a copy of the
file, they will apply erasure coding and distribute all the file
blocks following the same algorithm introduced earlier. This
results in the similar storage mapping structure in every group,
which becomes beneficial later. On the other hand, most likely
the node a will not be neighboring with all other group
members when the request arrives. Thus the node a will be set
on replication alert, and keep track of which groups have
received the file replicas and which groups have not. As the
node a moves around and network topology constantly changes
in mobile wireless ad-hoc network, the node a will pay attention
to all its neighbors. If the node a recognizes any neighbor, who
is from the group that does not have the file replica yet, it will
the send the file to that neighbor through local broadcasting;
After looking around for a period of time T, the file replication
alert expires and the node a stops its search, even if some
groups in PMFS have not yet received a replica of the file. This

is why this file replication scheme is called the best effort
replication.

Partition Prediction - Best Effort Block Transfer
Similar to the best effort replication, each PMFS group also
attempts to provide possible network partition prediction
through a set of its dummy servers. Dummy servers are
dynamically generated among groups from each root server,
and serve its group voluntarily. But upon the assignment of
such service, one important role that dummy servers must fulfill
for its group is to collect the current up-to-date block storage
list from its group members through periodic local broadcasting,
as they pass by the neighborhoods. And when two dummy
servers from the same group become in contact with each other
locally, they will also exchange and update each other's
collection list. Therefore, each dummy server tries to maintain
a rough idea of what files blocks are stored within the group.
As one can tell, the completeness of each storage list stored in
each dummy server is rather random, depending on the number
of neighboring group members it meets during its mobile
service. The service provided through such information process
is labeled as PMFS best effort.

As illustrated in Figure 5 earlier, dummy servers watch out for
the possibility of network partitions during its mobile service.
When any dummy server detects a network partition in its group,
through the comparisons of vm with other groups, it will
broadcast a partition alert to the entire network through either
single- or multi-hop communication. This method is proposed
based on an assumption that network partitions do not happen
constantly in PMFS. Upon the receiving of the network
partition alert, all dummy servers from other groups will look
for the dummy servers that are partitioning away from the
current network. Once they succeed, the estimated block
storage lists are exchanged and compared between two groups.
Any block missing from either group will be copied and stored
according to block key. However, an improved mechanism is
necessary for dummy servers to avoid redundant block transfers,
because all the dummy servers from other groups can request
the storage list from partitioning dummy servers concurrently.

This best effort block transfer is the last mechanism we propose
for PMFS to improve its data availability even after network
partitions. Its intention is to ensure the number of block replicas
in each PMFS group, one last time before network partitions.
Through partition prediction, together with erasure coding
within every group and file replication among groups, PMFS
attempts to achieve higher data availabilities for its users
regardless of their accessing points in the mobile wireless
ad-hoc network. These weaker semantics of best effort avoids
the complex agreements protocols among the nodes and groups
in PMFS.

b). Bandwidth Efficiency
While PMFS tries to keep up with the level of data availability
by using three different types of replication and recovery
mechanism in previous subsection, it requires a significant
amount of network bandwidth to complete the task. But upon

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

121

the assumption that the PMFS network is relatively stable (as
for network partitioning does not happen constantly), we are
willing to afford such usage to keep reliable block storage.
However, on the other hand, as files are shared in the entire
PMFS system with constant retrieval request, PMFS tries to
reduce the bandwidth consumption for such purpose. It
achieves so by providing group communications for faster
retrieval path and local caching.

Group Communications - Alternative Lookup Path in Block
Retrieval
To take advantages of local broadcasting nature in mobile
wireless ad-hoc network and the group-oriented structure of
PMFS, PMFS allows group communications for an alternative
lookup path through local broadcasting in block retrieval
process. In each PMFS group, the identical mapping strategy is
applied between block keys and individual circular identifier
space. When a copy of block is replicated and stored in
different groups, this can result in the similar block location
among different groups. Conveniently, all the block keys are
mapped to the same identifier space as all the nodes, which are
also allocated based on their physical locations. Thus when a
node ID is closer to a block key on the identifier space, the node
is also physically closer to the block. And due to the mobility of
each PMFS node, a node received a lookup request for a certain
block key may find a closer location for this block in other
group through local broadcasting.

With this key observation in PMFS, our group communication
method for faster block retrieval is clearly illustrated in the
Figure 7.

Fig. 7 Group Communication for more Efficient Lookup

Both group 1 and 2 have the same block key mapped to each
individual identifier circle. When the node a receives a lookup
request for the block key, it will first broadcast its node ID,
group ID and this block key to its neighbors for an alternative
lookup path. All the neighbors will compare the difference
between its node ID and the block key, to the difference from

the node a. If a closer distance is found, most likely the
neighbor have a closer copy of this block than the node a, thus it
will send its calculated difference back to a. The node a will
pick the smallest difference among all the replies, and ask the
corresponding neighbor to fetch the file, such as the node b as
shown in Figure 7.

However, the group communication is based on a strong
assumption that all the files will be replicated to each PMFS
group. Otherwise, the node b may have the smallest difference
to the block key on the identifier space, but it may not have the
block stored in the group at all. Therefore, reliable storage of
each file in every PMFS group is the key to this alternative
lookup shortcut.

Local Caching
Lacking a full guarantee of file replications in each PMFS
group, a simple local cache may be helpful for a quicker and
shorter lookup request. With periodic local broadcasting to its
neighbor, every node also sends its block storage list for
caching on the neighbors together with its group ID. All the
neighbors store these cached locations of block keys for a short
period of time, so all the caches are stored in a FIFO manner.
When a lookup request is received by the node a from its
neighbor, it will first check its local cache directory for this
block key. Luckily, it will send the cached block successor
directly back to the node a; otherwise, it will activate the group
lookup mechanism introduced previously to compare the block
key with its own node ID. The purpose of alternative lookup
path and local caching in PMFS is to minimize the lookup delay
and reduce the network bandwidth usage, for constant block
retrieval requests in PMFS. They together achieve so by
providing a simple local cached directory for immediate lookup
or a closer physical location for more efficient block retrieval.

4. Results and Analysis

To develop such a large system like PMFS over mobile wireless
ad-hoc network, a lot of design details need to be considered
and resolved as the development proceeds. In our work, we are
focusing on the most fundamental design requirements for such
system: data availability, bandwidth efficiency, scalability,
durability and persistence of PMFS, under environment of
mobile nodes and frequent network partitions in wireless
ad-hoc networks. However, in reality, load balance, storage
utilization and system security are also design requirements for
PMFS, which will significantly affect PMFS performance in
the real world application.

4.1 Environment Assumptions

Due to the complexity in partitionable mobile wireless ad-hoc
network, the following assumptions are made for PMFS
environment in order to simplify our design protocols:

• Group Mobility: All nodes, network participants
within PMFS, travel and partition in velocity groups.
The velocity group orientation is the design
foundation of PMFS. Each group communicates
and cooperates with one another to achieve desired
system performance in PMFS.

one block key
node a in group 1
node b in group 2

b
a

block key

local
broadcast
coverage

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

122

• Physical Location Mapping: Each node that joins a
PMFS group earlier through a group neighbor will
be farther apart from that neighbor, comparing to
other node that joins later through the same
neighbor. This assumption supports the lookup
algorithm in PMFS lookup layer, when all node IDs
are assigned based on theirs physical locations
within each group.

• Neighbor Awareness: All nodes are aware of its
neighbors through local broadcasting. To take the
advantage of wireless broadcasting nature, each
PMFS node broadcasts its information locally and
periodically to keep communications in a
decentralized manner among all neighbors.

• Similar Storage Capacity: In order to replicate file
blocks among all the groups, each group in PMFS
requires sufficient storage space. Thus, similar
storage capacity is assumed in each group to keep
up with the level of data availability and load
balance.

• Relatively Stable Groups: To achieve efficient
performance, PMFS does not support network with
constant partitions, which will cause the system to
enter partition alert mode constantly and replicate
files redundantly. So PMFS only supports mobile
wireless ad-hoc networks with considerably stable
groups, which means they will have network
partitions frequently, but not constantly.

These assumptions simplify our design protocols and provide
more workable system environment in wireless mobile ad-hoc
networks. The first two assumptions are made based on general
observation of ad-hoc networks, while the rest are proposed for
simplicity purpose. Among all the above assumptions, similar
storage capacities among groups are the hardest to achieve in
reality with PMFS decentralized control. Even if this is
satisfied, this strong assumption still restricts the flexibility of
PMFS participants.

4.2 PMFS Node Functionalities

When a node joins PMFS, it automatically operates in a
decentralized manner. But the necessity and contribution of
dummy servers cannot be neglected. They not only assist group
join process in each PMFS groups, but also monitor the group
behaviors and watch out for network partitions. Beside its
server duty, each dummy server also servers the group just like
every other nodes. Table 2 and Table 3 summarize the possible
functions each node are required (as regular participant) or
asked (as dummy server) to perform upon the joining of PMFS.

4.3 System Characters Comparison

Since currently there is no file storage system available on
mobile wireless ad-hoc networks, we compare the major
similarities between PMFS and DFS in the Table 4. From Table

4, the advantages and disadvantages of PMFS are clearly shown.
To optimize the PMFS performance, we need to further
improve its current advantages, and continuously work on the
disadvantages.

4.4 Advantages

The aim of PMFS is focused on data availability and bandwidth
efficiency over a large scale partitionable mobile wireless
ad-hoc networks. PMFS uses group-oriented storage
management to achieve better system performance. It provides
reliable file storage service even with frequent network
partitions. An optimized lookup algorithm is also adapted in the
lookup layer to provide efficient and scalable file block
allocation. The main advantages in PMFS are listed as follows:

• Data availability: Comparing to CFS, PMFS needs to
put a lot more effort in keeping up the level of data
availability due to the node mobility in the system and
network partitions. Erasure coded replications raises
the file reconstruction ability within individual PMFS
groups; file block replication between groups and
partition predictions are also applied in order to avoid
data loss during network partitions. PMFS aims to
reduce the impact of node mobility on data storage, so
the data loss can be minimized among mobile wireless
ad-hoc networks.

Table 2: Function of Regular Node in a PMFS Velocity Group

Function Regular Node
Information
Stored:

- Node ID
- Node velocity: vi

- Group ID
- Group mean velocity with time stamp: vm

- Group list
- Successor list and Finger table
- Block storage list

Operation
Performed:

- Locates file blocks with given block key
- Stores blocks within group and retrieves from the closest
location found
- Sends out periodic local broadcast to neighbors
- Exchanges stored information between neighbors for new
update
- Assigns node ID to newly joined neighbor member
- Keeps an estimated list of groups in PMFS
- Files replication alert for stored files within timeout
period
- Replies to Alternative Lookup request
- Sends block storage list for caching purpose

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

123

Table 3: Function of Dummy Server in a PMFS Velocity Group

Function Regular Node
Information
Stored:

In addition to what a regular participant stores:
- Block storage list in the group
- Member list

Operation
Performed:

In addition to what a regular participant performs:
- Calculates current vm after every update for its group
- Broadcasts new vm to its group neighbors
- Keeps block storage list for the group
- Exchanges vm and block storage list between each
dummy servers with the group
- Files partition alert upon partition prediction for the
group

Keep an estimated number of its group members

Table 4: System Comparison between CFS and PMFS

Characters PMFS CFS
wireless Y Y
decentralized control Y Y
partitionable Y X
mobile Y X
group-oriented management Y X
block-oriented storage Y Y
coded replication Y X
block replication Y Y
caching Y Y
efficiency Y Y
scalability Y Y
data availability Y Y
quotas X Y
load balance X Y
security X Y
persistence Y Y
pre-fetching X Y

• Efficiency: Bandwidth limitation has always been a

major concern in wireless networks. In PMFS, all
node IDs are assigned physically in each group to
achieve better lookup efficiency, both in terms of
delay time and bandwidth usage. Caching and
alternative lookup request among groups save network
bandwidth from unnecessary and longer lookup path
as well as decreases the lookup delay time.

• Decentralized control: There is no centralized control
in PMFS. Although dummy servers server its group
for the vm calculation and partition prediction, no node
members will request any specific information from
them. All information is still passed around through

local broadcasting. All nodes exchange and update
information through each other in a decentralized
manner.

• Scalability: Due to the group-oriented management
and optimized lookup search, PMFS is capable of
supporting a large number of participants. Although
the total number is still restricted by the number of
groups allowed in the system, the system itself is still
quite scalable in each group.

• Flexibility: All nodes in PMFS can be used as access
points to all the files stored in the system. All nodes
provide equal service from users' point of view. Even
though some nodes are assigned as dummy servers,
this is transparent from their users. Thus all the files
can be retrieved concurrently through different access
points.

• Durability: Because of all the efforts in keeping up
with the satisfactory level of data availability in PMFS,
its durability is also significantly increased. It can
survive certain levels of data loss through either
network failures or network partitions, by keeping a
number of duplicated blocks stored in different
groups.

• Best Effort: Best effort simplifies the design protocol
and reduces the protocol overhead. It keeps the
decentralized control in the system and
self-configurable nature in each PMFS group.
However, it also decreases the service reliability in
PMFS at the same time, which is a disadvantage of
such technique.

• Persistence: When user stores a file in PMFS, he/she
needs to specify how long the file is expected to be
stored in the system. PMFS maps all the information
together with filename and password into a unique
private key, which later on becomes the signature on
the root block. Then each node in charge of the root
block will check the expiration date on a daily base.
Once it expires, the node will remove the block from
its storage space and inform other members within its
velocity group. So others will remove the stored file
blocks corresponding to the same root block.

4.5 Disadvantages

So far, we are only focusing on how to reach the level of data
availability and efficiency in PMFS. In order to provide high
data availability in PMFS, the number of replicas increases as
the number of groups increases in the system. This results in a
number of disadvantages in PMFS.

• Storage Capacity: However, due to the high demand
in storing replicas among different groups, storage
capacity in PMFS is another major issue. Both file
replications and erasure coded replications need to be
stored somewhere, requiring sufficient system storage
space. And also because of the file replications
between each groups, similar storage space required
for PMFS as well. This is rather impractical in reality.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

124

• High Redundancy: Because of the number of replicas
PMFS needs to produce and store among groups, the
protocol overhead is highly redundant.

• Best Effort: For efficient lookup search through
alternative path in other groups, a reliable file
replication between each group is a requirement. But
through best effort replication technique, this
requirement is not satisfied, thus alternative path
lookup search may become very inefficient if file
block is missing from the group.

These disadvantages introduced above may be reduced if the
maximum number of PMFS groups is restricted. Thus, the
number of replicas produced in PMFS will be constrained, and
PMFS will have better controls managing its participants.
While group numbers are large, more communications between
each groups are needed, thus more protocol overhead and less
chance for best effort to be successful.

Meanwhile, from the comparison with CFS in Table 4, there are
a few system characteristics PMFS needs to improve on:

• Load Balance: PMFS distributes the storage load for
large files by dividing each file into many different file
blocks. Then PMFS maps/stores these blocks among
different nodes within groups, based on the block IDs
and node IDs. However, when each PMFS node is
mapped into its corresponding identifier circle, the
distribution of node allocation on the circle is rather
random. This results in the possibility that certain
nodes are running out of storage space, while others
may be quite empty.

• Security: Security policy and mechanisms are
important for the PMFS to prevent any potential
service attacks through networks and other channels.
To provide mechanisms in performing authentication,
authorization and cryptography on user data and files
are necessary efforts to ensure the correctness and
integrity of files.

4.6 Simulation Experiments

Simulations would validate PMFS operations and functionality.
Due to the time frame for this special topic, only expected
simulation results are discussed here.

Before running these simulations, we would need an
environment model that reflects the nature of mobile wireless
ad-hoc networks: mobile nodes with frequent network
partitions, where each node communicates with one another in a
decentralized manner through local broadcasting within certain
range. We need to pre-configure the number of nodes in the
system, the mobile space, and each node transmission range.

Data Availability
One of the main goals in PMFS is to achieve high data
availability in mobile wireless ad-hoc network. Three different
techniques are proposed to prevent data loss: erasure coded

replications, file replication among all groups and block
recovery upon partition prediction. Simulations would
demonstrate how much each technique can improve data
availability in PMFS.

With the environment model we have, we would insert a large
number of uniquely identified files (each divided into different
number of blocks) among all the nodes. Then we need to define
the number of partitioning velocity groups that will be formed
during the process. For simplicity, we will start with two. Once
the system is ready, we would run five sets of different
implementations to see the block availability on each partition.
All these simulations will run based on "Data Availability vs.
Time" for each partition. The data availability will be calculated
based on the number of files that can be reconstructed over the
original file number.

• No replication. No replication effort at all.
• Erasure Coded Replication. When partition happens,

certain group members will choose not to follow their
own groups based on a random decision. File can be
reconstructed with certain percentage of missing
blocks (depends on the stretch factor in erasure
coding).

• File Replication. File are replicated and distributed
among all the groups with random failures. This is to
model the best effort file replication. A file can only
be reconstructed if all of its blocks are presented in one
partition.

• Partition Prediction Replication. Similar to file
replications, but instead of random failure on the entire
file, random failures are applied to block replication
among groups.

• All. Combine all three above in one implementation.
We expect the last simulation would result in best data
availability over time domain.

Efficiency
In order to improve lookup efficiency in PMFS, caching and
group communications for alternative path are proposed in the
system. Simulations would show how effective these
techniques will be in mobile wireless ad-hoc network.

Upon our simulated network environment model, we assign
certain number of velocity groups. In each group, we assign all
node IDs based on the initial location, closer pair with more
different IDs. Then a large number of file blocks are assigned
in each group, based on their node IDs. And each node has a
successor list for block storage within its group. Similarly, four
sets of simulations would be run for this efficiency test. All
simulations would have results as "Number of Lookup Message
vs. Trial number". The averages will be compared to show the
improvement for each technique.

• None. No optimization is done. Each node looks up
for blocks within its own group independently.

• Cache. Each node sends its storage info to neighbor
periodically. And lookup starts with cache in each
node first.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

125

• Alternative Path. Each node is allowed to ask for
alternative closer path from other groups through local
broadcasting.

• Both. Combine all three above in one implementation.
The last run is expected to show us the best result as it is the
closest simulation to PMFS.

Scalability
Both efficiency and data availability simulations would be run
separately again using the optimal implementations (best result
from each simulation). They would both run on the
environment model with an increase in the total number of
nodes and in the total mobile space. The result would be shown
as "Data Availability vs. Number of Nodes" and "Number of
Lookup Message vs. Number of Nodes". For the former, we
would hope for a gradual decrease, rather than linear decrease;
as for the latter, we would expect to see a logarithmic increase,
rather than linear increase.

5. Conclusions

PMFS, Paritionable Mobile File System, is an advanced file
storing/sharing system over mobile wireless ad-hoc networks
handling frequent network partitions. The main design focus
has been to improve system performance and provide efficient
and scalable file storage and retrieval services. The system has
been compared to CFS, a peer-to-peer storage system. The
advantages/disadvantages of PMFS have been discussed
theoretically. Expected simulations have been presented in
detail. The proposed simulations are expected to show the
effectiveness of various techniques applied in PMFS for the
improvements of data availability and bandwidth efficiency.

References
[1] “Napster website. http://www.napster.com”.
[2] “Morpheus website. http:// www.morpheus.com”.
[3] “Gnutella website. http://www.gnutella.com”.
[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A

distributed anonymous information storage and retrieval system”,
in Proceedings of the Workshop on Design Issue in Anonymity
and Unobservability, 2000.

[5] E.M. Royer and C.K.Toh, “A Review of Current Routing
Protocols for Ad-hoc Mobile Wireless Networks”, IEEE Personal
Communications, pp. 46-55, April 1999.

[6] K.H. Wang and B.Li, “Efficient and Guaranteed Service
Coverage in Partitionable Mobile Ad-hoc Networks”, in
Proceedings of IEEE INFOCOM, 2001.

[7] S. Jiang, D. He, and J. Rao, “ A Prediction-based Link
Availability Estimation for Mobile Ad-hoc Networks”, in
Proceedings of IEEE INFOCOM, 2001.

[8] A. McDonald and T. Znati, “A Mobility-Based Framework for
Adaptive Clustering in Wireless Ad-hoc Networks”, IEEE
Journal on Selected Areas in Communications, vol. 17, no. 8, pp.
1466-1486, August, 1999.

[9] W. Su, S.J. Lee, and M. Gerla, “Mobility Prediction and Routing
in Ad-hoc Wireless Networks”, International Journal of Network
Management, 2000.

[10] X. Hong, M. Gerla, and G. Pei and C. Chiang, “A Group Mobility
Model for Ad-hoc Wireless Networks”, in Proceedings of
ACM/IEEE MSWiM, 1999.

[11] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-Area Cooperative Storage with CFS”, in Proceedings of
ACM SOSP, 2001.

[12] P. Druschel and A. Rowstron, “ Past: A Large-scale Persistent
Peer-to-Peer storage Utility”, in Proceedings of HotOS VIII,
2001.

[13] B. Li., Efficient and Scalable Lookup in Mobile Wireless Ad-hoc
Networks”, in Proceedings of the 12th IEEE International
Conference on Computer Communications and Networks
(ICCCN 2003), 2003.

[14] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications”, in Proceedings of IFIF/ACM
International Conference on Distributed Systems Platforms
(Middleware 2001), 2001.

[15] M. Papadopouli and H. Schulzrinne, “Network Connection
Sharing in an Ad-hoc Wireless Network among Collaborative
Hosts”, in Proceedings of NoSSDAV, 1999.

[16] J. Liu, Q. Zhang, W. Zhu and B. Li, “Service Locating for
Large-Scale Mobile Ad-hoc Networks”, Kluwer International
Journal of Wireless Information Networks, 2000.

[17] R. Bhagwan, D. Moore, S. Savage, and G.M. Voelker,
“Replication Strategies for Highly Available Peer-to-Peer
Storage”, in Proceedings of FuDiCo: Future Directions in
Distributed Computing, 2002.

[18] H. Weatherspoon and J.D. Kubiatowicz, “Erasure Coding vs.
Replication: A Quantitative Comparison”, in Proceedings of the
First International Workshop on Peer-to-Peer Systems (IPTPS
2002), 2002.

Weider D. Yu received an M.S. in
Computer Science from the State
University at Albany, New York, and a
Ph.D. from Northwestern University,
Evanston, Illinois, in Electrical
Engineering and Computer Science. He
also attended the MBA program at
University of Chicago and completed a
security engineering certificate program
at Carnegie Mellon University.

As an associate professor in the

Computer Engineering Department of College of Engineering at San
Jose University, San Jose (Silicon Valley), California, USA, Dr. Yu
performs his research and teaching in the areas of Web based software
engineering, Web services, Web services security, software security,
distributed software engineering, distributed systems, wireless mobile
system design, real-time and embedded software systems, systems
software, software engineering process, and quality, reliability and
performance factors in computer and communication network systems.

Dr. Yu was a Distinguished Member of Technical Staff and Senior
Manager at Bell Laboratories, where he did an extensive research and
forward looking work in the broad software engineering area for
advanced communication software. He was also an adjunct associate
professor in the department of Electrical Engineering and Computer
Science, University of Illinois at Chicago for a number of years. Dr. Yu
has publications on Bell Labs Technical Journal, AT&T Technical
Journal, IEEE Journal of Selected Areas in Communications, and
various international IEEE and other conferences. He is a senior

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

126

member of IEEE and an active member in the professional technical
society. He has been a technical program representative or symposium
chair for various IEEE international conferences, symposiums and
IEEE/ISO committees.

Yan Chen received the B.S. degree in Engineering Science Computer
Option from University of Toronto, Toronto, Canada in 2003. She
now works for Actel Corporation located at Mountain View,
California. She is currently completing her M.S degree in Computer
Engineering at San Jose State University, San Jose, California.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

