
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

135

Manuscript received July 5, 2006.
Manuscript revised July 25, 2006.

Dolittle:A Heuristic Approach to Improving Error Messaging

Module Based on Error Feedback Strategy for K12

YongChul Yeum†, HyeSun Jang†, DaeYong Kwon†, SeungWook Yoo†, Susumu Kanemune††, and WonGyu Lee†††

†Department of Computer Science Education, Graduate School, Korea University
††Computer Center, Hitotsubashi University

†††Department of Computer Science Education, College of Education, Korea University

Summary
Learning computer programming is a decisive issue in computer
science education and error feedback is important to novice in
programming learning because it might affect their learning
effect affirmatively. But programming is a notorious difficult
activity and some of the difficulty can be attributed the
programming error. In case of Dolittle[5] which has a lot of
advantages as an educational programming language, it has poor
module for issuing error message in itself, i.e. redundant and
tedious error messages generated by parser which is made by
SableCC[16]. Current error message of the Dolittle, therefore, is
vague, unfriendly, or misleading to some degree for a novice in
K12. In order to issue more effective error message, the Dolittle
needs to reform the current error module towards unambiguous,
informative, and successful in having a programming experience
for the novice. In this paper, we examine the error case carefully
and improve the error messaging module generated by LALR
parser heuristically.

Key words:
Computer Science Education, Programming Education. Syntax
error messages, Error FeedBack.

1. Introduction

Programming is a vital area in computer science education
and a fundamental part of the computer science curriculum
[8]. Many researches show that computer programming
languages help students develop problem solving ability
and analytical skills [2][3][4]. In addition, Programming
experience as a part of IT education allows students to get
a better understanding of software, which is an essential
part of computers [7].

However, there has no been EPL (Educational
Programming Language) suitable to elementary and
secondary computer education such as Dolittle [5]. EPL
can help novice to learn programming in a shorter amount
of time and lessens the cognitive burdens[18]. Moreover,

EPL can be used in classes and getting students to learn
various aspects of computers through their programming
experience. For instance, Dolittle has lots of advantages as
an EPL. It can be expressed in multiple localized

languages, e.g. Japanese, Korean, English, and so on. The
syntax of Dolittle is so simple and easy to learn that it can
be used to learn the fundamental contents of computer
science instead of spending a long time to learn the
language itself. Consequently, many researches have been
conducted and the results proved to be effective and
adequate for learning programming experiences for K12
[6][7][12].

Even though it has a lot of strong point as a
programming language for EPL, however, there is a weak
point. That is the error messages generated by Dolittle
interpreters. The problem with Dolittle's error messages is
that it just tells the user what error occurred, but do not tell
the user what to do to fix the error condition. In general, a
proper error diagnosis is a crucial aspect of learning to
program, and compiler/interpreter error messages are the
main form of interaction between student and machine.
Also, they can be an opportunity to learn more about a
task by providing error feedback appropriately. In this
respect, eliminating all errors is not the best way to solve
the problem. The significance of programming derives not
only from the works of professional programmer, but also
from the work of ordinary people [19]. Especially, the
goal of programming education for K12 is not training
program developers who can make a code efficiently and
rapidly. It focuses on developing problem solving skills by
programming. Thus, programming error feedback strategy
for novice differs from for developer in that it should
affect their learning effect. Therefore, current error
massage generated by Dolittle needs to be improved in a
more user-friendly manner from the educational viewpoint.

2. Generic Overview of Error Messages

2.1 Taxonomy of Errors

Typically, there are tree kinds of programming errors [2].
The first class is "Lexical errors" which occurs a token in
unrecognized. Few errors are discernible at this level
alone[10]. Most of programmers make hardly any this type
of errors. The second class is "syntax errors" which

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

136

concerns the grammar, or spelling, punctuation and order
of words in the program. Often much of the error detection
and recovery in a compiler is centered around the syntax
analysis phase[10]. The Third class of errors is "semantic
errors" which are generated when we have a mistaken idea
of how the language interprets certain code. For example,
mismatch in variable's type, using variables not declare
and method call with wrong argument.

2.2 Error Messages in the case of Novice

Error messages play a fundamental role when novice
learns to program [2]. By examining how novice really
behaves, we could find that messages in fact determine
what novice think and do when confronted with problems.
The most basic aspect of learning to program is learning
the syntax of a programming language [12]. So, we need
to understand novices' behavior when learning to
programming.

Studies have shown that excessive time spent on
correcting syntax problems can be detrimental to long-
term success as students become disheartened with
programming [12]. Syntax errors are more important
because most of novice programmers can't make a difficult
and complex program in logical view. Furthermore,
novices struggle with syntactic knowledge because they
have trouble recognizing incorrect grammar and a novice
may concentrate on small details of syntax as part of the
problem-solving strategy[13].

2.3 Factors of Good Error Messages

Message quality is a critical factor in influencing user
acceptance of a program product. Good error messages
can reduce the time and cost, as well as help users learn
about product[14]. Many compilers make error messages
that contain unnecessary jargon, are cryptic, unfriendly, or
misleading. Many guide line have been written in an effort
to improve error messages[14][15].

Good error Messages have to satisfy these factors.
 The message should be appropriate to the user's
knowledge and employ user-centered phrasing, that is,
from the user's viewpoint.
 The message should provide meaningful suggestions
to the user about what to do next
 The message should be brief but informative. It
should avoid vague terminology to be sure additional
confusion is not created as a result of the error message,
that is, easy and understandable.
 The message should guide problem-solving behavior
and foster learning, that is, do not simply alert users to
problems.

3. Error Feedback Strategy

Error feedback consists of three elements - form,
timing, quality. There are many forms of error feedback. If
learner makes a syntax error, these forms can be provided.
The timing of feedback is also crucial. We can give an
immediate or delayed feedback to learner. The quality of
feedback is connected with which is good message.
According to the form of feedback, it can give different
effect to learner.

Following issue should be considered to propose a
strategy. Which programming errors can play constructive
role in learning? To find out answer of this question, the
relation with problem solving skill can be considered. We
suggest a strategy that errors which are not concerned with
problem solving adopt error preventing strategy.

Syntax errors occur during routine action. Errors of
this type should be prevented as much as possible because
they are not concerned with problem solving activity. And
programming system has to provide an immediate
feedback to syntax errors. However, at the beginning
stage, syntax errors can occur due to limitation of
knowledge. Thus, programming system can provide
feedback with more friendly information about the error in
a stage of practicing grammar.

Semantic error is related to incomplete or incorrect
knowledge on the rule (grammar) of language. In this
case, if feedback is given too early before students have a
chance to work on a problem, then they will learn less.
Thus, it is desirable to provide feedback after learner try to
correct several times. For example, programming system
prevents going to the next line when the previous line has
semantic errors. If the learners cannot correct a code
appropriately after they have tried several times, then the
system should give a feedback including error information.
In this case, we consider that they have a little knowledge
about it. The learners had an incentive to think carefully,
and this greater 'mindfulness' led to more learning[8].
However, we should adopt different form of feedback
about most of the dynamic semantic error because it
cannot be detect before program running. Also, delayed
feedback should be given to learner in different form.

Logical error is not actual error but unintentional
result. It is difficult to provide specific feedback about
logical error because it is not always simple to draw a
clear distinction between logical error and intentional
result. Thus, we can provide feedback of this error in two
ways. First, the learners can be provided error feedback
indirectly like as simple debugger for novice. Second, we
can design a model of programming teaching, and then
provide feedback according to stage of the teaching model.
If we know what error is often occurred in a certain stage,
we can give specific feedback to logical error in each stage.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

137

3. Analysis and Evaluation of Dolittle Error
Message

The object-oriented and interpreter based
programming language Dolittle was built by the
SableCC[16][17] which is an object-oriented framework
that generates complier (and interpreters) in the Java
programming language. SableCC generates an LALR
parser which is one of LR based parsers, and a detailed
error message is given to the programmer. But, though
Dolittle is based on LR based parser which generators are
powerful and well-understood, but the parsers they
generate are not suited to provide good error messages as
of error feedback strategy.

Dolittle has a printErr module for issuing error
messages. But this module can not help having such an
inherent weakness of announcing confusing error
messages. There are three kinds of error in Dolittle shown
in Fig 1.

Fig. 1 Three kinds of error in Dolittle.

3.1 Syntactic Error

Dolittle syntactic error happens when missing some
symbol of such as period ("."), square brackets ("[...]") and
an exclamation mark ("!") etc. But it is so duplicate and
redundant that it is hard to grasp what exact error is
because error message could be equal in spite of different
error situation. For example, in case of the 6th statements
of Dolittle source shown in Fig 3 respectively omit the last
period (".") , equal sign("="), the 1th left square brackets
("["), errorMessage case obtained by parser module is
same. This is the reason why the printErr method issues a
similar and vague error message to the user in spite of
different error case, especially last line. This problem
needs to be solved by analyzing index numbers on errors
and classifying the results. Fig 2 is an error message pop
up on same syntactic error message of a different case

Fig. 2 Same syntactic error message of a different case

(1) Friend = turtle ! create.
(2) [Friend! 100 forward 120 rightturn] ! 3 repeat.
(3) tri = Friend! makefigure (red) paint.
(4) clock = timer ! create 1 period 10 duration.
(5) rBtn = button ! "Run" create.
(6) rBtn:click = [clock ! [tri ! 36 rightturn] execute].

Fig. 3 A sample Dolittle program.

3.2 Semantic Error

Dolittle’s parser whose sole purpose is to build a typed
abstract syntax tree (AST) while parsing the input. Hence,
some node is required to work on an AST to get some
action code for being executed. But if a certain AST class
returns null because there is not method or object shown
in Fig 4 while traversing at some node, i.e., parent is null,
it issues an error message generated by OxObject module.
That is, Semantic error occurs when trying to use an
undefined method or object.

Fig. 4 Object Hash Table in Dolittle.

For instance, Fig 3 illustrates one of examples such case.
That is, if the 2th statement shown in Fig 3 is wrong typed
"rightturn" as "righturn", then error message window
shown in Fig 5 comes out.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

138

Fig.5 Semantic Error Sample caused by trying to use an
undefined method.

3.3 Lexical Error

Lexical error occurs when a token is unrecognized such as
single quotation mark (‘) which is not undefined token in
Dolittle grammer. The lexer package which is generated
by SableCC contains the Lexer and LexerException
classes that throw an error.

For example, if the 5th statements of Dolittle source
shown in Fig 3 is typed wrongly double quotes(“) into
single quotes(‘) or omitted double quotes, then lexical
error happens. But, this kind of error hardly happens in
Dolittle

3.4 Analysis of Error Messages from Experimental
Lesson

We designed the experimental lesson to collect real error
messages after implementing the server-client Dolittle.
This system can make all messages obtained from clients
to server Dolittle when students click the run button
automatically. These messages can be either error case or
not.

The lesson was conducted with 5th grade elementary
student. The result of error message’s ratio is shown in
Table 1.

Table 1: Ratio of Error Messages Case

3.5 Evaluation of Dolittle Error Messages

Although there is error message routine in Dolittle, such as
printErr module, it needs to be improved for K12 based on
error feedback strategy. As we described earlier in this
paper, one of the good error messages condition is to
provide meaningful suggestion to the user about what to
do next. For example, error message shown in Fig 2 could
be meaningless all but perceiving something wrong. This
kind of error message can make novice computer users
feel inadequate and intimidated.

4. Improving Error Messaging Module

As the result of the experimental lesson, we resolve to
concentrate on syntactic and semantic error case. The
algorithm to find syntax error states is shown in Fig 6 and
it is to conform to a typical mechanism of LALR parser.
The parser reads one token from an input buffer at a time.
The parser uses a stack to store a string of the form
s0X1s1X2s2 … Xmsm, that the sequence of tokens
returned by the lexer conforms to a grammar. The parsing
table determines sm , currently on the top of the stack, the
state symbol that summarizes the information that might
be considered in selecting an error message, and ai, the
current input symbol. It then consults action[sm, ai], the
parsing action table entry for state sm and input ai, which
can have one of four values, such as shift, reduce, accept
and error. If the state action[sm, ai] is an error state, an
error message consists of all the terminal and nonterminal
symbol that are on the parse stack, plus the current token.

However, this sort of mechanism for consisting of
error message is not successful in finding an exact error
situation and issuing an informative error message because
distinct error states are not listed in the errorMessage table.
So Dolittle errorMessages obtained by parser module is
the same number shown in Table 2 and it is duplicate and
redundant

Fig. 6 Schematic form of an LR parser.

Table 2: Index of errorMessage, Error number from a Sample
Dolittle Source [7]

token
row

dot
.

1th/2th
!

= 1th/2th
[

1th/2th
]

1 (4,59) (7,10) (7,10)
2 (4,59) (8,29)

(7,10)
(7,10) (7,10) (4,59)

3 (4,59) (7,10) (7,10)
4 (4,59) (7,10) (7,10)
5 (4,59) (7,10) (7,10)
6 (7,10) (8,29) (7,10) (7,10)

(4,59)
(4, 33)
(21,56)

Syntactic error Semantic error Lexical error

71(%) 27(%) 2(%)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

139

To solve this problem, we used the pair of integers, i.e. state
and token, and last token. This improved PrintError module
can get these states and rebuild error message. Using the
input token in producing error messages can help to report
syntax errors with a better message, or a suggestion of how
to fix the error. To do this, we examine the each error case
carefully and heuristically and make a more effective error
message table that considers the current token. Fig. 6 shows
more correct error messaging.

Fig. 6 Syntactic improved error message on missing out a period.

In case of semantic error, we add new module which
search related object or method. As explained previously,
the current module just issues an error message generated
by OxObject module unfriendly when a certain AST class
returns null because there is not method or object while
traversing at some node. But we add a module to find
correct error case, while searching the hash table.

5. Conclusion

Education programming language such as Dolittle can be
useful to teaching computer programming for K12.
Although EPL can be an important tool, however, its
usefulness will be decreased if its error messaging
mechanism is poor. In case of Dolittle as an EPL, it has
some weakness that is the error messaging methodology,
while many researches have shown the merits or
possibility of Dolittle for K12 education[7]. The defect of
Dolittle is inherent in itself to some degree, because of
being made by SableCC, i.e. LALR based compiler.

We proposed error feedback strategy from a conceptual
point of view. Especially, when novice programming
system is designed, error feedback is critical point that a
designer should consider. The next step is designing
concrete error feedback by taking account of its elements -
form, timing, quality.

Moreover we designed a better error handling module
for Dolittle, which distinctly identifies the proviso issued
by parser. And this module was designed and
implemented heuristically by analyzing index numbers on
each error case and classifying the result.

Finally, a better error message describing the parse state
can be further improved for a token with a more specific

error messages towards user-centered, informative, and
successful for the novice.

References
[1]Marzieh Ahmadzade, Dave Elliman, Colin Higgins. An

Analysis of Pattern of Debugging Among Novice Computer
Science Students. ACM. ITiCSE. 84-88. 2005.

[2]J.D. Bransford, A. L. Brown, and R.R. Cocking, editors. How
People Learn: Brain, Mind, Experience, and School. National
Academy Press, Washington, D.D., 2000.

[3]M. Resnick,. . New paradigms for computing, new paradigms
for thinking. In A. diSessa, Hoyles, C., & Noss, R. (Eds.),
Computers and Exploratory Learning (pp. 31-43). New York:
Springer-Verlag, 1995

[4]Seymour Papert, Mindstorms: children, computers, and
powerful ideas, Basic Books, 1980

[5]Dolittle Programming Language, http://kanemune.cc.hit-
u.ac.jp/dolittle/

[6]Susumu Kanemune, Takako Nakatani, Rie Mitarai, Shingo
Fukui, and Yasushi Kuno. Dolittle - Experiences in Teaching
Programming at K12 Schools. The Second International
Conference on Creating, Connecting and Collaborating
through Computing, IEEE, 177-184, 2004

[7]Susumu Kanemune, Yasushi Kuno. Dolittle : an object-
oriented language for K12 education, Eurologo 2005, 2005

[8]Allen Tucker. A Model Curriculum for K-12 Computer
Science. Final Report of the ACM K-12 Education Task Force
Curriculum Committee. ACM. 2003.

[9]Edward J. Shaw Jr. Making APL Error Messages Kinder and
Gentler, ACM. pp 321, 1989

[10]Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers
Principles, Techniques, and Tools, 1986

[11]H.S.kim, H.S.Jang, H.C.Lee, D.Y.Kwon, Y.C. Yeum.
S.W.Yoo, H.C.Kim, W.G.Lee, Teach Programming to Non-
CS Major Students : Experiments with Storymaking Approach,
SSS2004, 2004

[12]Sarah K Kummerfeld and Judy Kay. The neglected battle
fields of Syntax Errors. Australian Computer Society. In
Proceedings of the fifth Australasian conference on
Computing education. 105-111. 2002.

[13]Linda Mclver. Syntactic and Semantic Issues in
Introductory Programming Education. Monash University.
Doctor Thesis. 2001.

[14]Barbara s. Isa, James M. Boyle, Alan S. Neal, Roger M.
Simons. A Methodology for Objective Evaluating Error
Message. ACM. In Proceedings of the SIGCHI conference on
Human Factors in Computing Systems 68-71. 1983.

[15]Rolf Molich and Jakob Nielsen. Improving a Human
Computer Dialogue. ACM. Communications of the ACM.
33(3). 338-348. 1990.

[16]SableCC, http://sablecc.org/
[17]Etienne Gagnon, SableCC : An Object Oriented Compiler

Framework, McGill University. Master Thesis. 1998.
[18]SeungWook Yoo, Empirical Study of Educational

Programming Languages for K12: Between Dolittle and
Visual Basic, IJCSNS, 2006

[19]John F. Pane. A Programming System for Children that is
Designed for Usability. Carnegie Mellon University. 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7B, July 2006

140

YongChul Yeum received the B.S.
degree in Mathematics Education from
Seoul National University of
Education in 1991 and the M.S. degree
in Computer Science Education from
Seoul National University of
Education in 2002. He has been
studying in the Department of
Computer Science Education of Korea
University. Main research field is the

educational programming language in K12 especially.

HyeSun Jang received the B.S.
degree in Computer Science Education
from Korea University in 2005. She
has been studying in the Department of
Computer Science Education of Korea
University. Main research field is the
error feedback of educational
programming language.

 DaiYong Kwon received the B.S.
degree in Computer Science
Education from Korea University in
2004 and the M.S degree in Computer
Science Education from Korea
University in 2006. He has been
studying in the Department of
Computer Science Education of Korea
University. Main research field is the

education programming environment and educational robot.

SeungWook Yoo received the B.S.
degree in Mechanical Engineering
Education from Chungnam National
University in 1983 and the M.S. degree
in Computer Science Education from
Korea University in 2002. He has been
studying in the Department of
Computer Science Education of Korea
University. Main research field is the
educational programming language in

K12 especially.

Susumu Kanemune received the
PhD in Systems Management from
University of Tsukuba in 2004. His
research interests are in the
programming language and
information education. He is an
Associate Professor of Hitotsubashi
University.

WonGyu Lee received the B.A. degree in
English Language and Literature from
Korea University in 1985, M.S. and Ph. D.
degree in System and Information
Engineering from University of Tsukuba
in 1993 respectively. During 1993-1995,
he stayed in the Korean Culture & Art
Foundation. Since 1996, he is a professor
of Computer Science Education at Korea
University.

