
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7, July 2006

185

Manuscript received July 25, 2006.
Manuscript revised July 30 , 2006.

A Reliable Peer Connection Scheme for Pure P2P
Network Environments

Gu Su Kim, and Young Ik Eom

School of Information and Communication Eng., Sungkyunkwan University,
300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Korea

Summary
P2P network environments provide users with direct data
transmission and sharing facilities and those environments can be
classified into hybrid P2P network environments and pure P2P
network environments according to the arbitration mechanism
among the peers in the network. In hybrid P2P network
environments, there exists a server that maintains index
information for the data to be shared and network isolation does
not occur because every peer always keeps connection to the
server. In pure P2P network environments, however, each peer
directly connects to another peer and gets services without server
intervention, and so, network isolation can occur when the
mediating peer fails to work. In this paper, we propose a scheme
for each peer to keep connection to other peers continuously by
maintaining IP addresses of its neighbor peers and connecting to
the peers when the mediating peer fails to work. Although the
P2P application that uses our proposed framework should obtain
one or more IP addresses of the neighbor peers manually, after
instantiation, the application can do its job while maintaining
connection to the network continuously and automatically. To
evaluate our proposed scheme, we measured and analyzed the
time for a peer to reconnect to the network when the mediating
peer fails and the network isolation occurs.
Key words:
pure P2P, Peer Connection, Network Isolation,
reliable connection, .

1. Introduction

P2P network environments for sharing resources among
the peers in the network can be classified into two
categories: hybrid and pure. In hybrid P2P network
environments, as each peer connects with a server and
then receives services from the server [1], the network
isolation, which is a situation that a peer cannot connect to
any other peer, does not occur. When the server fails to
work, however, all the peers cannot get services from the
server. To solve this problem, the pure P2P network
framework and the applications based on the framework
have been developed. In the pure P2P network
environments, a peer can get services directly from
another peer without going through the servers. Therefore,
the peers in the pure P2P environments can get services

more reliably and efficiently than in hybrid P2P
environments. In the pure P2P environments, however, the
network isolation can occur when the mediating peer fails
to work [2].

In this paper, we propose a scheme that prevents network
isolation in pure P2P network environments. With our
scheme, all the peers can continuously join the network
group by maintaining a list of neighbor peer IDs and
reconnecting to another peer in the list when the mediating
peer fails to work. At the initial stage, the P2P application
that uses our proposed framework should manually obtain
one or more IDs of the neighbor peers. After instantiation,
the application can do its job while continuously and
automatically maintaining connection to the network.

The rest of the paper is organized as follows. In Section 2,
we give a brief introduction of the related work. The
detailed algorithms and scenarios of the proposed scheme
are described in Section 3. In Section 4, we present and
analyze the simulation results. Finally, Section 5 discusses
future works and concludes this paper.

2. Related Work

In this section, we give an overview of the P2P network
environments and discuss the most typical 3 types of P2P
environments that are being used practically.

2.1 Napster type

The P2P networking method in Napster environment is
hybrid [3]. After connecting to a server in the network,
each peer sends the information on the shared files that it
has, and the server then maintains the shared file list for
each peer.

When a peer sends a search message to the server for
searching a file F, the server searches the DB of shared file
information and sends the search result (host address,
filename, etc.) to the peer. Eventually, the peer that
receives the reply message from the server can connect

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7, July 2006

186

directly with the peer that contains the file F and obtain
the file [3,4]. Figure 1 shows the network structure of the
Napster environment.

C1 C3 Cn

Server DB

C2C1 C3 Cn

Server DB

C2

Fig. 1 The network structure of Napster environment

The Napster system has a merit that it can distribute the
network traffic among the peers in the network and does
not burden the server with the file service as in client-
server environments. Even though the network traffic is
distributed among the peers in the system, each peer
should send index information for its shared files at
connection time. Furthermore, each peer must always
connect to the server to get index information whenever it
wants file service. In these points of view, the Napster
system has a drawback that the network traffic is still
intensive around the server. Also, there is a reliability
problem in that all the peers cannot get services when the
server fails to work [5~7].

2.2 Soribada type

The P2P networking method in Soribada system, the P2P
application system that provides sharing environment of
MP3 files made by a company in Korea, is also hybrid.
However, Soribada system is different from Napster
system in that each peer does not send any information on
shared files to the server at connection time. Figure 2
shows the network structure of the Soribada environment.
As shown in the figure, Soribada system does not maintain
any index information on shared files.

DBDBDBDB

Server

C1 C2 C3 Cn

DBDBDBDB

Server

C1 C2 C3 Cn

Fig. 2 The network structure of Soribada environment

In this environment, when a peer sends a search message
to the server, the server analyzes the message and sends a
request message to all the peers in the network. When a
peer receives the request message, it checks its directory
for the requested file and provides the server with the file
information. Then the server summarizes the information
from each peer, and sends the summary to the original
requestor [8].

Soribada system has drawbacks, too. The network traffic
concentrates around the server because the peers should
contact the server for file service. It also has the reliability
problem in that the overall system can stop when the
server fails to work.

2.3 Gnutella type

The P2P networking method in Gnutella environment is
taken as pure. In this system, all the peers have both roles
of client and server [9,10]. Figure 3 shows the network
structure of Gnutella system.

1

3

98

4

11 10

5

13 12

2

76

1

3

98

4

11 10

5

13 12

2

76

Fig. 3 The network structure of Gnutella environment

When an application is initially executed at a peer, it
should get an ID of the peer that has already joined the
Gnutella network and should connect to it. With this
process, eventually, the peers in the system establish a
mesh network and can share their resources in the system.
The Gnutella system has a drawback of high network
traffic and slow file access speed as the system basically
uses broadcast mechanism for communication among the
peers. Also, when a peer is disconnected from all the
adjacent peers (probably due to peer failure, etc.) it cannot
get any service from another peer in the system.

3. Reliable peer connection scheme

In this section, we propose a scheme that (1) reduces the
latency for a peer to join a pure P2P network, (2) increases
the chance that a peer can join the network group, and (3)
distributes the connections so that a peer does not have too
many connections.

3.1 System environments

We assume that all peers in the network open and listen to
the same connection port and that each peer has at least
one address (e.g. IP address) of another peer. This address
can be input manually to the peer. With our proposed peer
connection scheme, each peer P, after initial join to the
network group, gradually connects to other peers. This

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7, July 2006

187

paper describes the peer connection scheme based on a
single network group.

3.2 Basic operation

The proposed scheme consists of the two phases: (1) the
connect/request phase that a peer Pi connects to another
peer Pj and requests the addresses of the peers that are
known to B, and (2) the reply phase that a peer processes
the messages obtained during the connect/request phase.

In the connect/request phase, after a peer Pi connects to
the peer Pj whose address is known a priori to Pi, Pi
requests the list of peer addresses that Pj has in its
KPT(Known Peers Table). At this time, if the number of
connections of Pj becomes greater than the number of
recommended connections(N_Conns, to be discussed
soon), Pj tries to close the oldest connections.

In the reply phase, the peer processes the messages such as
address request message, address reply message, and
disconnection message. When a peer receives the address
request message, it sends the address list in its KPT to the
requestor. When address reply message is received, the
peer inserts the addresses in the list into its KPT. Then the
connect/request phase is reinitiated with the new peers if
the number of connections is still less than N_Conns.
When disconnection message is received, the peer checks
the number of connections and closes some connections if
it is greater than N_Conns. The detailed message format
is described in the next section.

3.3 Message formats and structures

Our scheme uses the REQ_AD message for address
request, the REP_AD message for address reply, and the
RESET message for disconnection. Figure 4 shows the
detailed formats of the messages.

 Type

(a) REQ_AD(REQuest ADdress) message
 Type ADDR_LIST

(b) REP_AD(REPly ADdress) message
 Type

(c) RESET message
Fig 4. Message format

There are three kinds of messages for our peer connection
scheme and they are identified by the Type field as shown
in Figure 4. The ADDR_LIST field in the REP_AD
message contains the addresses of the peers. The peer that
receives this message inserts the addresses in the
ADDR_LIST into its KPT along with the fields shown in
Table 1.

Table 1: Field description of the KPT(Known Peers Table)
FieldName Remarks

P_ADDR
Try

KeepCon

S_Handle
NumSuccess
NumFail
NumAttempt
FwNAT

Peer address
TRUE if the peer has tried to connect with other
peers, FALSE otherwise
TRUE if the connection should be maintained,
FALSE otherwise
Handle of the connection(socket)
Number of the connections succeeded
Number of the connections failed
Number of connection trials
TRUE if the peer exists in Firewall/NAT area,
FALSE otherwise

When a peer modifies (or inserts) an entry for another peer
in its KPT (upon the receipt of REP_AD message), the
peer increases the value of NumAttempt of the entry by 1.
Also, the value of NumFail is reset to 0 and the value of
NumSuccess is incremented by 1 at this time. On the other
hand, when a peer closes a connection with other peer or
fails to connect to another peer, the value of NumFail field
of the corresponding entry is increased by 1. When a peer
cannot communicate with another peer that has already
been connected to itself, the value of the FwNAT field of
the corresponding entry is set to TRUE in order to indicate
that the peer is in the firewall/NAT environments. In our
scheme, when the value of NumFail field of an entry in
KPT reaches a threshold value, the peer removes the entry
from its KPT in order not to try connection with the peer.

3.4 Algorithms

In this section, we discuss the detailed algorithms for the
connect/request phase and the reply phase.

 (1) The connect/request phase

With our scheme, a peer Pi tries to connect with another
peer when the number of connections with other peers is
less than N_Conns. Also, peer A selects its partner from
its KPT. Any peer that has not been connected before is
selected as the connection partner. Let us call it Pj. In the
connection process, peer Pi requests the addresses of the
peers that the peer Pj has in its KPT, stores the address
information into its KPT, and repeats this procedure until
the number of connections becomes greater than or equal
to N_Conns.

In the meantime, the number of connections of peer Pj can
be increased. So peer B checks the number of connections.
If the number is greater than N_Conns, peer B sends a
disconnection message to the oldest connection and tries
to reduce the number of connections. The detailed
algorithm of the connect/request phase is described in
Figure 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7, July 2006

188

input: none
output: none
{

ENTRY ety = NULL;
SOCKET sock;
while (ety == NULL) {

ety = a KPT entry such that (Try == FALSE);
if (ety != NULL) break;
set the Try flags of all the entries in the KPT to FALSE;

}
sock = connect(ety.P_ADDR, PUBLIC_PORT);
ety.NumAttempt++;
ety.Try = TRUE;
if (sock == NULL) {

ety.NumFail++;
if (ety.NumFail == MAX_FAIL)

remove the ety from the KPT;
return;

}
ety.NumSuccess++;
ety.NumFail = 0;
ety.S_Handle = sock;
make a REQ_AD message and send it to sock;
if (number of connected sockets <= N_Conns)

return;
ety = an entry such that (KeepCon==TRUE);
sock = ety.S_Handle;
if (sock != NULL) {

ety.KeepCon = FALSE;
make a RESET message and send it to sock;

}
}

Fig. 5 The algorithm of the connect/request phase

In the connect/request phase, when the Try fields of all
entries in the KPT are TRUE, the peer marks all the Try
values to FALSE in order to make the peer try to
reconnect to all the peers in the KPT. When the Try field
of an entry in the KPT is FALSE, however, the peer tries
to connect to the peer that the entry represents, and marks
the Try field of the entry with TRUE. Also, when a peer
fails to connect to another peer, the peer increases the
value of the NumFail field of the corresponding entry by
1. When a peer succeeds in connecting to another peer, the
peer sends a REQ_AD message to the connected peer and
stores the socket handle of the connected peer in the
S_Handle field of the corresponding entry.

When the number of connections of the peer becomes
larger than N_Conns, the peer retrieves an entry that the
KeepCon field is TRUE and marks the field of the entry
to FALSE. Now, the peer sends a RESET message to the
corresponding peer to inform that it allows disconnection.
When the peer gets disconnected from another peer and
the KeepCon field of the entry that contains the
information of the disconnected peer has the value FALSE
at this time, the peer will not execute the connect/request
phase any more. In Figure 5, the MAX_FAIL parameter
denotes the maximum number of connection trials

permitted, and the PUBLIC_PORT is the common port
that all the peers listen to.

input: message, socket handle
output: none
{

switch (the type of the message) {
case REQ_AD:

REP_AD repad;
repad.P_ADDR = addresses in the KPT;
send the repad message

to the socket handle;
break;

case REP_AD:
make new entries or modify the entries

in the KPT with the addresses in the message;
break;

case RESET:
if (number of connections > N_Conns)

close the connection;
break;

}
}

Fig. 6 The algorithm of the reply phase

(2) The reply phase

Figure 6 shows the procedure that should be executed
when a peer receives REQ_AD, REP_AD, and RESET
messages.

A peer that has received REQ_AD message sends
REP_AD message to the requestor. This REP_AD
message includes the addresses of the peers connected. A
peer that has received REP_AD message inserts the
addresses in the REP_AD message into its KPT. A peer
that has received RESET message closes the connection
with the peer that has sent RESET message when the
number of connections becomes greater than N_Conns.

 3.5 Scenario

In this section, we will describe a scenario that shows the
peer connection process. In the scenario, each peer can be
classified into two types: (1) a peer that tries to connect to
another peer and (2) a peer that is passively connected by
another peer. Figure 7 shows a process where peer P8 gets
connected to other peers.

In Figure 7-(a), an edge between two peers indicates that
they are connected. Before peer P8 opens a connection
with peer P0, peer P0 already has 7 connections, and each
of P1, P3, P5, and P7 has 5 connections, respectively.
Similarly, each of P2, P4, and P6 has 4 connections.
After peer P8 connects to the peer P0, P8 sends the
REQ_AD message to P0. Peer P0 replies with the
REP_AD message that includes the addresses of the peers
P1, P2, P3, P4, P5, P6, and P7.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7, July 2006

189

P0P8

P2

P4

P6

P1 P3

P5P7

P0P8

P2

P4

P6

P1 P3

P5P7

P0P8

P2

P4

P6

P1 P3

P5P7
⑤

③②
①

④

⑦
⑥

P0P8

P2

P4

P6

P1 P3

P5P7
⑤

③②
①

④

⑦
⑥

(a) Initial connection (b) Connection extension

P0P8

P2

P4

P6

P1 P3

P5P7

P0P8

P2

P4

P6

P1 P3

P5P7

(c) Connection reorganization

Fig. 7 A scenario of connection process (N_Conns: 5)

Now, peer P8 stores the address information into its KPT
and tries to connect to the peers P1 through P7 as shown
in Figure 7-(b). In the meantime, when the number of
connections of a peer in the system becomes greater than
N_Conns, the peer sends the RESET message to the
oldest connection. Figure 7-(c) shows the connection
reorganization step. The peer that has received a RESET
message, if the number of connections becomes greater
than N_Conns, closes the connection with the peer that
has sent the RESET message. Eventually, a connection is
maintained between a pair of peers only when the number
of connections (of each peer) is less than or equal to
N_Conns or each peer has not sent the RESET message.
Also, peers P1 and P3 close the connection with peer P0
when they receive a RESET message from P0 because the
number of connections of P1 and P3 became greater than
N_Conns. In figure 7-(c), the solid edge indicates that the
connection is maintained among the peers. In contrast, the
dotted edge indicates that peers P5 and P7 sent a RESET
message to peer P8 because the number of connections of
P5 and P7 is greater than N_Conns. Hereafter, when the
number of connections of P8 becomes greater than
N_Conns, P8 will close the connection with P5 and P7.

4. Performance Evaluation and Analyses

We have simulated our peer connection scheme using
Visual C++ 6.0 on Windows 2000 platform. In the
simulation, a special peer is chosen, and all other peers in
the network group are initially connected to the peer. Let
us name it P. Black circles in Figure 7 are normal peers
that tries to connect to P at boot time. After each peer
connects to P, it additionally tries to connect to the peers

that P knows so that it can continuously get services from
the network group even when P terminates.

Our simulation has been performed for the period of 24
hours. In our simulation, we measured and analyzed the
time to reconnect to the network group when the
mediating peer fails to work. The environments for our
simulation are shown in Table 2 and Table 3.

Table 2: Environments of the simulation
Number The attributes of the peers

(a) (b)
Number of peers in the firewall/NAT network

area
Number of peers that use fixed address

Number of peers that use dynamic address

10

30

10

20

60

20

Total 50 100

Table 3: Environments of the simulation
Percentage Peer execution time

(a) (b)
1 hour – 2 hours

30 minutes – 1 hour
10 minutes – 30 minutes

30%
30%
40%

30%
30%
40%

N_Conns Case (a) Case (b)

3

5

10

20

Fig. 8 The time to join the network group

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7, July 2006

190

Our simulation was performed with the numbers of peers
(a) 50 and (b) 100. Figure 8 shows the results of the
simulation for the cases (a) and (b). In Figure 8, the X-axis
represents the time elapsed with the simulation, and the Y-
axis represents the time consumed for a peer to join the
network group. The simulation results show that
N_Conns affects the time for a peer to join the network
group. When many peers are disconnected from the
network group while N_Conns is small, the time to join
the network group increases. On the other hand, when
N_Conns is large, the time for a peer to join the network
group decreases. In this case, however, the connection
trials generated by the peers increase because the number
of connections maintained by a peer is large.

If we assume that all the peers have the knowledge about
which peer uses fixed address and maintain this
information in their KPTs, the time to join the network
group can be further reduced by eliminating the
information of the peers that use dynamic addresses from
their KPTs.

The simulation results show how the time to join the
network group can be reduced and how the proposed peer
connection scheme resolves the network isolation problem.

5. Conclusion

Traditional pure P2P environments have the problem that
a peer can be isolated from its network group and cannot
get services from the peers in the network group when the
mediating peer fails to work. Within the proposed scheme,
the peers in pure P2P environments can have seamless
connections with others in the network group even if the
mediating peer fails to work. It has been achieved by
efficiently and reliably maintaining the information about
neighbor peers in each peer, and redirecting the
connection when the mediating peer fails. We have
evaluated our scheme with the simulation and showed that
the time to join a network group depends on the threshold
value for the number of connections that should be
maintained in each peer. It has been validated in two
experiments: the first experiment has been done with the
number of peers set to 50, and the second experiment with
the number of peers set to 100.

Our scheme may support smooth migration of mobile
agents in the pure P2P network environments. By
maintaining the addresses of other platforms, a mobile
agent platform can actively migrate its agents to another
platform and let the agent get seamless services thereafter.
Also, our scheme can solve the problem that a client

cannot get services from the server when the server in the
hybrid P2P network environments fails to work.

References
 [1] A. Oram, Peer-To-Peer, O'Reilly, Mar. 2001.
[2] B. Traversat, et. al., "Project JXTA Virtual Network,"

Technique Report, Sun Microsystems, Inc., Feb. 2002.
[3] B. Yang and H. Garcia-Molina, "Comparing Hybrid

Peer-to-Peer Systems," Proc. of the 27th International
Conference on Very Large Databases, Rome, Italy,
Sep. 2001.

[4] B. Yang and H. Garcia-Molina, "Improving Search in
Peer-to-Peer Networks," Proc. of the 22nd International
Conference on Distributed Computing Systems, IEEE,
Vienna, Austria, Jul. 2002.

[5] David Barkai, "An Introduction to Peer-to-Peer
Computing," Developer Update Magazine, Intel Corp.,
Feb. 2000.

[6] Endeavors Tech., "Introducing Peer-to-Peer," White
Paper, Endeavors Technology Inc., 2002.

[7] Groove Networks Inc., "Why Peer-to-Peer," White
Paper, Groove Networks Inc., 2002.

[8] D. C. Hyde, "How New Peer to Peer Developments
May Effect Collaborative Systems," Technical Report,
Dept. of Computer Science, Bucknell Univ., Jan. 2002.

[9] CLIP2, "The Gnutella Protocol Specification V0.4,"
http://www.clip2.com, Mar. 2001.

[10] Sandvine Inc., "Peer-to-Peer File Sharing: The
Effects of File Sharing on a Service Provider's
Network," White Paper, Sandvine Inc., Jul. 2002.

Gu Su Kim received his B.S., M.S. and
Ph.D. degrees from the School of
Electrical and Computer Engineering at
Sungkyunkwan University in 1994, 1996,
and 2007 respectively. He is currently in
the post doc. course of the Department of
Electrical and Computer Engineering,
Sungkyunkwan University. He is currently
studying P2P and mobile agent systems.

Young Ik Eom received his B.S, M.S. and
Ph.D. degrees from the Department of
Computer Science and Statistics of Seoul
National University in Korea, in 1983,
1985 and 1991, respectively. From 1986 to
1993, he was an associate professor at
Dankook University in Korea. He was also
a visiting scholar in the Department of
Information and Computer Science at the

University of California, Irvine from Sep. 2000 to Aug. 2001.
Since 1993, he is a professor at Sungkyunkwan University in
Korea. His research interests include distributed computing,
mobile computing, mobile agent systems and system securities.

