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Summary 
Bent or perfect nonlinear Boolean functions represent the best 
resistance against the so-called linear and differential 
cryptanalysis. But this kind of cryptographic relevant functions 
only exists when the number of input bits m is an even integer and 
is larger than the double of the number of output bits n. 
Unfortunately the non-existence cases, the odd dimension (m is 
an odd integer) or the plane dimension ( nm = ), are not 
illegitimate from a cryptographic point of view and even 
commonly considered. New notions of bentness and perfect 
nonlinearity are then needed in those impossible cases for the 
traditional theory. In this paper, by replacing the usual XOR by 
another kind of bit-strings combination, we explicitly construct 
new “bent” Boolean functions in traditionally impossible cases. 
 
Key words: cryptography, bent functions, perfect nonlinearity, 
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1. Introduction 

When used as components of a secret-key cryptosystem, 
Boolean functions must be highly nonlinear in order to 
avoid vulnerabilities to a differential [1] or linear attack [6]. 
Informally speaking, linear cryptanalysis relies on the 
probability of success of a linear approximation of a 
function. Basically the differential cryptanalysis exploits 
the differences between plain and ciphered binary strings, 
i.e. the XOR combination of these bit-strings, which appear 
more often than at random. The objective of both attacks is 
to discover the secret key used in the ciphering process. 
Then Boolean functions must exhibit the optimal 
resistances against at least these two attacks. 
Boolean bent functions [3, 12] are those Boolean functions 
whose Fourier spectrum contains only two values. In other 
words, their frequential representation has the simplest 
form. They ensure the best resistance against linear attacks. 
Perfect nonlinear Boolean functions [7] are those Boolean 
functions whose XORed outputs for XORed inputs are 
uniformly distributed over the set of all possible values. The 
best resistance against a differential attack is obtained by 
this kind of functions. These two notions are actually 
equivalent by duality using the Fourier transform. 

Nevertheless such functions only exist in very restrictive 
cases: the number of input bits m is an even integer and it is 
larger than two times the number n of output bits. 
Unfortunately the impossible cases i.e. when m is an odd 
integer (call it “odd dimension”) or when m is equal to n 
(call it “plane dimension”) occur in many cryptographic 
applications: for instance, a ciphering function generally 
maps plain bit-strings to ciphered bit-strings, both with the 
same length. As linear and differential attacks can 
obviously be applied in such cases, we need to define a new 
kind of resistances or in other terms, a new kind of bentness 
and perfect nonlinearity. 
In recent contributions [9, 10], we introduce the concept of 
G-perfect nonlinearity, which is a natural extension of the 
traditional one, obtained by replacing the XOR operation 
by other kinds of binary strings combinations. This 
combinatorial property has an equivalent characterization 
by the Fourier transform called G-bentness as in the 
classical setting. In this paper by using this new approach 
for nonlinearity, we construct some Boolean G-bent 
functions in cases impossible for the traditional theory: in 
odd and plane dimensions. We also present the principle of 
a G-differential attack and we exhibit a possible weakness 
of the S-boxes of the famous DES against such new 
cryptanalysis.  

2. Boolean bent functions: the classical 
approach 

2.1 Boolean bent and perfect nonlinear 
functions 

 
In this paper )2(GF denotes the finite field of modulo-2 
integers and, as usually, it is considered as the subset }1,0{  
in the real field R and the modulo-2 sum (or XOR) is 
designed by the symbol “⊕ ”.  
A m-dimensional vector space over )2(GF is designed 

by mV . It can be interpreted as the )2(GF -vector space of 
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m-tuples mGF )2( or as the finite field (in characteristic 2) 

of m2 elements )2( mGF . These two structures can be 

equipped with a dot-product: for 2))2((),( mGFyx ∈ , we 
have 

mm yxyxyxyx ⊕⊕⊕= .... 2211  

and for 2))2((),( mGFyx ∈ , the dot-product becomes 
)(. xytryx =  

where “tr” is the absolute trace of )2( mGF . As 
two )2(GF -Hilbert spaces of the same (finite) dimension 
are isomorphic, we use the same symbol “.” which stands 
for a dot-product for mV (which is the ideal 

m-dimensional )2(GF -Hilbert space) and can take one of 
the previous forms. We also use the symbol “⊕ ” to denote 
at the same time the component-wise modulo 2 sum 
of mGF )2( and the addition law in )2( mGF . Then this 

symbol is used for the addition in mV . 

The zero of mV  is denoted m0 . For any group G, *G is 
the set of all non-identity elements of G. 
Using these notations, a Boolean function is simply a 
function nm VVf →:  (some time called a 
(m,n)-Boolean function). 
The notion of Boolean bent functions originally introduced 
by [3] and [12], is very relevant in cryptography since such 
functions exhibit the best resistance against the so-called 
linear cryptanalysis [6]. This notion is closely related to the 
Hadamard-Walsh transform which is a particular case of 
the (discrete) Fourier transform.  
 
Definition 1.  
Let →mV:ϕ R be a function, we denote by 

→mV:ϕ̂ R the Walsh-Hadamard transform of ϕ : 

∑
∈

−=∈∀
mVx

x
m xV .)1)(()(ˆ, αϕαϕα . 

In order to use this transform, we need to identify Boolean 
functions with real-valued ones. This is done using the 
notion of characters. 
 
Definition 2.  
Let mV∈α . The character of α is the map αχm  

defined by 
}1{: ±→mm Vαχ  

   xx .)1( α−a . 

Then a function nm VVf →:  is transformed as a 

real-valued function defined on mV by considering the maps 
)(.(-1):: xf

n xff ββ
β χ ao= for nV∈β .  

 
 
Definition 3.  
A Boolean function nm VVf →: is bent if for all 

*
nV∈β and for all mV∈α , we have 

22)(ˆ m

f ±=αβ . 
Boolean bentness has also a combinatorics characterization 
called perfect nonlinearity [7].  
Perfect nonlinear functions are those functions that exhibit 
the best resistance against the famous differential attack [1]. 
 
Definition 4.  
A Boolean function nm VVf →:  is called perfect 

nonlinear if for all *
mV∈α and for all nV∈β , 

nm
m xfxfVx −==⊕⊕∈ 2|})()(|{| βα  

where || X is the cardinality of a finite set X . 
 
Theorem 1. [7] 
A Boolean function nm VVf →: is bent if and only if 

it is perfect nonlinear. 
 
Bent functions are difficult to exhibit but there exist some 
explicit constructions. For instance, the famous 
Maiorana-McFarland construction. 
 
Proposition 1. [3]  
Let m  be an even integer. Let 

)2(: 1
2

GFVVg m =→ be any function and π a 

permutation over 
2
mV . Then the function 

1V: →mVf  

    )()(.),( ygyxyx ⊕πa  

is bent (we have identified mV  with 
22
mm VV × ). 

Bent functions do not exist for each choice of ),( nm : there 
are some important constraints on these exponents. 
 
Theorem 2. [7]  
Bent functions exist only for nm 2≥  and m  is 
even. 
In particular bent functions do not exist in odd dimension 
(m is an odd integer) nor in plane dimension ( nm = ). 
This is very restrictive since many cryptographic 
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applications used functions that maps bit-strings to 
bit-stings of the same length. Then we need other objects to 
define resistances against differential or linear 
cryptanalysis. In this paper, we present a group action 
approach to solve this problem; nevertheless some authors 
have already worked on the subject and used another 
method. 
 
2.2 Almost bent and almost perfect 

nonlinear functions 
 
If m  is even or nm 2< , bent functions do not exist and 
we need other bounds to define differential and linear 
resistant functions. Some results have been  found by 
Chabaud and Vaudenay [2].  
 
Definition 5.  
Let mm VVf →: be a Boolean function. f is 

almost perfect nonlinear if for all *
mV∈α  and 

mV∈β , 

}.2,0{|})()(|{| ∈=⊕⊕∈ βα xfxfVx m   
As differential resistance is measured as the minimum over 
all maps mm VVf →: of the maximum over all 

mm VV ×∈ *),( βα of  

|})()(|{| βα =⊕⊕∈ xfxfVx m  
in the plane dimension case ( nm = ), the best possible 
value is 2. Then almost perfect nonlinear functions have the 
optimum resistance to differential cryptanalysis. 
 
In a similar way, we can define the optimum resistance 
against linear cryptanalysis as follows. 
 
Definition 6.  
Let mm VVf →: . The Boolean function f is called 

almost bent if for all *),( mm VV ×∈βα , 

}2,0{)(ˆ 2
1+

±=
m

f αβ . 
 
Such functions only exist when m  is an odd integer. 
Finally we have 
 
Theorem 3. [2]  
If the function mm VVf →:  is almost bent then it 

is also almost perfect nonlinear. 
 
The reciprocal assertion of the theorem above is false in 
general since the map )2()2(: mm GFGF →σ defined by 

1)( −= xxσ if *)2( mGFx∈ and mm 0)0( =σ is almost 
perfect nonlinear (when m is an odd integer [8]) but it is not 
almost bent (it a consequence of [5]). 
 
In this paper we present another way to treat a similar 
problem using group actions. 

3. Boolean bent functions: the group action 
approach 

3.1 Basics on the theory of characters and group 
actions 
 
In the remainder of this paper, the letter “G ” stands for a 
finite abelian group in multiplicative representation. Our 
approach of nonlinearity and bentness is described using 
the Fourier transform and the notion of group actions. So in 
this subsection are recalled some basics on them. 
 
3.1.1 Theory of characters 
 
A character of a group G is a group homomorphism from 
G to the unit circle of the complex field C. The set of all 

characters, denoted by ,Ĝ when equipped with the 
point-wise multiplication of functions, is a group 
isomorphic to G itself. We always suppose that an 

isomorphism from G to Ĝ is fixed and the image of 
G∈α by such isomorphism (called the character of α ) 

is denoted by αχ . For instance the character of mV∈α  is 

given by the function αχm as already introduced. Using the 
theory of characters we can define the (discrete) Fourier 
transform on G. 
 
Definition 7.  
Let →mV:ϕ  C be a function. The Fourier 

transform of ϕ is the map ϕ̂ defined by 

→G:ϕ̂  C 

         .)()(∑
∈G

xxx
α

αχϕa  

 
The Walsh-Hadamard transform is a particular instance of 
the discrete Fourier transform for elementary abelian 
2-groups. 
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3.1.2 Group actions 
 
A group action of a group G on a nonempty set X is a 
group homomorphismϕ from G so )(XS the symmetric 
group of X (the group of all permutations over X). For 
instance we can define the regular action by translation 
of a group G on itself as follows 
 

S(G): →Gϕ  

     ):)(( xx ααϕα aa . 
 

Instead of writing “ ))(( xαϕ ” for XGx ×∈),(α , we 
use the convenient notation “ x.α ” similar to the regular 
action by translation. The orbital of an element 

Xx∈ under the action of G is 
 

.}|.{)( GxxOG ∈= αα  
 

The orbitals define a partition of the set X. 
 
An action is called faithful if the corresponding 
homomorphismϕ is injective or in other terms there is no  

*G∈α , such that xx =.α  for all Xx∈ . An action is 
called regular if for all 2),( Xyx ∈ there exists one and 
only one G∈α such that yx =.α (in particular a 
regular action is also faithful). For instance, the regular 
action by translation is regular. 
 
There is a particular kind of group actions on Boolean 
vector spaces which will be useful in the sequel. A 
fixed-point free involution σ of mV  is an element of 

)( mVS such that  
 
1. σσ =−1 , 
2. for all mVx∈ , .)( xx ≠σ  

For instance the translations over mV , xx ⊕ασα a: , 

are fixed-point free involutions. Let identify kV  as a 

subvector space of mV of dimension k (with mk ≤≤1 ). 

A group action of kV on mV  can be naturally defined as 

follows: for mk VVx ×∈),(α , we define xx ⊕=αα . . 

Moreover it is obvious that kV acts faithfully (and even 

regularly if k = m) on mV . 
 
 
 

3.2 G-perfect nonlinearity and G-bentness 
 
Embedded in the definition of perfect nonlinearity is the 
regular action by translation of mV . So we can naturally 
extend this notion of nonlinearity by replacing translations 
by another kind of group actions. In [9, 10], we have 
introduced the concept of G-perfect nonlinearity that we 
briefly recall in the Boolean setting. 
 
Definition 8.  
Let G be a finite abelian group thats acts faithfully 
over mV . A Boolean function nm VVf →: is called 

G-perfect nonlinear if for all *G∈α  and 
all nV∈β , we have 

nm
m xfxfVx −==⊕∈ 2|})().(|{| βα . 

 
This notion is similar to the classical one except that we 
have replaced the translations by the action of G on mV . 
 
On an other hand, we can define a group action based 
notion of bentness. 
 
Definition 9.  
Let G be a finite abelian group thats acts faithfully 
over mV . A Boolean function nm VVf →: is called 

G-bent if for all *
nV∈β and all G∈α , we have  

|G||)(ˆ| 2
2
1 =∑

∈ m

m

Vx
xf α
β

 

where for each Xx∈ , xf  is defined as 

nV: →Gfx  

   ).( xf αα a  
and |z| is the complex modulus of ∈z C. 
These two concepts are actually identical as it is the case in 
the traditional setting. 
 
Theorem 4. [10]  
Let G be a finite abelian group thats acts faithfully 
over .mV A Boolean function nm VVf →:  is 

G-perfect nonlinear if and only if it is G-bent. 
This definition of G-bentness permits us to explicitly 
construct (see Section 4) “bent” functions in cases 
otherwise impossible with the standard notion of bentness. 
These constructions rely on the characterization of G.  
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3.3 G-difference sets 
 
In the paper [10] we gave a combinatorics characterization 
of G-bentness and G-perfect nonlinearity for 1V -valued 
functions in terms of some special objects called 
G-difference sets. 
 
 
 
 
Definition 9.  
Let G be a finite abelian group thats acts faithfully 
over .mV A subset D of mV is called a 

G- ),( λK -difference set of mV if 

1. K = |D|, 
2. for each ,*G∈α there exist exactly λ  solutions 

2),( Dyx ∈ to the equation yx =.α . 

In the case where mVG =  and the action is the regular 
action by translation, this notion is equivalent to the 
traditional concept of difference sets in mV . 
 
The indicator function of a subset S of a set X  is the 
map }1,0{: 1 =→VXiS defined by 1)( =xiS  if 

Sx∈ and 0)( =xiS if .Sx∉  
 
Theorem 5. [10]  
Let G be a finite abelian group that acts faithfully 
over .mV Let .mVD ⊂ Then D is a 

G- ),( λK -difference set of mV  such that 

)(42 λ−= Km  if and only if }1,0{: 1 =→VVi mD  

is G-bent. 
In the following section, we use this particular 
characterization to construct a G-bent function in odd 
dimension. 

4. Boolean bent functions in odd and plane 
dimensions 

 
In this section we construct some G-bent Boolean functions 

nm VVf →:  in some cases impossible for the traditional 
theory: m is an odd integer or m=n. As we want these 
constructions to be relevant for cryptographic applications 
we restrict our choices for G: either kV  or *)2( mGF . 
With these particular choices, we remain in the Boolean 

setting which is important for implementations of 
cryptosystems. 
 
4.1 Boolean bent functions in odd 

dimension 
 
In this subsection, we present two constructions of 

kV -bent functions nm VVf →:  where m is an odd 

parameter. Note that the action of kV  over mV  has been 
described at the end of paragraph 3.1.2.  
 
Theorem 6.  
Let nk VVf →: be a (classical) bent function and 

nl VVg →: be any function. Let m=k+l and mV  is 

identified with lk VV × . Then the map h defined by 

nm VVh →:  

    )()(),( ygxfyx ⊕a  

is a kV -bent Boolean function.  
 
Proof.  Let 2),( mVyx ∈ and *

nV∈β . We must compute 

)(ˆ
),( α
β

yxh i.e. the Fourier transform of 

),( yxn hoβχ in kV∈α . 
'.

'

)'(.
),( )1()1()(ˆ ),(

x

Vx

xh
yx

k

yxh
αβα

β
∑
∈

−−=  

∑
∈

⊕⊕−=
kVx

xyxxh

'

'.),'(.)1( αβ  

∑
∈

⊕⊕⊕−=
kVx

xygxxf

'

'.))()'(.()1( αβ  

∑
∈

⊕⊕−−=
kVx

xxxfyg

'

'.)'(.)(. )1()1( αββ  

∑
∈

⊕⊕−−=
kVx

xxxfyg

''

)''.()''(.)(. )1()1( αββ  

).(ˆ)1( .)(. αβ
αβ fxyg ⊕−=  

Then we have for all kV∈α and for all *
nV∈β , 

∑∑∑
∈∈∈

==
m

k

m

k

m

k

Vyx

k

Vyx
yx

Vyx
fh

),(
2
12

),(
2
12

),(
),(

2
1 2|)(ˆ||)(ˆ| αα β

β
 

(because f  is bent). Then the sum is equal to m2 and 
therefore h is kV -bent.          QED 
 
In particular if l is chosen so that m=k+l is odd then we 
have constructed a “bent” function in the odd dimension. 
However this construction is not satisfactory since it is 
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based on a classical bent function. We now give another 
construction which is independent of the traditional notion 
of bentness. 
 
Lemma 1.  
Let m be a non-zero positive integer. Each *

mV∈α is 

contained in 12 1 −−m subvector spaces of mV of 

dimension m-1 over )2(GF . 
 
Proof. We will build up a basis that contains .α We can 
not use m0 orα for the second vector in the basis, so we 

have 22 −m choices for how to fill the second basis vector 
(call it 2v ).  Once we have chosen 2v , we can not take any 

linear combination of α  and 2v , so we have 

42 −m choices for the third vector (call it 3v ).  

Continuing in this manner, we will have 222 −− mm  
choices for 1−mv  since we can not use any linear 

combination of the collection },...,,,{ 232 −mvvvα .  We 
have over-counted, so we need to divide by the number of 
basis for a given (m-1)-dimensional subspace (that 
containsα ).  We have 22 1 −−m  choices for the second 
vector since we can take any element of this subspace other 
than m0  orα ; we have 42 1 −−m  choices for the third 

basis vector; and we continue until we have 21 22 −− − mm  
choices for the final vector.  Writing this as a fraction, we 
have  

)22)...(82)(42)(22(
)22)...(82)(42)(22(

21111

2

−−−−−

−

−−−−
−−−−

mmmmm

mmmmm

 

By pulling out all of the powers of 2 and then canceling all 
the terms, this reduces to 12 1 −−m .       QED 
 
Theorem 7.  
Let k and l be any positive integers, k ≠ 0 and l can be 
equal to zero. There exists a  

kV - )2) - 1)(2 - (22 1),  1) - 1)(2 - ((22( 1-1-1- kklkkl +  

-difference set of lkV +2 . In particular its parameters 

satisfy the equation  

).(42 2 λ−=+ Klk
 

 
Proof. Since kV  is a k-dimensional vector space, it 

contains 12 −k subvector spaces of dimension k - 1 
denoted iW  for 121 −≤≤ ki .  We observe that each 

orbital of lkV +2 under the action of kV  has exactly 

k2 elements since all nonzero element of kV  acts as a 

fixed-point free involutions on lkV +2 , thus there are exactly 
lk+2 such orbitals in lkV +2 . We choose one and only one 

element of each orbital: for 
1}-{0,...,2}2,...,1{j)(i, lk ×∈ jix , is the representative 

of the kji 2+ -th orbital 

}. |{)( 2,, klkjijiV VVxxO
k

∈∈⊕= + αα  

In particular if '',, jiji xx ≠ then  

ø)()( '',, =∩ jiVjiV xOxO
kk

. 
 
For each 1},-2,...,0{j l∈  we associate the subvector 

space iW  to the orbital )( , jiV xO
k

 (so for i from 1 to 

12 −k ) and we build-up the set 
}0 ,W |{ 2i2,, lklkjiji VxD ++ ≠∈∈⊕= ααα  

which is a subset of .)( , jiV xO
k

 Finally we construct  

}.{)(
,2

12

1
, j

i
jij k

k

xDD U
−

=

∪=  

By construction, with a fixed j, ø',, =∩ jiji DD  for all 

'.ii ≠  In particular .||1||
12

1
,∑

−

=

+=
k

i
jij DD  But 

121|||| 1
, −=−= −k

iji WD  

and then  
1.1)-1)(2-(2|| 1-kk +=jD  

 
Then we construct the following set: 

.
12

0
U
−

=

=
l

j
jDD  

We note easily that ø' =∩ jj DD  for all 'jj ≠  and 

then D is a disjoint union. Its cardinality is then equal to 

).1)12)(12((2|| 1
1-2

0j
+−−= −

=
∑ kkl

j

l

D  

 
We have already proved that the parameter || DK =  is 
equal to the value given in the statement of the theorem.  
It is now sufficient to prove that D is a kV - ),( λK  

-difference set of lkV +2  with  

).22)(12(2 11 −−= −− kklλ  
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Now we show that for all nonzero ,kV∈α they are exactly 

λ  solutions in 2D to the equation .yx ⊕=α  Note that 
if x and y are not in the same orbital, we have no solution. 
So let 1}.-{0,...,2}2,...,1{),( lkji ×∈  If ki 2= then 

there is no solution in 2D for a nonzero kV∈α  

(because D only contains 
jkx

,2
 and α acts as a 

fixed-point free involution). Let suppose that 
1}.-2,...,1{ ki∈  

If 2
, )(),( jiV xOyx

k
∈  is a solution in 2D  of the equation 

yx ⊕=α for ,iW∈α then jixx ,⊕= β and 

jixy ,'⊕= β for 2)',( iW∈ββ implies that 

).).('( ,, jiji xyxx βααβ ⊕=⊕==⊕ Since the 

action of kV on each its orbital is regular, we have 

'βαβ ⊕=  and then iW∈⊕= 'ββα , which is a 
contradiction and there is no solution of this form. 
A similar argument shows that for each 
fixed 1},-{0,...,21}-2,...,1{),( lkji ×∈ we have at 

least one solution when 2
, )(),( jiV xOyx

k
∈ and 

iW∈α and this is true as soon as 

'ββα ⊕= for .)',( 2
iW∈ββ There are 

22 1 −−k solutions 2),( iW∈⊕βαβ (we have 
12|| −= k

iW pairs ),( βαβ ⊕ for a fixed α but we 

exclude the solutions ),0( αk  and )0,( kα otherwise 

jixx ,= or jixy ,= which is impossible by construction 

of jiD , ). 

Moreover note that if )).(,.(
00 ,, jiji xx βαβ ⊕ is a 

solution in 2D to the equation yx ⊕=α ( iW∈α ) 

then for each 1},-{0,...,2lj∈ )).(,.( ,, jiji xx βαβ ⊕  

is a different solution (if 0jj ≠ ). Then there are l2 such 
solutions. 
Finally each nonzero kV∈α is contained in 

12 1 −−k subspaces iW  (according to lemma 1). Then we 

have ).22)(12(2 11 −−= −− kklλ          
QED 
 

Since the parameters of the G-difference set satisfy the 
assumption of theorem 5, the indicator function of this set is 

kV -bent. Moreover this construction is much more relevant 
than the previous one. Indeed we can choose the parameters 
k and l that make impossible the existence of any 
traditional bent function in this setting. If k is an odd integer, 
then for each ,2 lkVx +∈ the function 1: VVf kx → can 
not be (classical) bent and if l is also an odd integer, there is 
no bent function from lkV +2 to 1V but with this 

construction, we know that there exists a kV -Boolean bent 

function from lkV +2 to .1V  
 
4.2 Boolean bent functions in plane 

dimension 
 
In this subsection we present a construction of G-bent 
function from mV  to mV which is traditionally impossible 
since there only exist almost bent functions in plane 
dimension. In order to build this construction, we use the 
faithful action of *)2( mGF on )2( mGF by multiplication. 
Indeed for  

)2()2(),( * mm GFGFx ×∈α  
we define  

xx αα =. . 
 

Theorem 8. 
Let )2()2(: mm GFGFf →  be an additive 

automorphism. Then f is *)2( mGF -Boolean bent.  
 

Proof. Let )2( mGFx∈ , *)2( mGF∈α different of 1 
(the neutral element for the multiplication) 
and )2( mGF∈β . We have 

βα =⊕ )().( xfxf  
βα =⊕⇔ )( xxf  

)()1( 1 βα −=⊕⇔ fx  

)1(
)(1

⊕
=⇔

−

α
βfx  

because .1≠α Then there exists one and only one 
solution to the equation βα =⊕ )().( xfxf and then 

for all *)2( mGF∈α  different of 1 and for all 

)2( mGF∈β ,  

|)2(|
|)2(||})()(|)2({| m

m

GF
GFm xfxfGFx ==⊕∈ βα  
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=1. 
Then f  is *)2( mGF -perfect nonlinear and by 

equivalence it is also *)2( mGF -bent. 
                                                     QED 
 
The interest of such construction seems to be less clear than 
the previous one if we remain in the traditional setting with 
a DES-like cryptosystem equipped with XOR as internal 
operation since the automorphisms are in particular linear 
and do not offer great resistance against cryptanalysis. 
Nevertheless if we think about a DES-like system in which 
the key is combined with the message by a multiplication 
rather than an addition, this construction gives the 
best-resistant function against a differential attack where 
the difference is taken in the sense of multiplication 
whereas such functions in the traditional setting are 
impossible: the best ones are almost perfect nonlinear. 
Moreover it is widely conjectured that almost perfect 
nonlinear permutations on )2( mGF exist only if m is odd 
whereas with our construction we always have bijective 
functions no matter if m is an odd or even integer.  

5. G-differential attack 

5.1 G-differential attack algorithm 
 
Bentness and perfect nonlinearity are closely related to 
differential and linear cryptanalysis. By analogy we can 
interpret G-bentness and G-perfect nonlinearity as 
resistances against G-linear and G-differential attacks. The 
group action based differential attack would be similar to 
the classical one except that we replace the XOR 
differences by their group actions based counterparts: the 
G-difference of ,),( mVyx ∈ Gx ∈=Δ α (if there 

exists) such that yx .α= (with G acting faithfully on mV ). 
The sketch of a G-differential attack, when applied on a 
cryptosystem with round function f  that maps an 
encrypted message 1−iC  (that consists in a m bit-string) of 
the (i-1)-th round on a encrypted message 

)(),( 1 iKiii CfKCfC
i

== − ( )(xfx Ka is a 

permutation on m-bit strings) where iK  is the i-th round 
key, could be represented by a four steps algorithm: 
 
1. Find a G-difference *G∈α and a classical XOR 
difference mV∈β at the round i-1 such that the 
probability 
 

Pr( β=Δ −1iC | α=ΔM ) 

is as far away as possible from the equidistribution, where 
M  is the clear message to encrypt. 
 
2. Choose at random a clear text M and submit M and 

M.α to ciphering. We obtain two pairs clear-encrypted  
),( iCM  and )',.'( iCMM α= at the round i. 

3. Find all the possible values for 'iK such that 

β=⊕ −− )()( 1
'

1 MfMf
ii KK . 

4. Iterate steps 2. and 3. until one of the values 'iK occurs 
more than others. We will consider this value as the i-th 
round key. 
 
5.2 A possible weakness in the S-boxes of the 
DES   
 
In this last subsection, we present an amazing structure in 
the S-boxes of the famous DES, based on fixed-point free 
involutions, that could be used in a G-differential attack of 
this system. However this raises a question not answered in 
this paper: how to use this structure in a G-differential 
attack? But since the DES cryptosystem has been widely 
used since its introduction in the 1970s, any theoretical 
advances could lead to new generation of DES-like 
cryptosystem. 
 
The DES has eight S-boxes iS (i = 1,…,8) from 6V to 

4V and its solidity is based on these particular nonlinear 
functions. Nevertheless it appears that each S-box has a 
remarkable structure that seems to be a weakness regarding 
to the G-differential attack. 
 
Theorem 9. 
For each }8,...,1{∈i and for each 4V∈β , there 

exists a fixed-point free involution 66: VV aσ such 

that for all 6Vx∈ , we have 

.)())(( βσ =⊕ xSxS ii  

In other words, there exists a fixed-point free 
involution σ  such that the difference in output of 

iS of all input x and x', that differ from the 

application of σ , is constant equals toβ . 
 
Proof. In each S-box iS , each output occurs exactly four 
times (because they are equidistributed). So if we arrange 
each input by its output value, we obtain 16 sets yI with 4 
elements 
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})(|{ 6 yxSVxI iy =∈=  

for .4Vy∈  

Since all output values in 4V are possible, we can choose a 

particular *
4V∈β and build-up 8 sets jOβ (for j = 1,…,8) 

with two elements y and y' in 4V such that .' β=⊕ yy  
In order to build-up a fixed-point free involutionσ such 
that βσ =⊕ )())(( xSxS ii for all ,6Vx∈ from 

each }',{ yyO j =β we construct 4 sets of 2 elements: the 

first one is taken in yI and the second one in 'yI with the 

restriction that each value in yI and 'yI is used one and 
only one time. 
Then we obtain a collection of 32 sets }',{ xx of two 
elements each. They are used to define a fixed-point free 
involution σ over 6V such that ')( xx =σ  and 

.)'( xx =σ  
By construction, σ satisfies also 

βσ =⊕ )())(( xSxS ii  

for all .6Vx∈                               QED 
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