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Summary 
We evaluated statistical characteristics of spike trains of 
neurons that exhibit a supercritical Hopf bifurcation by 
higher order statistical coefficients, a coefficient of 
variation and a coefficient of skewness, and showed that 
the estimated statistical coefficients are different from 
those of neurons that exhibit a subcritical Hopf bifurcation. 
Then, we compared the statistical coefficients of spike 
trains observed from cortical neurons, and showed that the 
neurons that exhibit the supercritical Hopf bifurcation 
require temporally correlated inputs to reproduce the 
statistical characteristics of the cortical neurons. The 
results indicate that it is necessary to introduce a detailed 
classification of neurons based on the bifurcation types of 
neurons. In engineering application, artificial neural 
networks often show high ability to solve several real life 
problems, for example, the pattern recognition and the 
combinatorial optimization problems. Although the 
classification or the bifurcation structure of the neurons 
have not been brought into the artificial neural network, an 
appropriate choice of an element neuron with such concept 
might give much advantages to solve the engineering 
problems with high efficiency. 
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1. Introduction 

 The brain comprises 1011 neurons. In mammalian 
neocortex, approximately 80 % of all neurons are regularly 
spiking neurons. The other neurons are intrinsically 
bursting neurons, chattering neurons, fast spiking neurons, 
low-threshold spiking neurons, and late spiking neurons [2, 
4, 5]. The first four neurons are excitatory neurons, and the 
other two are inhibitory neurons.  
 Aside from the above-mentioned anatomical 

classification, the neurons are classified into two 
subcategories by firing frequency in response to constant 
inputs. Figure 1 shows schematic representation of firing 
frequency characteristics of the two subcategories. When 
the injected constant input is slowly ramped up, a Class I 
neuron starts firing with a low frequency from a critical 
point of firing, then its firing frequency continuously 
increases. On the other hand, the firing frequency of Class 
II neurons jumped up at a critical frequency, then the Class 
II neuron starts firing at a high frequency. By this 
classification, the regularly spiking neuron is classified 
into the Class I neurons, while the fast spiking neuron is 
classified into the Class II neurons [18].  
 

 
 

Fig. 1 Schemata of firing frequency of Class I and Class II neurons. 
Lower lines indicate a strength of the constant input. 
 
 In simulation studies, the neurons are often 
modeled by a set of differential equations, or a dynamical 
system. A type of excitability of the neurons is realized by 
a bifurcation structure of the dynamical system; a stable 
equilibrium changes to an unstable equilibrium surrounded 
by a stable limit cycle. However, the Class I and Class II 
neurons are realized by different bifurcations [13]. The 
Class I neuron can be modeled by a dynamical system 
exhibiting a saddle-node bifurcation, while the Class II 
neuron can be modeled by a dynamical system exhibiting 
an Andronov-Hopf bifurcation. Although such a classical 
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classification of neuron models have been frequently used 
in the field of neuroscience, we raise a very important 
issue: the classical classification into these two classes is 
not enough to reproduce statistical characteristics of 
biological neurons. Further, we show that we have to 
introduce a new classification based on a detailed 
bifurcation structure of the Andronov-Hopf bifurcation: 
the subcritical and supercritical Andronov-Hopf 
bifurcations (subAH and supAH). In the classical 
classifications, both Andronov-Hopf bifurcations exhibit 
the same Class II excitability in response to the constant 
input injection. Although responses of these two 
bifurcations to constant inputs are well known [6, 17], 
response characteristics to more neurobiologically realistic 
inputs remain unclear. One of the contribution of the 
present paper is that we reveal which bifurcation of the 
Class II neurons is intrinsic to reproduce real neural 
responses in mammalian cortices. 
 It is generally difficult to observe input currents for 
a neuron of a behaving animal. However, if we can assume 
that the incoming inputs are independent each other and 
the change of the membrane potential caused by incoming 
inputs is small enough relatively to a spiking threshold, 
total sum of the inputs can be approximated by 
uncorrelated fluctuations [19]. Therefore, we firstly 
consider the case of receiving the uncorrelated fluctuations 
as neurobiological realistic inputs. 
 In the previous study [10], we have already 
analyzed statistical characteristic of response of the 
neurons that exhibit the subAH, assuming that the external 
input is described by the continuous uncorrelated 
fluctuation. Then, we statistically analyzed interspike 
intervals (ISIs) by higher order statistical coefficients: a 
coefficient of variation (CV) and a coefficient of skewness 
(SK). In this paper, we firstly evaluated (CV,SK) of the 
supAH neuron, and compared them with that of the subAH 
neuron. Then, we showed that a variety of the pair 
(CV,SK) of the supAH neuron is smaller than that of the 
subAH neuron. 
 We also showed that (CV,SK) of the supAH neuron 
receiving uncorrelated inputs cannot reproduce the 
statistical feature of irregular spike trains of the cortical 
neurons of behaving animals [16], while that of the subAH 
neuron can. In Ref. [14], a leaky integrate-and-fire (LIF) 
neuron stimulated by temporally correlated inputs can 
reproduce the statistical feature of the spike trains of the 
cortical neurons [16]. Then, we investigated a possibility 
whether or not the supAH neuron stimulated by temporally 
correlated inputs can reproduce the (CV,SK)s of the 
cortical neurons. As a result, we discovered that temporal 
correlation of inputs is inevitable for the reproduction. Our 
final results hypothesize that a temporal scale of input of 
real cortical neurons might be fluctuated by time. 
 
 

2. Methods 
 
2.1 Inputs 
 
2.1.1 Uncorrelated inputs 
 
We used the uncorrelated continuous fluctuation described 
by Eq. (1) as the uncorrelated inputs.  
 
 I(t) = μ + σξ(t),     (1) 
 
where ξ(t) is white Gaussian noise with zero mean and 
unit variance par unit time. The parameters μ and σ  
control mean and variance of I(t) .  
 
2.1.2 Temporally correlated inputs  
 
We used the temporally correlated continuous fluctuation 
expressed by Eq. (2) as the temporally correlated inputs.  
 

 
I(t) = μ + ση(t),

 s ?η = −η + ξ(t),

⎧ 
⎨ 
⎩ 

   (2) 

 
where ξ(t) is white Gaussian noise with zero mean and 
unit variance par unit time, s controls temporal correlation 
of inputs, and the parameters μ and σ  control the mean 
and the variance of I(t) .  
 
2.2 The neuron models 
  
2.2.1 The neuron that exhibits the supercritical 
Andronov-Hopf bifurcation  
 
We used the Hindmarsh-Rose (HR) model as a model of 
the supAH neuron [9]. The HR model consists of 
two-dimensional differential equations whose nullclines 
are cubic and quadratic functions. The HR model is 
described as follows:  
 

 
?v = 3v 2 − v 3 − w + I(t),

τ ?w = 3v(v + h) − w,           

⎧ 
⎨ 
⎩ 

  (3) 

 
where v is membrane potential, w is a recovery variable, 
I(t)  is an external input, τ =10 is a time constant of the 
system, and h is a parameter which decides the bifurcation 
type of the model. 
 In general, eigenvalues of a Jacobian matrix of the 
dynamical system is used for a discrimination of the 
bifurcation type. The method tells us that the HR model 
exhibits the saddle-node bifurcation for h = 0 and the 
Andronov-Hopf bifurcation for h > 0. However, the 
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Jacobian method cannot distinguish the sub- and 
supercritical Hopf bifurcations. According to a criterion in 
Ref. [6], we confirmed that the HR model exhibits the 
supAH. We set h to 1 in this study. 
 We defined spike timings by using an internal 
variable s, to avoid double counting for accidental back 
steps: if s = 0 and v > 1.5, then the neuron emits a spike 
and set s = 1, if s = 1 and v < 0, then set s = 0. 
 
2.2.2 The neuron that exhibits the subcritical 
Andronov-Hopf bifurcation 
 
As a model of the subAH neuron, we used the the 
Bonh ??o ffer-van der Pol (BvP) model [1, 3, 12]. The BvP 
model consists of two-dimensional differential equations 
whose nullclines are cubic and linear functions. The BvP 
model is described as follows: 
 

 
?v = v − v 3 /3 − w + I(t),

τ ?w = kv − w,                      

⎧ 
⎨ 
⎩ 

  (4) 

 
where v is membrane potential, w is the recovery variable, 
I (t) is the external input, and τ  = 11.25 is the temporal 
constant of the system. We set k = 1.25. 
 We defined spike timings by using an internal 
variable s, to avoid double counting for accidental back 
steps: if s = 0 and v > 1, then the neuron emits a spike and 
set s = 1, if s = 1 and v < 0, then set s = 0. 
 
2.3 Statistical coefficients for ISI trains  
 
We used two statistical coefficients, CV and SK, to 
statistically analyze the spike trains. 
 

 CV = (Ti − T)2 /T,    (5) 

 SK = (Ti − T)3 / (Ti − T)2
3

,  (6) 
 
where Ti

 is the i-th ISI, determined by the series of spike 
timings 

  L, ti, ti+1{ ,L}  as Ti ≡ ti+1 − ti
, T  represents an 

averaging operation over the number of ISIs, such that 
T ≡ 1/nΣi=1

n Ti
. CV measures a variation of the spike trains. 

As the variation increases, CV increases. SK measures an 
asymmetry in an ISI distribution. An exceptionally long 
ISI increases the value of SK. Regardless of the firing rate, 
spike event series of a Poisson process always gives 
(CV,SK) = (1,2). Conversely, the spike event series of a 
constant interval gives (CV,SK) = (0,0). 
 Because the above-mentioned coefficients are 
dimensionless quantities, we can directly compare 
(CV,SK) between different neurons. By contrast, we 
cannot compare the mean ISI or T  between the neurons. 

Normalization of T  by the time scale of the neuron 
enables the direct comparison. The time constant of the 
neuron model depends on the state in the state space 
because of the nonlinearity of the model. However, with 
the parameter values used in this paper, the time constant 
of w, τ , is an upper limit on the time scale of the neuron 
models. We regarded τ  as the time scale of the neuron 
model. Hence, we compared the values of (CV,SK) 
between the neurons using a fixed T /τ . We estimated 
( T /τ ,CV,SK) from finite ISI sequences consisting of 
10,000 ISIs (in section 3.2) or 1,000 ISIs (in section 3.3) 
obtained by numerical simulations. 
 
3 Results  
 
3.1 Responses to constant inputs  
 
Before we stimulate the neurons by the fluctuated inputs, 
let us confirm differences on amplitudes of membrane 
potentials of the subAH and supAH neurons receiving 
constant inputs. Figure 2 shows difference of the subAH 
and supAH in case that the strength of the constant inputs 
to neurons is increased or decreased. 
 

 
 
Fig. 2 Schemata of dynamic range of membrane potential of the subAH 
and supAH neurons receiving increasing (black lines) or decreasing (grey 
lines) constant inputs. Lower lines indicate a strength of the constant 
input. Although the real bifurcation curves are overlapped, We plot the 
potential with decreasing inputs (indicated by gray lines) beneath the 
black lines to show bistable structure. 
 
 When the strength of the constant input is increased, 
an equilibrium of the subAH neuron loses its stability and 
a large amplitude oscillation is generated (black lines in 
Fig.2(a)). When the strength is decreased, the large 
amplitude oscillation suddenly disappears and the 
equilibrium becomes stable again (grey lines in Fig.2(a)). 
However, the transition points are different by the 
direction of the input variation. Therefore, at the period 
between the two transition points, the stable equilibrium 
and the oscillation coexist. This bistability is sometimes 
called a hysteresis. 
 In contrast, the supAH neuron does not show the 
bistability. For both of increasing and decreasing inputs, 
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the amplitudes traces the same line. In addition, the 
equilibrium does not jump to the large amplitude 
oscillation. Instead, the supAH neuron exhibits a 
continuous increase from a small amplitude oscillation to 
the large one (Fig.2(b)).  
 
3.2 Responses to the uncorrelated inputs  
 
We calculated the statistical quantities ( T /τ ,CV,SK) as 
functions of the input parameters ( μ , σ ). These input 
parameters were swept, and the corresponding set of 
values ( T /τ ,CV,SK) were obtained. For most spiking data 
of cortical neurons, the condition T /τ  > 1 is satisfied. 
Therefore, only the spike trains that satisfy the condition 
were recruited as the biologically feasible spike trains.  
   

 
Fig. 3 Structures of the ISI statistical values ( T /τ , CV, SK) for the 
subAH neuron receiving uncorrelated inputs in the CV-SK plane. The 
mean spike frequencies are biologically feasible (i.e., T /τ  > 1) in the 
grey area. The open squares and open circles correspond to data for 
which T  is within ±1% of the value satisfying T /τ  = 4 and 10, 
respectively.  
 

 
Fig. 4 The same as Fig. 3 but for the supAH neuron. 
 
 Figures 3 and 4 display the structure of the ISI 
statistics in the CV-SK planes for the subAH neuron [10] 
and the supAH neuron, respectively. As examples of the 
statistics, the statistics that satisfy T /τ  = 4 and T /τ  = 
10 within ±1% are shown in the figures. The statistics 
(CV,SK) for the subAH model are widely distributed on 
the CV-SK plane (Fig.3)[10]. We have also obtained the 
same characteristics for a different subAH neuron [11]. On 

the other hand, in the supAH neuron, the corresponding 
(CV,SK) region is quite smaller than that of the supAH 
model (Fig.4). In particular, no spike trains that satisfy CV 
> 1.5 were obtained.  
 
3.3 Responses to the temporally correlated inputs  
 
Experimental studies revealed that the cortical neurons of 
behaving animals generate irregular spike trains (see e.g., 
Ref.[16]). Evaluation of statistical characteristics of the 
cortical neurons by (CV,SK) is shown in Fig.5. The data 
set is obtained from neurons of a prefrontal cortex of a 
monkey. Each statistical coefficient is calculated from 100 
ISIs (see Ref.[15] for further details of the experimental 
condition). As shown in Fig.5, behavior of the cortical 
neurons is not regular, but varies by trials. Most statistics 
are plotted around (1,2) on the CV-SK plane. These spike 
trains have almost the same irregularity as the Poisson 
process. However, some spike trains show much more 
irregularity, because some CVs of those are larger than 2. 
 

 
Fig. 5 An example of the statistics of cortical neurons. Each point is 
calculated from 100 ISIs obtained from a prefrontal cortex of a monkey. 
 
 A comparison of Figs.3 and 5 indicates that the 
subAH neuron stimulated by uncorrelated inputs 
reproduces a large variety of irregularity of the cortical 
neurons. On the other hand, a comparison of Figs.4 and 5 
indicates that the supAH neuron stimulated by 
uncorrelated inputs cannot reproduce the large variety of 
irregularity of the cortical neurons. 
 It is known that the LIF neuron with the 
uncorrelated input cannot reproduce the large variety of 
irregularity of the cortical neurons [15]. The LIF neuron 
requires the temporally correlated inputs to reproduce the 
statistical characteristics of the cortical neurons [14]. In the 
following, we investigated whether or not the supAH 
neurons reproduce the statistical characteristics of the 
cortical neurons if inputs have temporal correlation.  
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Fig.6 The same as Fig.4 but the supAH neuron receives the temporally 
correlated inputs. 
 
 We summarize (CV,SK) values evaluated with 
respect to several ratios of s /τ  in Fig.6. Assuming that 
τ  of the supAH neuron corresponds to 10 ms, s /τ  = 5 
and 10 mean that the external input has the temporal 
correlation of 50 and 100 ms, respectively. As shown in 
Fig.6, as the input correlation time scale s increases, both 
CV and SK increase. In the case of s /τ  < 10, the supAH 
neuron cannot reproduce CV that is larger than 2. If s /τ  
becomes larger than 20, the supAH neurons produce CV 
that is larger than 2, however, (CV,SK) around (1,2) 
disappear, which means that the statistical coefficients of 
the supAH neuron do not cover the distribution of those 
the cortical neurons [15]. In summary, as the temporal 
scale of correlated inputs increases, CV and SK become 
large. 
 Above results would lead us to an interesting 
hypothesis: if the temporal scale of the correlated inputs to 
a neuron depends on time, or the correlated inputs to the 
neuron are nonstationary, the statistical coefficients of the 
supAH neuron can be a reproduction of those of the 
cortical neurons, because a superposition of Figs.6(a), (b), 
(c), and (d) shows a wide variety in the CV-SK plane. 
Namely, the temporal scale of the input correlation must 
fluctuate trial by trial to reproduce the statistical 
coefficients of the cortical neurons with the supAH 
neurons. The fluctuation of input correlation might come 
from conditions of the neural network. 
 
4 Discussions  
 
In conventional studies of neuroscience, the classification 
of neurons is mainly discussed from the difference of the 
firing frequency in response to constant inputs, and the 
precise bifurcation structure has not been considered. Our 
results strongly suggest that it is inevitable to consider the 
precise bifurcation structure of the neuron in order to 

correctly classify the neuron receiving fluctuated inputs. 
Based on this conjecture, we have to introduce at least 
three classes by its bifurcation types to classify neurons. 
Although the bifurcation structure of biological neurons 
cannot be explicitly known, the excitability, the Class I or 
the Class II, and the existence of the bistability implicitly 
tell us the bifurcation structure. 
 In engineering application, artificial neural 
networks often show high ability to solve several real life 
problems, for example, the pattern recognition and the 
combinatorial optimization problems [7, 8]. Although the 
classification or the bifurcation structure of the neurons 
have not been brought into the artificial neural network, an 
appropriate choice of an element neuron with such concept 
might give much advantages to solve the engineering 
problems with high efficiency. 
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