
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

91

Object Oriented Visualization of Natural Language Requirement

Specification and NFR Preference Elicitation

G.S. Anandha Mala and Dr.G.V.Uma

malamanosuke@yahoo.co.in gvuma@annauniv.edu

Department of Computer Science and Engineering, Anna University, Chennai, Tamil Nadu, India-600025

Summary
Requirements engineering is where the formal meets the informal.

Application of natural language understanding to requirements

gathering remains a field that has only limited explorations so far.

Further, automation of requirement gathering is still in its infancy.

There are three module proposed in this paper. In the first

module, an approach for automatic requirements capture from

natural language requirements specification is proposed. This

approach starts by subjecting the natural language text for

identification of parts of speech of the words in each sentence by

applying sentence tagging techniques. The text thus tagged is

normalized to simple sentences. Further, to resolve the ambiguity

posed by the pronoun, the pronoun resolution is performed on

the simplified text. Then, the elements of the object oriented

system namely the classes, the attribute, methods and

relationships between the classes, sequence of actions, the

usecases and actors are identified by mapping the ‘part of speech

tagged’ words of the natural language text onto the object

oriented modeling language element, using some mapping rules

based on the classical noun-verb analysis, thus eliciting the

system requirements. In the second module, from the elicited

object oriented elements, a semi-automatic approach of design

and development of ontology for the requirement specification is

proposed. Ontologies are especially useful for the development

of high-level reusable software, like domain models and

frameworks. They provide an unambiguous terminology that can

be shared by all involved in the development process. Modeling

of software requirements as ontology is done by, converting the

object oriented elements elicited from the requirement

specification as Resource Description Framework. By storing the

ontology in database, the user can query and acquire the domain

knowledge. This way, the same ontology can be used to guide the

development of several applications, diluting the cost of the

initial stage and allowing knowledge sharing and reuse.

Requirement engineering plays a vital role in the development of

the software. The quality of the software being developed

depends on the Non-Functional Requirements(NFR), which are

still not derived effectively due to the conflicts between NFRs. In

the third module of this paper, a new approach is proposed to

identify the NFRs for a given usecase description from the

domain model such as Unified Modeling Language (UML) class

diagram, and goal based questionnaires. This approach makes

use of the domain model to find out the behavior of the system

and possible constraints for actors in the system. The NFR

taxonomy and the user preference are used to analyze the

conflicts, which is resolved based on trade-off analysis by

prioritizing the preference. The prioritization depends on the

dominating NFRs from the inference engine.

Key words:

Natural Language Processing, Object Oriented Analysis,

Object Oriented Design Models, Ontology, Non-

Functional Requirements, Requirement Specification.

Introduction

Software development invariably begins with some human

need or desire - to explore or solve a problem. We use

natural language to describe our needs and problems, but

it's often complex, vague and ambiguous. Sentences are

vague when they contain generalizations, or they are

missing important information, especially the subject or

objects needed by a verb for completeness, or containing

pronouns. Sentences are ambiguous when they are open to

multiple interpretations. All these troubles arise when we

discuss our needs and problems using natural language. On

the other hand, software requires more precision, formality

and simplicity than that commonly found in natural

language. Also, the translation from requirements to code

often reduces, eliminates or distorts much of the original

meaning intended by the requirements. Given these factors,

it's not surprising that the translation of natural language

descriptions into usable software poses quite a challenge.

We need ways to reduce ambiguity and complexity without

sacrificing the richness and meaning of natural language.

This paper describes technique for transforming natural

language requirement specification into Object Oriented

Modeling Language elements, which help fill the gap

between the informal natural language used to describe

problems and the formal modeling languages used to

specify software solutions. Also a semi automatic approach

of design and development of ontology for the requirement

specification, for providing the facilities of sharing and

reuse of the domain information among the developers and

an efficient way of eliciting Non Function Requirements

preference for actor’s of use case from domain model are

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

92

presented in this paper. The paper begins with a review of

advances in the field of requirements engineering and

various definitions given for ontology and their related

works in section 2. The proposed methodology is

explained in section 3. Our implementation results are

discussed in section 4. The conclusions and future work is

contained in Section 5.

2. Related Works

Although it has been proven that Natural Language

processing with holistic objectives is very complex, it is

possible to extract sufficient meaning from NL sentences

to produce reliable models. Advances in the field of

requirements elicitation is discussed in this section, which

is followed by the various definitions given for ontology.

The first relevant published technique attempting to

produce a systematic procedure to produce design models

from NL requirements was Abbot [1]. Abbot suggested a

non-automatic methodology that only produces static

analysis and design products obtained by an informal

technique requiring high participation with that of users for

decisions. Methods to bring out a justified relationship

between the natural- language structures and OO concept

are proposed by Sylvain [19] who shows that

computational linguistic tools are appropriate for

preliminary computer assisted OO analysis. Sawyer in their

REVERE [16] makes use of a lexicon to disambiguate the

word senses thus obtaining a summary of requirements

from a natural language text but do not attempt to model

the system. Liwu Li [10] also presents a semi-automatic

approach to translate a use case to a sequence diagram. It

needs to normalize a use case manually. Overmyer [14],

also present only a complete interactive methodology and

prototype. However, the text analysis remains in good part

a manual process. Liu [4] present an approach, which uses

formalized use cases to capture and record requirements.

Ke Li [9] also semi-automate the process of requirement

elicitation where the text is matched with predefined

statements. If there is no match then get help from user to

clarify incomplete/ambiguous data. Participation of

domain experts, customer are needed in class identification

process in contrast to our fully automatic methodology

which is named here as “Domain Knowledge Elicitor”.

This paper also aims at providing the facilities of sharing

and reuse of the domain information among the developers

in the form of ontology. It is possible to find in the

literature several definitions for ontology. One of the most

cited is the one proposed by Gruber, “An ontology is a

formal, explicit specification of a shared

conceptualization” [8]. The definition proposed by Gruber

is general; however, ontology can be defined in specific

contexts. For example, taking the paradigm of agents into

account, [15] establish that ontology is a formal

description of the concepts and relations, which can exist

in a community of agents. The importance of the terms of

ontology can be perceived in the next definition: “An

ontology is a hierarchically structured set of terms to

describe a domain that can be used as a skeletal foundation

for a knowledge base [18]”. More recent definitions of

ontologies are the following ones: “An ontology is a

common, shared and formal description of important

concepts in an specific domain [6]”; “An ontology is a

formal explicit representation of concepts in a domain,

properties of each concept describes characteristics and

attributes of the concept known as slots and constrains on

these slots [13]”. Sometimes concepts are termed classes,

properties are also known as roles while facets are used

rather than slots. “An ontology is a theory which uses a

specific vocabulary to describe entities, classes, properties

and related functions with certain point of view [7]”.

Ontology necessarily includes a specification of the terms

used, ("terminology") and agreements to determine the

meaning of these terms, along with the relationships

between them [17]. Like Fonseca’s [7] definition of

ontology, the method proposed in this paper for the

construction of ontology consists of classes, subclasses,

attributes, methods, and the relationships among the

classes. The ontology can be constructed for any domain

with the help of requirement specification. The pre-

processor module of “Domain Knowledge Elicitor” in the

system architecture shown in figure 1 identifies the key

concepts required for the construction of ontology.The

quality of the software being developed depends on the

non-functional requirements. Haruhiko Kaiya [27]

discusses the elicitation of the non-functional requirement

performed by comparing the existing usecase to derive the

invariants related to the non-functional requirements and

the stakeholders involved. GQM approach is used for the

trade-off analysis based on the stakeholder’s goal

preferences. NFR taxonomy is used for the conflicting

NFR identification. The system does not focus on the

internal description of the usecase as well as the quality

requirements are not prioritized. But our system considers

the usecase description to identify the system interaction

by comparing it with the domain model; also trade-off

analysis is used to prioritize the quality requirements.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

93

3. Proposed System Architecture

In all the earlier works mentioned about requirements

elicitation, the process is not fully automatic. User

assistance is required in several places example pronoun

resolution, class identification etc., Also domain modeling

and extracting information from use case models have

done separately. We present i) a new methodology for

domain knowledge (functional requirements) elicitation

and developing ontology for them, which includes

automatic reference resolution and eliminates the user

intervention as in the previous works, ii) and a new

approach for NFR preference elicitation for actors of

usecase by comparing the usecase with domain model in

our case high level class diagram. The method of

visualizing the requirements specification as ontology by

applying natural language techniques is explained in figure

1. The figure 4 tells, how to capture the NFR preference

for actor’s of usecase from domain model.

3.1 Domain Knowledge Elicitaion and Ontology

Construction

Ontologies are key elements required to enable knowledge

exploitation and information retrieval of systems.

Essentially, domain ontologies are made of sets of

concepts and the relationships that can be expressed among

those concepts. Since the building blocks of domain

ontologies are concepts and relations among concepts that

describe an application domain, NLP techniques are used

to retrieve the object-oriented concepts namely classes,

attributes, methods and relationship among the classes.

The concepts identified are represented in the form of

ontology and effectively stored in the database for easy

information retrieval. The architecture for functional

requirements elicitation and ontology representation has

the following modules, 1) Domain Knowledge Elicitor, 2)

RDF Generator 3) RDF Parse Engine 4) Data Storage and

Query Engine

3.1.1 Domain Knowledge Elicitor

The proposed methodology for domain knowledge

elicitation includes the automatic reference resolution. It

takes an input a natural language text describing the

requirements for a system and identifies the object-oriented

system elements namely classes, attributes, methods, and

relationships among the classes. “Domain Knowledge

Elicitor” does this job with the help of pre-processor,

Normalizer and NL-OOML mapper.

Pre-Processor The given input problem statement is split

into sentences to ease the further processing. Each

sentence of the input text is subjected to tagging in order to

get the parts of speech marker for every word in a sentence.

Tagging of the words is necessary to chunk the words that

form a noun or verb phrase. Also the words that are

candidates for classes, attributes, methods, use cases and

actors have to be chosen depending upon their tags. We

make use of the Brill tagger for this purpose. The noun and

the verb phrases are identified based on simple phrasal

grammars. In the sentence, the subjects and objects

sometimes happen to be pronouns. In that case, they have

to be resolved to their respective noun phrases. We make

use of the Mitkov’s ‘Pronoun resolution with limited

knowledge’ algorithm for this task and get all pronouns

resolved.

Message Records & Object Oriented Design Models

RDF Generator

Resource

Description

Framework

General

architecture

for text

Ontology for

SRS

RDF Parse

Engine

Data Store Query

Engine

Result

User Input

Software Requirement Specification

Domain Knowledge Elicitor

Normalizer Catalog

Syntactic

Structures

NL-OOML

Mapper

 Preprocessor

Sentence splitter Tagger

Chunker Reference Resolver

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

94

Fig. 1 Visualizing the Requirements Specification as Ontology

Normalizer The text has to be simplified into the

following constructs to ease the task of mapping the words

onto the Object Oriented system constituents.

Conditional: Conditional syntax is

If Condition transaction else otherTranstions

The else clause is optional.

Iteration: Iteration syntax is

While condition transactions endwhile.

Concurrency: Concurrency syntax is

Start concurrency transactionl

concurrent transaction2

...

concurrent transactionk

end concurrency

which executes transactionl, transaction2, . . . ,

transactionk concurrently.

All the transaction statements are simple. To break

compound sentence into simple first the sentence is

checked whether it contains any conjunction or not by

tracing the POS tags appended to each word. If so, the

number of conjunctions present is identified and split into

sentences that are between the conjunctions. A number of

patterns using conjunctions and their corresponding splits

in the sentences are stored in a file. Each sentence is

checked against the stored patterns and the corresponding

split up is made. For example, the statement, “If the source

and the destination of the request fall on the same route,

the receptionist checks the seat that are available and

issues the ticket to the passenger and blocks the seat”, is

identified as control statement using the keywords ‘if’. The

transactions of the control statements are simplified by

breaking the conjunction and transferred to following

conditional after reference resolution,

If the source and the destination of the request fall on the

same route

The receptionist checks the seat.

The receptionist issues the ticket to the passenger

The receptionist blocks the seat

End if

NLOOML Mapper The NL-OOML mapper accepts a

normalized problem description as input. It recognizes

nouns, verbs, adjectives, and prepositions in a sentence

from the preprocessor. It uses catalog to store user’s

instructions on how to translate some sentences. It

translates each normalized sentence into a message record,

which records a message sender, a receiver, and a message

according to the table 1. Simple rule based approach is

followed for identifying actors, usecases, class attributes

etc., List of rules are given below:

1: Translating Nouns to Classes. A noun, which does not

have any attributes, need not be proposed as a class.

2: Translating Noun-Noun to Class-Property according to

position. When two nouns appear in sequence in the text,

the first Noun is translated to Class and the following

Noun is translated to properties of this Class.

3: A simple heuristic is used to decide which nouns are

classes, and which form the attribute. In Noun-Noun, if the

first noun is already been chosen as the class then the

second noun is taken as the attribute. The attributes are

decided based on the verb phrase.

4: Translating the lexical Verb of a non-personal noun to a

Method of this noun. Decide the sender, receiver classes

and argument to this method based on the Table 1.

5: Translating the lexical Verb of a personal noun to a use

case (or part of a use case) linked with an actor defined by

this noun.

6: Matching a Noun to a Personal Pronoun as the nouns of

previous sentence.

Table 1: Syntactic Structures of Simple Sentences

No. Syntactic Structure Sender Receiver Action Argument

1 subject verb object subject object verb -

2 subject verb object (to) verb1 (object1) subject object verb1 (+object1) (object1)

3 subject verb object participle (object1) subject object participle verb

(+object1)

(object1)

4 subject verb object adjective subject object be + adjective -

5 subject verb object conjunctive to

verb1 (object1)

 subject verb object, verb1

(+object1)

6 subject verb gerund (object) subject verb gerund verb

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

95

(+object)

7 subject verb object preposition object1 subject object1 verb + object (object)

8 subject verb object object1 subject object verb object1

9 subject verb (for) complement subject verb complement

10 subject verb subject verb -

11 subject be predicative subject be + predicative -

3.1.2 RDF Generator

After successful completion of domain knowledge

extraction, the RDF Generator generates the RDF

(Resource Description Framework) file using the domain

knowledge elicited from the software requirement

specification. The Generator concentrates on the class,

subclass and properties of the RDF. The sample RDF

code generated for the requirements specification of

hospital management system is shown in figure 2. The

RDF generated is fed as input to the GATE tool to

visualize the RDF as ontology. The ontology for the

hospital management system is shown in figure 3.

3.1.3 RDF Parse Engine

The RDF generated is parsed to extract the information

and stored in the dynamic database. The Parsing

Algorithm is a generalized one, which takes care of the

classes, subclasses and properties. The parsing algorithm

of RDF is given below;

1. The complete RDF file of the domain is read and

stored in a string.

2. The String Tokenizer is used for splitting the RDF

file into tokens

3. Finding out if there exist more tokens after

tokenizing.

4. Check the each token.

5. If the token is rdfs :class then the rdf:ID is extracted

by identifying the index position of the “ and stored

in the database.

6. If the token is rdfs:subclassof then the resource is

extracted by identifying the index position of # and

stored in the database.

7. If the token is a comment then the next token is

extracted and stored in the database.

8. The Process is done until the end of class is

identified and all the extracted information is stored

in the database.

9. The Properties is extracted and the domain and the

range value are stored in the database.

Figure 2. Sample RDF Code

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

96

Manuscript received August 25, 2006.

Manuscript revised August 30 , 2006.

Figure 3. Ontology

3.1.4 Data Storage and Querying

The database is designed effectively to store domain

information extracted and maintain the data in three

tables. First table stores each class along with its

subclasses and descriptions. The second one stores the

properties along with its domain. The third one stores the

range of the properties along with domain for which the

properties belongs. The database can be queried to get

the details like what kind of relationships holds between

the classes and what can be the attribute value etc.,

3.2 Elicitation

of Non- Functional

Requirement

Preference for Actors of

Usecase from Domain

Model

In the earlier works

[22][23][26][28][29], domain modeling and extracting

information from usecase models have done separately.

We have suggested a method of combining both, and

extracting the variants in usecase and combining with

domain model and non-functional taxonomy to derive the

actor’s preference. The system architecture is shown in

Figure 4.

Fig. 4 System Architecture to capture the NFR preference.

 Usecase and Domain model are structured using the

XML editor to the Data Type Definition (DTD) format.

The editor checks the syntax of both the usecase and

domain model with the specified structure. They are

represented with specified notations for easy traceability

of the usecase description with the domain model. The

syntactic structure of the usecase description is validated

using natural language processing. The various syntactic

structures used in usecase and domain model are listed in

the Table 4. The Usecase-Domain Mapping Wizard

extracts the entities, which are not present in the domain

model from the usecase description by mapping the

usecase with domain model. The usecase follows the

below structure.

Title: a label that uniquely identifies the use case within

the usecase model.

Primary Actor: the actor that initiates the use case.

Participants: other actors participating in the use case.

Goal: primary actor expectation at the successful

completion of the use case.

Precondition: condition that must hold before an

instance of usecase can be executed.

Usecase

Editor

Domain

Model

Editor

Usecase-Domain

Mapping Wizard

Actor Events

Elicitor

NFR Extractor Actor

Preference

Goal-

based

question

naires

NFR Prioritiser NFR

taxonomy

Non-Functional requirements for the actors

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

97

Postcondition: condition that must be true at the end of a

'successful' execution of an instance of the usecase.

Steps: Sequence of steps involved in the usecase along

with extension.

Extensions: a set of step extensions that applies to all the

steps in the use case.

Also it captures the non-existing actors, operations and

conditional statements. Then updates the domain model

using the reverse engineering wizard supported by the

UML plug-in. The wizard uses the structured usecase and

domain concept. Usecase editor and domain editor are

used for this purpose. ‘Actor Event Elicitor’ maps the

Usecase with the domain model based on the pre-

conditions of the usecase. On successful completion the

precondition states are withdrawn. The state chart for the

entities, which are mapped with the domain model, is

generated then. The state chart contains entries like “1 ---

[insert card]--> 2”, meaning that from state 1 it goes to

state 2 on performing the event ‘insert card’. From the

state chart the events related to the actors alone are

identified. ‘NFR Extractor’ generates the non-functional

requirements for the actor events with the help of the

actor preference and goal-based questionnaires. Actor

preference is a matrix of actor versus event. The matrix

entries tell whether the actor can perform the specified

event or not. In goal-based questionnaires all the events

are embedded with possible questions, which helps to

identify the quality requirements. Sample actor

preference matrix and goal-based questionnaires are

shown in the Table 2. and Table 3. respectively. ‘NFR

Prioritizer’ prioritizes the identified non-functional

requirements based on the trade-off analysis. The results

are shown in Fig. 5. This is done by the inference engine,

which in turn makes use of the NFR taxonomy. In NFR

taxonomy, all the NFRs are associated with other

conflicting and dependable NFRs.

Table 2: Sample Actor Preference Matrix

Events Patient User Doctor Nurse

Triggers

alarm

Yes No Yes Yes

Press logout

button

Yes Yes Yes Yes

Enter vital

signs

Yes No Yes Yes

Insert Card Yes Yes Yes Yes

Connect

cables

No No Yes Yes

Table 3: Sample Goal-Based Questionnaires

Events Preference NFR

Insert card Card Expired Security

Enter pin Invalid pin number Security

Enter pin Provide proper human

computer interface

Usability

Table 4: Syntactic Structures used in Usecases and Domain Model

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

98

Statements Syntax Sample Description

simple [Determinant] entity

verb value

User identification is valid The value of the entity ‘user identification’ is

‘valid’

NO/NOT simple Not User identification is

valid

The value of the entity ‘user identification’ is

‘not valid’

complex

[NO/NOT] simple

AND/OR [NO/NOT]

simple

User identification is invalid

AND User number of

attempts is equal to 4

The value of the entity ‘user identification’ is

‘invalid’ and the value of the entity ‘user

number of attempts’ is ‘equal to 4’

“ANY” “ON” entity [*]

ANY ON user* This refers to all the conditions with “User” as

the entity (e.g. “User is logged in”), but does

not include conditions like “User Card” or

“User identification” which are different entities

associated with User

ANY statement

“ANY” “ON” entity

ANY ON user This refers to all the conditions with “User” as

the entity (e.g. “User is logged in”), also

includes conditions like “User Card” or “User

identification” if present.

action_verb [action_object] Validate user identification “validate” is the action verb and the action

object is “user identification” which is an

attribute of concept “User”.

BEFORE 60 sec, USER

enters pin

‘Before 60 sec’ is the delay specification,’User’

is the entity ,’enters pin’ is the

operation_reference

Operation declaration

[delay_specification]

[condition_statement]

[determinant]

 entity operation_reference
ATM asks user validation to

the Bank

ATM is an entity.

‘asks user validation to the bank’ is operation_

reference

operation_reference conjugated_action_verb

[(binding_word)+] action_object

[action_participant]

asks user validation to the

bank

‘Validation’ is the conjugated action verb, ‘to’

is the binding word, ‘bank’ is the action_object

condition_statement “IF” simple/complex “THEN” IF User Identification is

valid THEN, ATM displays

operation menu

The simple statement ‘User identification is

valid’ is taken as the condition

branch [delay_specification]

[condition_statement] “GOTO”

[“STEP”] step_reference

Go to Step 2 Control transferred to step number 2

The NFR taxonomy looks like,

Usability#Simplicity+#Accessibility+#Installability+#Op

erability+#Maintainability

It states that simplicity, accessibility, installability and

operability are directly proportional and maintainability

is indirectly proportional with usability.

4. Results & Discussion

The entire system was implemented using JAVA and the

‘Domain Knowledge Elicitor’ was validated using 100

problem samples each of around 500 lines. The result

produced by the system was compared with that of the

human output. The human outputs were the results that

were obtained by conducting the noun-verb analysis on

the text. It was considered as the baseline and taken as

expert judgment. The system does not miss to identify

any of the classes and methods. But approximately

12.4% of additional classes and 7.4% of additional

methods are identified in the entire sample taken, those

that are removed by human by intuition that they may not

be classes. Since system lacks that knowledge, they are

listed as classes. The missed out methods occur only if

the tagger assigns a wrong tag to the word. Also the

system perfectly identifies all the attributes, and actors

with out any additional, missed or miss assignments.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

99

Fig. 5 Trade-off Analysis.

The acquired domain knowledge is visualized as

ontology and stored in a database, which makes the

retrieval of information quick and easy. We have tried to

bring out a generic system in which the RDF is generated

for all the SRS irrespective of the domain.

The non-functional requirements elicitation part also has

been implemented using JAVA and a plug in to eclipse

for reverse modelling. UML interface ‘nsuml’ is used to

generate the state machines. This is used to synthesize the

user behaviour of the system. The editor is created for

generating both use case description and domain model

description. The system is tested for the following

domains ATM, Retailing system, Patient Monitoring

System and E-voting system. The system will act

according to the user’s preference given in the non-

functional requirement taxonomy.

The usecase and domain model makes use of XML editor

to create data type definition (DTD) to store the model.

The XML reader and writer are used to import and

export the files for processing. The use case and domain

model make use of structured text, which has been

checked for the syntax. The wordnet is used as an

interface to check for valid parts of speech.

Domain model makes use of UML diagram descriptions.

The reverse engineering wizard is used to check usecase

and domain maps. Workbench.jar, jface.jar, jdom.jar,

runtime.jar are all used to implement the domain

mapping and extracting. The prioritization of the non-

functional requirement is mapped to goal questions,

which are stored in Microsoft Access database. The

conflicts are stored in a separate data file. The conflicts

are resolved using inference engine created in matlab.

The inference engine calculates the preference from the

given user weights for each non-functional requirement.

The inference engine is designed to perform trade-off

analysis for the non-functional requirements such as

usability, performance, maintainability, security,

correctness, authorization, reliability and availability.

5. Conclusions and Future Work

The paper presents an approach to develop ontology for

the natural language requirement specification text by

acquiring domain knowledge and an approach for

deriving non-functional requirements by comparing

usecase description with the domain model . Natural

language processing techniques and set of rules are used

to elicit domain knowledge from the requirement

specification. The deficiencies in the tagger and the

reference resolver present in the preprocessor can be

overcome by building a knowledge base which can also

improve the effectiveness of generation of the system

elements. For non-functional requirements elicitation, the

system takes a usecase written in a restricted form of

natural language and generates a state model that

integrates the behaviour specified by the usecase. The

invariants and its initiators are captured from the usecase

and domain model. The conflicting non-functional

requirements are derived from the NFR taxonomy and

they are prioritized using trade-off analysis. The system

can be extended to automate the trade-off analysis by

using an intelligent system.

1. (Abbot.R.J., 1983), “Program Design by informal

English descriptions”. Communications of the ACM,

vol.26, 882 – 894.

2. (Akira Osada, Daigo Ozawa, Haruhiko Kaiya, Kenji

Kaijiri, 2005), "Modelling Software Characteristics

and Their Correlations in A Specific Domain by

Comparing Existing Similar Systems," QSIC, pp.

215-222, Fifth International Conference on Quality

Software (QSIC'05), 2005.

3. (Brill E., 1992): “A simple rule-based part-of-speech

tagger”. Proceedings of Third ACL Conference on

Applied Natural Language Processing, Trento, Italy,

152-155

4. (Dong Liu, Kalaivani Subramaniam, Behrouz H. Far,

Armin Eberlein, 2003), “Automating transition from

use cases to class model”, MSc Thesis, University of

Calgary.

5. (Fensel D., 2000), “The semantic web and its

languages”, IEEE Computer Society 15, 6

(November /December), pp.67-73.

6. (Fensel D., Horrocks I., Harmelen F., Decker S.,

Erdmann M., Klein M. 2000), “OIL in a nutshell”,

Proceedings of the European Knowledge

Acquisition Conference, (EKAW-2000), R. Dieng et

al. (eds), Lecture Notes in Artificial Intelligenc,

LNAI, Springer-Verlag, October.

7. (Fonseca, F. Egenhofer M., Agouris, P., Camara G.

2002), “Using Ontologies for Integrated Geographic

Information Systems”, Transactions in GIS, -(6):3

8. (T. R. Gruber, 1993), “A Translation Approach to

Portable Ontology Specifications”, Knowledge

Acquisition, 5(2): 199--220, 1993.

9. (Ke Li, 2005), “Towards Semi-automation in

Requirements Elicitation: mapping natural language

and object-oriented concepts”, 13th IEEE

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8, August 2006

100

International Requirements Engineering

Conference.

10. (Liwu Li, 1999), “A semi-automatic approach to

translating use cases to sequence diagrams”,

Proceedings of Technology of Object-Oriented

Languages and Systems, July, IEEE CS Press, 184 –

193

11. (María Auxilio Medina Nieto, 2003), “An Overview

of Ontologies”, Technical report, Center for

Research in Information and Automation

Technologies Interactive and Cooperative

Technologies Lab Universidad De Las Américas

Puebla – México.

12. (Mitkov. R, 1998), “Robust pronoun resolution with

limited knowledge”, Proceedings of the 18.th

International Conference on Computational

Linguistics (COLING'98)/ACL'98”,Montreal,

Canada, 869-875.

13. (Noy F. N., McGuinness D. L. 2001), Ontology

Development 101: A Guide to Creating Your First

Ontology. Stanford Knowledge Systems Laboratory

Technical Report KSL-01-05 and Stanford Medical

Informatics Technical Report SMI-2001-0880,

March.

14. (Overmyer ScottP., Lavoie.B.Rambow, 2001),

“Conceptual modelling through linguistic analysis

using LIDA”, Proceedings of the 23rd International

Conference on Software Engineering, ICSE 2001,

Toronto.

15. (Russell S., Norvig P. 1995). Artificial Intelligence:

A Modern Approach. Prentice Hall, Englewood

Cliffs, NJ.

16. (Sawyer P., P Rayson, and R Garside, 2002),

“REVERE: support for requirements synthesis from

documents”, Information Systems Frontiers Journal.

Vol.4, 343 - 353.

17. (Starlab 2003), “Systems Technology and

Applications Research Laboratory home page”,

Faculty of Sciences, Department of Computer

Science, Vrije Universiteit Brussel. Available at:

http://www.starlab.vub.ac.be/default.html

18. (Swartout B., Patil R., Knight K., Russ T. 1996),

“Toward distributed use of large-scale ontologies”,

Proceedings of the Tenth Knowledge Acquisition for

Knowledge- Based Systems Workshop, November 9-

14, Banff, Alberta, Canada.

19. (Sylvain Delisle, Ken Barker, Ismaïl Biskri, 1999),

"Object-Oriented Analysis: Getting Help from

Robust Computational Linguistic Tools, in G. Friedl,

H.C. Mayr (eds) Application of Natural Language

to Information Systems, Oesterreichische Computer

Gesellschaft, 167-172.

20. 1 Markus Nick, Klaus-Dieter Althoff, Carsten Tautz:

Facilitating the Practical Evaluation of Organizational

Memories Using the Goal-Question-Metric Technique.

KAW’99 – Twelfth Workshop on Knowledge

Acquisition, Modeling and Management 1999.

21. 2 Jane Cleland-Huang, Raffaella Settimi, Oussama

BenKhadra, Eugenia Berezhanskaya, Selvia Christina:

Goal-Centric Traceability for Managing Non-

Functional Requirements. ACM ICSE’05 May 15–21,

2005

22. 3 Annie I. Anton, Colin Potts: The Use of Goals to

Surface Requirements for Evolving Systems. 20th

International Conference on Software Engineering

(ICSE98), pages 157-166, April. 1998

23. 4 Luiz Marcio Cysneiros, and Julio Cesar Sampaio

do Prado Leite: Nonfunctional Requirements: From

Elicitation to Conceptual Models. IEEE Transactions

On Software Engineering, Vol. 30, No. 5, May 2004

24. 5 Xiaoqing Frank Liu, John Yen: An Analytic

Framework for Specifying and Analyzing Imprecise

Requirements. Proceedings of 18th International

Conference on Software Engineering (ICSE-18),

Berlin, Germany, pp 60-69, March 25-30, 1996

25. 6 Martin Glinz: Rethinking the Notion of Non-

Functional Requirements. Proceedings of the Third

World Congress for Software Quality (3WCSQ 2005),

Munich, Germany, Vol. II, 55-64

26. 7. Vittorio Cortellessa, Katerina Goseva-

Popstojanova, Ajith R. Guedem, Ahmed Hassan,

Rania Elnaggar, Walid Abdelmoez, Hany H. Ammar:

Model-Based Performance Risk Analysis. IEEE

Transactions On Software Engineering, Vol.31, No.1,

January 2005

27. 8. Haruhiko Kaiya, Akira Osada, Kenji Kaijiri:

Identifying Stakeholders and Their Preferences about

NFR by Comparing Use Case Diagrams of Several

Existing Systems. Proceedings of the 12th IEEE

International Requirements Engineering Conference

(RE’04) IEEE 2004

28. 9. John Yen, W. Amos Tiao, and Jianwen Yin:

STAR: A Tool for Analyzing Imprecise Requirements.

Proceedings of 1998 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE '98), Anchorage,

Alaska, pp. 863-868, May 4-9, 1998

29. 10. Andreas Gregoriades and Alistair Sutcliffe:

Scenario-Based Assessment of Nonfunctional

Requirements. IEEE Transactions On Software

Engineering, Vol. 31, No. 5, May 2005.

