
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

151

Manuscript received August 5, 2006.
Manuscript revised August 25, 2006.

 VLIW Cryptoprocessor: Architecture and Performance in FPGAs

Fábio Dacêncio Pereira,1,2 , Edward David Moreno Ordonez 1,2, and Rodolfo Barros Chiaramonte 2

1 University of São Paulo-USP/POLI, SP, Brazil,
2University Center Euripides of Marília-UNIVEM, SP, Brazil

Summary
This work is intended for presenting the proposal and
implementation of a VLIW cryptoprocessor, as well as discussing
architecture details and specifying its instruction set. The
cryptoprocessor was designed to execute symmetric
cryptography algorithms preferentially. To do so, special modules
was described in order to increase the performance and simplify
the source program. The cryptoprocessor was described using
VHDL language, and a prototype was synthesized and
implemented in a FPGA Virtex II Pro generating occupation
statistic data and temporary performance, both presented in this
paper.
 This cryptoprocessor supports a number of symmetric
algorithms including current ones which uses 128-bit keys or
more. It is important to stress that the special modules which
makes the cryptoprocessor different are not specific to a certain
cryptography algorithm, and they were projected in order to be
preconfigured according to the characteristics of the algorithm to
be executed
Key words:
VLIW Architecture, cryptoprocessor, FPGAs and performance
statistics.

1. Introduction

Security to the transmission of information is becoming as
much a vital issue and requires the development of new
techniques and algorithms of information cryptography in
order to promote a safe and fast transmission environment.
One of the tools to obtain such level of reliable security is
the cryptography, a process in which a legible text is
converted into a senseless writing by means of a key or
password, making it possible to recover original
information from these senseless text and appropriate key.
Basically there are to types of cryptography: symmetric
and asymmetric.
 The former uses the same key on the ciphering and
deciphering processes, and the latter contains two keys
(public and private), when generally speaking every text
ciphered with the public key can only be deciphered with
the private key.

 In this work it is presented the proposal and
implementation of a VLIW cryptoprocessor dedicated to
the execution of symmetric cryptographic algorithms using
a FPGA technology. It is also presented the results
obtained in the implementation in FPGA discussing
architectural details and specifying its instructions set
It was carried a detailed study on the algorithms RC6 [10],
Serpent[13], Cast-128 [21], MARS[12], Twofish [14],
Magenta [11], Frog [15], BlowFish [16] and IDEA [20]
highlighting the algorithms DES [7], AES [8] and RC5[9].
The major goal of this study was identifying and
quantifying the most frequently performed operations and
the specific operations of each algorithm.
 In the end of this research, it is shown the factors
which influence the cryptoprocessor architecture, defining
the proposed characteristics such as registers numbers,
logical and arithmetical unit operations, buffers, special
modules, among others. Besides, there is the significative
occurrence of operations such as dislocation, rotation,
permutation, bit substitution and the logical operation
XOR (or exclusive).
 From this study, important characteristic of the
cryptoprocessor such as modules and special instructions
were projected and implemented in FPGA. The main goal
was projecting architecture to support the most number of
symmetric algorithms and reach a great general
performance.
 It supports a number of symmetric algorithms
including current ones which uses 128-bit keys or more. It
is important to stress that the special modules which
makes the cryptoprocessor different are not specific to a
certain cryptography algorithm, and they were projected in
order to be preconfigured according to the characteristics
of the algorithm to be executed. Such characteristic
highlights the first quality of the cryptoprocessor, that is
the quantity of algorithms supported.

2. Reasons for VLIW Architecture

VLIW architecture can be defined from two concepts: (i)
the horizontal microcode and (ii) the superscalar
processing. An average VLIW machine contains words
with hundreds of bits while the VLIW cryptoprocessor
herein proposed contains 160 bits per word. The

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

152

operations to be simultaneously executed are stored in one
VLIW word. The horizontal microcode of each VLIW
word is constituted by opcodes and data which specify the
executions to be executed in different functional units.
 The VLIW architecture tracks a word down a memory
address, and each functional unit executes one of the
different operations in the VLIW word. The main
advantage of a VLIW architecture are:

• Architecture highly regular and compiler exposed
with little restriction as to the access to the
processor resources.

• The compiler knows in advance all of the
operation effects upon the architecture.

• Multiple operation dispatch.
• It maintains the simple control hardware,

theoretically allowing a smaller clock cycle.

 Echeloning the instructions in compilation level
makes the structure easier for the parallelism is not defined
in hardware (execution time), and such simplification
theoretically reduces the clock cycle time, optimizing the
process as a whole. Two of the VLIW model main
advantages are:

• The incorrect prevision of the route taken in
conditional pathways may affect its performance
considerably. Once the prevision is performed
statically, important information available in
execution time is completely neglected. In this
work we highlight the execution of symmetric
cryptographic algorithms. Thus, such advantage
does not have any effect upon performance for
the algorithms are static codes not changed on
execution time.

• Inefficiency in programs with large data
dependency. In this case, most part of the
instructions cannot execute in parallel, causing
harm to the system performance. It is possible to
identify when there is not much data dependency
by verifying the occurrence of many NOPs on the
program. Such disadvantage has an effect on our
system performance, and the data dependency
varies from algorithm to algorithm.

 The choice of the VLIW architecture model is
justified by the need of reaching a distinguished
performance with a hardware composed by independents
modules which together can be easily controlled and
coordinated to the parallel execution of instructions.
Unlike other architectures with these characteristics, the
VLIW architecture does not need a sophisticated hardware
to control the information flow, generating a relatively
simplified hardware when compared to other architectures
such as superscalar and superpipeline.
 The symmetric cryptographic algorithms are
constituted of a sequency of static operations. It reduces

the occurrence of random events in execution time which
may cause harm to the cryptoprocessor performance that is
not prepared to deal with this kind of execution. It does not
mean that there will be an error, but will only cause harm
to the execution performance.

3. Cryptoprocessor VLIW Architecture

Some characteristics of the cryptoprocessor are shown as
follows. They will al be discussed in the next sections.
VLIW architecture constituted by the Harvard+Pipeline
model as a RISC instruction set.

• 160-bit VLIW word
• Data and instruction cache (Harvard)
• Eight 128-bit functional units (UFCs)
• Up to 4 instructions executing in an only cycle
• 16 permutations per cycle
• 3 global stage-pipeline
• 25 instructions
• 24 registers

 The 160-bit VLIW word stores up to 4 instructions of
40 bits each, all to be executed in parallel. The parallelism
over 4 instructions makes the hardware more complex,
increasing the machine cycle time. Besides, the occurrence
over 4 instructions executed in parallel would not be
common, since the data dependency would inhibit this
possibility as well as jeopardizing the cryptoprocessor’s
general performance.
 Some instruction with more frequent occurrences such
as shifting, rotating, and bits permutation and substitution
make important the creation of dedicated and
distinguished modules in order to reach a better
performance.
 The bits permutation and substitution module can act
in one only bit or in a 32-bit block, reducing the number of
instructions it takes to execute these operations. The
permutation and substitution function units were designed
to reach a satisfactory performance and support the most
number of algorithms. The creation of independents
LOAD/STORE modules and movement among registers
and pathways is important in processors which adopt the
Harvard model and its different memories for instructions
and data.
 Figure 1 illustrates the VLIW cryptoprocessor top-
level architecture, which is constituted by four parts: (i)
instruction dispatcher, (ii) functional units, (iii) register
bank and (iv) control unit. It is possible to note two cache
memories: instruction (I-CACHE) and data (D-CACHE).
The former stores the cryptography algorithms described
in assembly, while the latter stores information such as the
S-BOXES content of a certain algorithm, as well as the
clear text and the results of the operation performed by the
cryptoprocessor.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

153

Figure 1 - VLIW Cryptoprocessor top-level architecture

I-CACHE size is 16x160, storing little more than 1
Mbyte of information and allowing the storage of several
cryptographic algorithms. D-CACHE size is 16x128,
storing 1 Mbyte. In the figure 1, the memories are
considered an external part of the cryptoprocessor for in
this prototype the memories are not implemented in FPGA.
It would not be feasible to describe memories of such
dimensions in these devices.

The instruction dispatcher module is responsible for the
directing of each instruction in a VLIW word for the
execution. In principle, this function would require a
sophisticated hardware in order to make decisions, but in
the VLIW architecture the dispatcher does not comprise
functions of execution time decision-making. That is, the
definition of which instructions will be executed and
which will be the unit function is total responsibility of the
compiler. This makes the hardware more simple and
increase the execution speed.

Figure 1 shows the eight functional units capable of
executing a set of operations selected by the instruction
opcodes:

• UF1 e UF2 – ALU: Arithmetical and Logical Unit
• UF3 – 1,2,3, 8 and 32-bit logical shifter
• UF4 - 1,2,4, 8 and 32-bit rotator
• UF5 - Permutation (P-BOX)
• UF6 - Substitution (S-BOX)
• UF7 – Load/Store (responsible for the memory

search and writing
• UF8 – MOV/Branches
The functional units are responsible for the execution of

instructions conducted by the dispatcher module. Each unit
is able to decoding the instruction to be executed. The
execution among the functional units is parallel. In a
certain execution cycle, up to four functional units can be
in execution, once the maximum number of instructions in

a VLIW word is of four instructions. Table 1 presents the
functional units and the main registers they use.

Table 1 – Main registers used by the functional units

Functional Unit Main Registers

ALU 1 A1 e B1
ALU 2 A2 e B2
Shifter A3
Rotator A4
Permutation A5, B5, X
Substitution A6, B6, SPC
Load/Store DPC, IPC
MOV/Branches JPC

The 128-bit A, B, and X registers store operands and

functional units results, while 128-bit registers and
operators optimize the symmetric algorithms descriptions
which operate with 128-bit text blocks and keys or more.
Thus, it is possible to perform 128-bit operations in only
one cycle and store them on the appropriate register,
optimizing the execution of the implemented algorithm.

The 16-bit counter registers (SPC, DPC, JPC and IPC)
are responsible for the addressing of the D-CACHE and I-
CACHE memories. For all operations, the result is stored
on the A register. Table 2 shows all the registers organized
according to the function.

Table 2 – Registers organized according to the function

Function Registers

General Registers X, A1, B1, A2, B2, A3, A4,
A5, B5, A6, B6

Counters Registers PERAC, AC1, AC2, SPC,
DPC, IPC, JPC

Configuration
Registers

SBOXEND, SBOXCOL,
SBOXQ, TBO, TBD, B

Table 2 shows the register bank totalizing 24 registers,

each functional unit making use of one or more different
registers. The whole architecture is controlled by the
control unit, which organizes the execution flow, including
the three-stage pipeline.

4. ISA of VLIW Cryptoprocessor

 Our cryptoprocessor instruction set follows the RISC
model in which, with only 25 instructions, it is possible to
describe most part of the symmetric cryptography

C
O

N
T

R
O

L
 U

N
IT

I - CACH

DISPATCHER

CRYPTOPROCESSOR

REGISTERS

UF1 UF2 UF3 UF4 UF5 UF6 UF7

D - CACH
E

UF 8

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

154

algorithms, as shown in table 3. The instructions can be
divided into four classes:
• Logical and Arithmetical (128 bits): AND, OR, XOR,

ADD, SUB, SHL, SHR, ROL, ROR, INC, DEC, NOT,
CLR, NOP.

• Movement: LOAD, STORE, MOV.
• Pathways: JMP, JZ, JL, JG.
• Special: PERINIC, PERBIT, SBOXINIC, SBOX.

The special instructions allow the access to the
cryptoprocessor special module. Each instruction group is
executed by a specific functional unit. It is important to
stress that, from the eight functional units, two are
designed to execute special instructions such as
permutation and substitution. There are also functional
units suitable for instructions which deserve some
attention from the cryptoprocessor project such as the bits
rotation frequent in symmetric cryptography algorithms.
The relation between functional unit and instructions is
described in table 3.

Table 3 – Relation between functional unit and instructions

Functional Unit Instructions

ULA 1 e 2 AND,OR, XOR, ADD, SUB,
INC, DEC, NOT, CLR, NOP

Shifter SHL, SHR
Rotator ROR, ROL

Permutation PERINIC, PERBIT
Substitution SBOXINIC, SBOX
Load/Store LOAD, STORE

MOV/Branch MOV, JMP, JZ , JG, JL

In general, each VLIW word is stores in one only
memory position, i.e., accessing a word takes only one
memory address. In this cryptoprocessor, each word has
160 bits. The VLIW word contains four 40-bit instructions
simultaneously executed. Some of them occupy all the
VLIW word, that is the case of SBOXINIC and PERBIT.
Figure 2 shows the VLIW word format.

Figure 2 - VLIW word format.

Some instructions are exclusive, i.e., they cannot occur

in the same VLIW word. More details as follows.

4.1. Exclusive Instructions

The exclusive instructions access the data cache and data
registers. In order to maintain the coherence and integrity
to the access of these devices, and it is not possible to
execute more than one exclusive instruction in the same
VLIW word. They are:
• LOAD – Loads the data of a specific memory address

(D-CACHE)
• STORE – Stores memory data (D-CACHE)
• SBOX – Replaces data (D-CACHE).

These are exclusive instructions because in this case it
is not physically possible to access the same memory
simultaneously (D-CACHE).
Especial case: the MOV instruction moves data between
registers and one cycle. Depending on the context, this
instruction can generate incoherence and jeopardize the
data and execution flow integrity. In this manner, the
MOV instruction can be considered exclusive in some
cases:

Example: VLIW word [ADD A1, B1 | INC A2 | MOV
A1,A3 | NOP]

This word contains four instructions (ADD, INC, MOV
e NOP) not executed simultaneously in one cycle. There is
incoherence, once the A1 value may not be required after
the execution. That is because the ADD and MOV
instructions modify the A1 content, and the latter
predominates. Therefore, in the end of the execution, A1
stores the value included in A3 (MOV A1, A3). In this
context, the MOV instructions can be considered exclusive,
and its execution is indicated in cycle prior or after the
ADD instructions, according to the result one wants to
obtain.

4.2. Special Instructions

Special instructions fit the characteristic pertaining to
symmetric cryptography algorithms, such as bit
permutation and substitution. They are special because
they are in most part of the symmetric algorithms and
holds functional units dedicated to execute them in the
VLIW cryptoprocessor, although they are not in the GPP.
Each special instruction can be considered a
macroinstruction, that is, they are simple but execute a
complex task constituted by several operations in one
machine cycle.

In order to support the most number of algorithms it
was necessary to define initializing parameters which
configure the execution mode of the special instructions,
as they are:

Permutation Instructions – PERINIC – Permutation
instruction starting / PERBIT – Bits permutation (16 e
permutations per cycle)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

155

Substitution Instructions – SBOXINIC – Substitution
instruction starting / SBOX – bits substitution.
SBOXINIC and PERBIT are 160-bit instructions

The permutation operation performs the permutation of

bits predefined in a static permutation table by means of a
specific functional unit (UF5). The detailed functioning of
the substitution instructions is presented in the following
section.

5. Substitution Operation (S-Box)

The substitution box (S-BOX) is a data set which
constitutes a vector or bidimensional matrix. Every S-
BOX is constituted by a bits input (Input S-BOX) which
determines the substitution data location, and by a bits
output (Output S-BOX) which returns the substitution data
value. The substitution data will superscribe the bits used
in the S-BOX input.

The SBOX instruction performs the substitution of
predetermined bits. By means of a search by line and
column, it is possible to identify the address where the
substitution data is stored, and then retake and store it in
the appropriate position in the resulting register,
performing the substitution.

This process is executed based on some configurable
parameters necessary to calculate the memory address
where the substitution data is located. Some parameters
may vary according to the cryptographic algorithm
described, therefore the need of configurable parameters.
Table 4 shows the result of a study carried on this project
on how the S-BOX can range from algorithm to algorithm.

Preliminary studies showed that the following
parameters are vital to implement any symmetric
cryptographic algorithms S-BOX:
• The number of SBOXES of a certain algorithm
• The number of S-BOX input bits
• The number of S-BOX output bits
• The bits which determine the S-BOX line and column

This variation regarding the size of the S-BOXES, the
input and output bits, and the quantity of S-BOXES makes
the hardware project relatively complex. A hardware
dedicated to each S-BOX described in table 4 may add
speed to the circuit, but it is necessary a great number of
components to implement it.

Table 4 – Comparison between different cryptography algorithms
SBOXES.

Algorithm NSBOX Input Output LIN COL
DES 8 6 4 1 e 6 2,3,4,5
AES 1 8 8 1,2,3,4 5,6,7,8
Serpent 8 4 4 -- 1,2,3,4
Cast-128 4 8 32 -- 1 - 8
MARS 2 8 32 -- 1 - 8
Twofish 8 4 4 -- 1 - 4
Magenta 1 8 8 -- 1 - 8
Frog 1 8 8 -- 1 - 8
BlowFish 4 8 32 -- 1 - 8
LOKI97 2 14 8 -- 1 - 14
RC5 -- -- -- -- --
RC6 -- -- -- -- --
IDEA -- -- -- -- --

 *NSBOX – number of SBOXES
 *Input – number of S-BOX input bits
 *Output – number of S-BOX output bits
 *LIN, COL – bits which determine the S-BOX line and
column

Developing a general S-BOX which is fast and serves
most part of the symmetric algorithms is a challenging
skill. In this project we propose a solution with the aid of
configuration parameters by softwares, i.e., by means of an
instruction, the programmer is able to configure the size of
the S-BOX, input and output bits, bits which determine
line and column, as well as other parameters necessary to
configure the S-BOX required.

One of these future solutions may be the
reconfiguration in which the hardware decides if it is
necessary a new S-BOX reconfigured in execution time
(RTR – Run Time Reconfiguration) [23].

The configuration parameters are implemented by
means of the SBOXINIC instruction, and the necessary
parameters and its description is presented next:
• SBOXEND – Memory address where the S-BOX is

located. The S-BOX data is stored in the D-CACHE
memory. It is only necessary to indicate from which
address the S-BOX is started, independently from the
number of S-BOXES used by the algorithm.

• SBOXCOL – Number of columns of an S-BOX.
• SBOXQ – Quantity of elements in an S-BOX.
• TBO – size of the origin block. It represents the

quantity in bits of a substitution block. In the end, the
origin block is replaced by the destination block, even
if they are different in size. The destination block
stores the substitution result.

• LIN - Origin block bits and bytes which determine the
S-BOX address line. Each algorithm has a specific
form to establish which bits or bytes determine the
line and column of an S-BOX, where the substitution
data is located. This parameter determines the bits or
bytes for such line.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

156

• COL – Destination block bits or bytes which
determine the S-BOX address column in the same
way as LIN.

• B – Bit or byte type, when B=0 (zero), the LIN and
COL values are considered bits. When B=1, the LIN
and COL values are considered bytes.

All parameters are stored in dedicated registers, and

there is a physical limit of bits to the respective
representation of each parameter which determines the
algorithm supported by the cryptoprocessor. Table 5
shows the maximum representations of each parameter.

Table 5 – Representation limits of the substitution operation parameters

Parameter Bits Description

SBOXEN
D

16 Up to 65535 positions of memory

SBOXCO
L

16 S-boxes of up to 65535 columns

SBOXQ 16 S-boxes of up to 65535 elements

TBO 6 configure blocks origin with up to 64
elements

TBD 6 configure blocks destination with up to 64
elements

LIN 32 Configure up to 2 bytes for row

COL 32 Configure up to 2 bytes for colum

The definition of the bit number of each parameter was

based on table 4, where is possible to identify and quantify
the bits necessary to represent the maximum number of the
S-BOX columns, the maximum size of the origin and
destination block, as well as other parameters. The syntax
of the S-BOX start and configuration instruction is:

SBOXINIC, SBOXEND, SBOXCOL, SBOXQ, TBO, TBD, LIN,
COL, B

After the initiation and configuration by meand of the
SBOXINIC instruction, the operation and substitution
itself may be performed. The SBOX instruction performs
calculus necessary to localize the substitution data stored
in the D-CACHE memory, based on configurable
parameters.

The NSBOX parameter used by the instruction SBOX
identifies which S-box will be used in the substitution.
When the cryptography algorithm makes use of only one
S-BOX, the NSBOX value is zero. In order to identify an
element in the memory, it was developed a mathematic
formula which is capable of identifying the required
address by means of some configurable parameters (see
the next expression).

END = SBOXEND + (SBOXC x LIN) + COL + (SBOXQ x NSBOX)

The memory is a vector of N positions. In some

algorithms, the S-BOXES are represented by matrixes
(DES and AES), while in other algorithms they are
represented by vectors (Serpent, Magenta and others).
Independently from the S-BOX type, the formula 1 has to
be used In order to identify the position of the
correspondent memory. The value in END after the
execution represents the memory address where the
substitution data is stored. To follow, the sequency of
steps necessary to execute an S-BOX instruction:

1º step: determine the S-BOX input bits
2º step: determine the line (LIN) and column (COL)
value of the required substitution.
3º step: make use of the formula 1, generate the
physical address of the substitution data (D-CACHE)
4º step: determine the destination block and perform
the substitution

The SBOX substitution operation uses the following
registers:
• A6 – stores the final result of the substitution
• B6 – stores bits to be substituted
• Configurable parameters registers: SBOXEND,

SBOXCOL, SBOXQ, TBO,TBD, LIN, COL.
• AC1 – Accumulator 1, points to the origin block to be

substituted
• AC2 – Accumulator 2, points to the destination block

to be substituted
Every substitution, the AC1 is increased with the TBO

(tamanho do bloco de origem - origin block size) register
value, pointing to the next origin block to be replaced. The
same applies to the AC2, but this is increased with the
TBD value, pointing to the next substitution destination
block. The SBOX initiation and configuration annul the
AC1 and AC2 value.

6. VLIW Cryptoprocessor Pipeline

The VLIW cryptoprocessor holds a 3- global-stage
pipeline. Each of them is executed in one machine cycle,
including the instructions execution stage, and controlled
by a state finite machine (control unit) synchronized by the
global clock. These stages are:

• Stage 1 – Search and dispatch of instructions.

Searches a 160-bits VLIW word, received by the
instruction dispatcher which directs the predefined

Initial
address

address the
row of the

address the column of the
element

address the
SBOX of the

element

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

157

functional units. This stage is performed in one
machine cycle.

• Stage 2 – Decoding and execution. The functional
units decoding the instructions to be executed, and the
required operations are accomplished.

• Stage 3 – Writing in memory or registers. The results
are stored in the appropriate registers or in the D-
CACHE memory. The Harvard architecture allows the
simultaneous reading and writing in different
memories.

In this manner, the pipeline is filled in three machine

cycles. The pipeline is never interrupted for the treatment
of special instructions or any other one. Since all
instructions are executed in only one cycle, the description
of the hardware which controls the transition among global
stages is much easier.

7. Implementation in FPGA

This section presents the performance statistics of the
VLIW cryptoprocessor implemented in a FPGA Virtex II
Pro. The statistics can be visualized in table 6.

Table 6 - performance statistics in FPGA

Device Slices LUTs FF PT(ns) Freq.(MHz)

Virtex II Pro 1315 2484 669 8,618 116,036

 *PT- Propagation time

The cryptoprocessor delivered a great time performance,
the circuit propagation time (PT) was 8.667ns, reaching a
maximum frequency of 116 Mhz, and the cryptoprocessor
mapped on the FPGA device used 1315 Slices and 669
Flip-flops.

Tabela 7 - comparison among general-purpose processors

Proc. Freq. Memory File Time

P4 1,6 Ghz 128 MBytes 1 MByte 3,250s

P3 1.0 Ghz 256 Mbytes 1 MByte 4,256s

P3 800 Mhz 128 MBytes 1 Mbyte 5,307s

P3 500 Mhz 512 Mbytes 1 MByte 5,875s

VLIW 116 Mhz 1 Mbyte 1 MByte 0,36 s

The table 7 shows the comparison among general-

purpose processors (P3 and P4, Pentium III and IV) when
executing the DES algorithm. Such performance statistics
show that the VLIW cryptoprocessor may be 16 times
faster than a Pentium III 500 Mhz.

7.1. DES algorithm implementation

Unlike the sequential program, in VLIW processors the
instructions are represented by horizontal microcode. An
example described below presents a part of the horizontal
microcode of the DES algorithm according to the
cryptoprocessor assembly.

// expansion exchange
PERBIT 31,00,01,02,03,04,03,04,05,06,07,08,07,08,09,10
PERBIT 11,12,11,12,13,14,15,16,15,16,17,18,19,20,19,20
PERBIT 21,22,23,24,23,24,25,26,27,28,27,28,29,30,31,00

//Xor with the Ki key

MOV B1,A3 LOAD A1,[K1] XOR A1,B1 NOP

// S-BOX operation start

SBOXINIC SBOXEND,SBOXCOL,SBOXQ,TBO,TBD,LIN,COL,B
SBOX 0 NOP NOP NOP

An important piece of information is the utilization of

the VLIW cryptoprocessor processing capacity, which
indicates the utilization rate of all hardware resource
available for a certain program.

To calculate this value, it is necessary to quantify the
utilization percentage of each algorithm VLIW word. In
our situation, one VLIW word can store 4 instructions to
be executed in parallel, and the calculus consists of
quantifying the instructions per VLIW word executed. In
this case, the DES algorithm had a utilization of 61.18% of
the cryptoprocessor capacity. This result can be considered
acceptable, but not ideal – which would be 100%
hypothetically. However, it is known that such utilization
rate is not common. Each symmetric cryptography
algorithm reaches different rates, likewise it is possible to
find different descriptions for the same algorithm.

7.2. Data Dependency Impact Minimization – Loop
Pipelining

Horizontal architectures such as VLIW are characterized
by the possibility of controlling the several functional units
independently and directly, usually by means of an only
control flow, allowing the exploration of only the thinnest
level parallelism. Making use of a high number of
functional units is useful when there are data dependency
or data control.

For the same total of functional units, the performance
level can be higher if such units are divided into groups
and there are parallelism techniques with effect upon the
destination architecture. The previous studies of several
symmetric algorithms showed that most part of them
execute a high-degree-of-dependency loop among the
operations called iteration.

The number of iterations ranges from algorithm to
algorithm, once they are performed in a main loop. In case
of symmetric cryptographic algorithms, the iterations act
upon a text block of permanent size in order to cipher or
decipher the required information. For instance: the DES

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

158

algorithm act upon 64-bit blocks, and in this context, it is
possible to apply the Loop Pipelining technique efficiently,
in which the operations of different iterations can be
performed in a same VLIW state or word. In this manner,
the technique allows a better use of the resources.

In a first implementation of the DES algorithm, the
following steps were performed: (i) capture the 64-bit
block, (ii) process the 16 iterations of DES, and (iii) store
the ciphered text. Such sequency reached 61,18% of
effective hardware utilization.

The Loop Pipelining technique makes the execution
flow more complex. By the other hand, the utilization of
the available hardware resources is better, and the
architecture general performance is optimized. Figure 3
shows the technique application in order to achieve a
medium grain parallelism.

B1 B2 B3 B4

64 BITS 64 BITS 64 BITS 64 BITS

...

....

....

....

...

DES

 Figure 3 – Loop Pipelining Illustration

It is important to note on Figure 3 that the DES

algorithm can act upon four text blocks in parallel. By
using a loop pipelining, operation of different iterations
and text blocks can be executed in a same state. The
beginning of each block processing is required in different
moments (as indicated by the arrows on Figure 3),
avoiding competitiveness between two or more
instructions by the same functional unit. With this
technique, the hardware utilization rate rose significantly
from 61.18% to 82,75%. The impact can be observed in
the data shown as follows.

The implementation without the loop pipelining can
execute one 64-bit block in 380 clock cycles. Thus, the
relation cycles per ciphered bits is 5.94, while the
implementation with loop pipelining can execute up to
four 64-bit blocks in a total of 256 bits in 564 cycles. The
cycle rates per bit is 2,2 cycles/bit, that is, it is necessary
less cycles in order to cipher on bit in relation to the
previous implementation.

The impact of such optimization in the cryptoprocessor
performance, measured in ciphered text megabits per

second, was significant. The maximum ciphered was
19MBits/s, and now it is 51,23MBits/s. It is important to
highlight that there were not changes on the VLIW
cryptoprocessor architecture.

The final implementation of the VLIW Cryptoprocessor
can be visualized in figure 4 through floorplanne and
figure 5 with the real system.

Figure 4 – Floorplanner of VLIW Cryptoprocessor

Figure 5 – Real tests with the VLIW Cryptoprocessor

8. Conclusion

In this paper, we have showed and discussed a new
VLIW-based architecture, it is specifically to symmetric
cryptography algorithms. This approach was project for
using a FPGA and the preliminary results for executing the
DES algorithm are acceptable. Thus, the FPGA
cryptoprocessor implementation had a great time
performance. One of the most relevant characteristics in
this project is the number of algorithms supported by the
cryptoprocessor. Every cryptographic algorithm in table 4
can be implemented in this architecture. The next activities
of the project would be:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

159

• Optimize the architecture, adding or removing
elements such as registers and functional registers

• Study the possibility of architecture reconfiguration
• Implement a simulator and assembler for the

cryptoprocessor
• Implement a high level compiler for the

cryptoprocessor

9. References

[1] WEAVER, Chris, WU, Lisa, AUSTIN, Todd.

CryptoManiac: A Fast Flexible Architecture for Secure
Communication. Advanced Computer Architecture
Laboratory, Univ. of Michigan, U.S.A, In Proc. of ISCA-
2001 (Intl. Conf. On Computer Architecture), Goteborg,
Sweden.

[2] BURKE, Jerome, MCDONALD, John, AUSTIN, Todd.
Architectural Support for Fast Symmetric-Key
Cryptography..Advanced Computer Architecture Laboratory,
Univ. of Michigan, U.S.A, In Proc. of ASPLOS IX,
Cambridge, 2000.

[3] PAAR, Christof, CHETWYND, Brebdon, CONNOR,
Thomas, DENG, Sheng Y., MARCHANT, Steve, An
Algorithm-Agile Cryptographic Coprocessor Based on
FPGAs. ECE Dep Worcester Polytechnic Institute,
Worcester, U.S.A, The SPIE´s Symposium on Voice and
Data Communications, Sep. 1999, Bosto, U.S.A

[4] XIE, Haiyong, ZHOU, Li, BHUYAN, Laxmi. An
Architectural Analysis of Cryptographic Applications for
Network Processors. Department of Computer Science and
Engineering, Univ. of California, Riverside. IEEE First
Workshop on Network Processors, with HPCA-8, Boston,
U.S.A., Feb., 2002.

[5] PAAR2, C., Reconfigurable Hardware in Modern
Cryptography. Technical Report, Cryptography and
Information Security Group, Electrical and Computer
Engineering Department. Worcester Polytechnic
Institute,2000

[6] YEOM, Dong B., LEE, Jong S., PARK, Jong S., KIM, Sang
T. The Simulation and Implementation of Next Generation
Encryption Algorithm RIJNDAEL. In Proc. of MIC-2002.

[7] FIPS46-2, Federal Information Processing Standards
Publication 46-2, DATA ENCRYPTION STANDARD, Dec.
1993

[8] FIPS197, Federal Information Processing Standards
Publication 97, ADVANCED ENCRYPTION STANDARD
(AES), Nov. 2001.

[9] RIVEST, Ronald L.., The RC5 encryption algorithm, Fast
Software Encryption, 2nd. International Workshop, Lec.
Note in Comp. Sci. 1008, pp 86-96, Springer-Verlag, 1995).

[10] RIVEST2, Ronald L., RC6 Block Cipher, RSA Security Inc,
USA, 2000.

[11] JACOBSON, M.J., HUBERY, K., The MAGENTA Block
Cipher Algorithm,GERMANY, 1998.

[12] BURWICK, Carolynn, COPPERSMITH, Don, et al, MARS
- a candidate cipher for AES, IBM Corporation, USA, 1999.

[13] ANDERSON, Ross, BIHAM, Eli, KNUDSEN, Lars,
Serpent: A Proposal for the Advanced Encryption Standard,
England, 1998.

[14] SCHNEIER, Bruce, KELSEY, John, et al Twofish: A 128-
Bit Block Cipher,USA, 1998

[15] GEORGOUDIS, Dianelos, LEROUX, Damian, et al,
Specification of the Algorithm THE "FROG"
ENCRYPTION ALGORITHM,USA, 1998.

[16] SCHNEIER2, B., Description of a New Variable-Length
Key, 64-Bit Block Cipher (Blowfish), USA, 1994.

[17] ORDONEZ, E. D. M, PEREIRA F. D. et al. Algoritmos de
criptografia em hardware software. III Escola Regional de
Informática, RJ/ES,2003

[18] ORDONEZ2, E. D. M, PEREIRA F. D. et al. Projeto,
Desempenho e Aplicações de Sistemas Digitais em
Circuitos Programáveis (FPGAs), Bless Gráfica e Editora,
Marília/SP, 2003.

[19] PEREIRA F. D., Ordonez E. D. M, Otimização em VHDL e
Desempenho em FPGAs do Algoritmo de Criptografia DES.
Quarto Workshop em Sistemas Computacionais de Alto
Desempenho (WSCAD’2003), São Paulo, Nov. 2003.

[20] SCHNEIER3, B, "The IDEA Encryption Algorithm", Dr.
Dobb's Journal, December 1993.

[21] ADAMS, Carlisle, "The CAST-128 Encryption
Algorithm,",RFC 2144, May 1997.

[22] CANRIGHT, D., A Very Compact S-box for AES,
CHES’2005 - Workshop on Cryptographic Hardware and
Embedded Systems ,August, Edinburgh (Scotland), UK,
2005.

[23] HAGEMEYER, J., KETTELHOIT, B., PORRMANN, M.,
Dedicated Module Access in Dynamically Reconfigurable
Systems, RAW’2006 - 13th Reconfigurable Architectures
Workshop, Rhodes Island,Greece, 2006.

[24] PATERSON, K. G., YAU, A.K.L., Cryptography in Theory
and Practice: The Case of Encryption in
IPSec,Eurocrypt’2006 - 25th International Cryptology
Conference, Saint Petersburg, Russia, 2006.

[25] SEDCOLE, P., BLODGET, B., BECKER, T., ANDERSON
J., LYSAGHT, P., Modular PartialReconfiguration in Virtex
FPGAs, International Conference on Field Programmable
Logic and Applications, Finland, 2005.

Fabio Dacêncio Pereira.
Received the BS and MSc degrees
in Computing Sciences from
UNIVEM – Euripides Foundation
of Marilia – Brazil, in 2002 and
2004. He is pursuing the PhD at
the University of Sao Paulo,
working in strategies on hardware
security. He now is professor at
the IST – UNIVEM.

He is interested in reconfigurable computing, hardware
security and digital systems.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

160

Edward David Moreno.
Received the MSc. and PhD
degrees in Electrical Engineering
from University of Sao Paulo -
Brazil, in 1994 and 1998. During
1996 and 1997 he stayed as
invited researcher at University of
Toronto, Canada, and Chalmers
University of Technology,
Sweden. The research areas are:

computer architecture, reconfigurable computing, embedded
systems and hardware security.

Rodolfo Barros Chiaramonte.
Received the BS and MSc degrees
in Computing Sciences from
UNIVEM – Euripides Foundation
of Marilia – Brazil, in 2004 and
2006. He now is professor at the
IST – UNIVEM. He is interested
in information security,
distributed systems and
reconfigurable computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

