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Summary 
This work is intended for presenting the proposal and 
implementation of a VLIW cryptoprocessor, as well as discussing 
architecture details and specifying its instruction set. The 
cryptoprocessor was designed to execute symmetric 
cryptography algorithms preferentially. To do so, special modules 
was described in order to increase the performance and simplify 
the source program. The cryptoprocessor was described using 
VHDL language, and a prototype was synthesized and 
implemented in a FPGA Virtex II Pro generating occupation 
statistic data and temporary performance, both presented in this 
paper. 
 This cryptoprocessor supports a number of symmetric 
algorithms including current ones which uses 128-bit keys or 
more. It is important to stress that the special modules which 
makes the cryptoprocessor different are not specific to a certain 
cryptography algorithm, and they were projected in order to be 
preconfigured according to the characteristics of the algorithm to 
be executed 
Key words: 
VLIW Architecture, cryptoprocessor, FPGAs and performance 
statistics. 
 

1. Introduction 

Security to the transmission of information is becoming as 
much a vital issue and requires the development of new 
techniques and algorithms of information cryptography in 
order to promote a safe and fast transmission environment. 
One of the tools to obtain such level of reliable security is 
the cryptography, a process in which a legible text is 
converted into a senseless writing by means of a key or 
password, making it possible to recover original 
information from these senseless text and appropriate key.  
Basically there are to types of cryptography: symmetric 
and asymmetric.  
 The  former  uses  the  same key on the ciphering and 
deciphering processes, and the latter contains two keys 
(public and private), when generally speaking every text 
ciphered with the public key can only be deciphered with 
the private key.  
 
 
 
 

 
 In this work it is presented the proposal and 
implementation of a VLIW cryptoprocessor dedicated to 
the execution of symmetric cryptographic algorithms using 
a FPGA technology. It is also presented the results 
obtained in the implementation in FPGA discussing 
architectural details and specifying its instructions set 
It was carried a detailed study on the  algorithms RC6 [10], 
Serpent[13], Cast-128 [21], MARS[12], Twofish [14], 
Magenta [11], Frog [15], BlowFish [16] and IDEA [20]  
highlighting the algorithms DES [7], AES [8] and RC5[9]. 
The major goal of this study was identifying and 
quantifying the most frequently performed operations and 
the specific operations of each algorithm.  
 In the end of this research, it is shown the factors 
which influence the cryptoprocessor architecture, defining 
the proposed characteristics such as registers numbers, 
logical and arithmetical unit operations, buffers, special 
modules, among others. Besides, there is the significative 
occurrence of operations such as dislocation, rotation, 
permutation, bit substitution and the logical operation 
XOR (or exclusive). 
 From this study, important characteristic of the 
cryptoprocessor such as modules and special instructions 
were projected and implemented in FPGA. The main goal 
was projecting architecture to support the most number of 
symmetric algorithms and reach a great general 
performance. 
 It supports a number of symmetric algorithms 
including current ones which uses 128-bit keys or more. It 
is important to stress that the special modules which 
makes the cryptoprocessor different are not specific to a 
certain cryptography algorithm, and they were projected in 
order to be preconfigured according to the characteristics 
of the algorithm to be executed. Such characteristic 
highlights the first quality of the cryptoprocessor, that is 
the quantity of algorithms supported. 
 

2. Reasons for VLIW Architecture 

VLIW architecture can be defined from two concepts: (i) 
the horizontal microcode and (ii) the superscalar 
processing. An average VLIW machine contains words 
with hundreds of bits while the VLIW cryptoprocessor 
herein proposed contains 160 bits per word. The 
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operations to be simultaneously executed are stored in one 
VLIW word. The horizontal microcode of each VLIW 
word is constituted by opcodes and data which specify the 
executions to be executed in different functional units. 
 The VLIW architecture tracks a word down a memory 
address, and each functional unit executes one of the 
different operations in the VLIW word. The main 
advantage of a VLIW architecture are: 

• Architecture highly regular and compiler exposed 
with little restriction as to the access to the 
processor resources.  

• The compiler knows in advance all of the 
operation effects upon the architecture.  

• Multiple operation dispatch. 
• It maintains the simple control hardware, 

theoretically allowing a smaller clock cycle. 
 

 Echeloning the instructions in compilation level 
makes the structure easier for the parallelism is not defined 
in hardware (execution time), and such simplification 
theoretically reduces the clock cycle time, optimizing the 
process as a whole. Two of the VLIW model main 
advantages are: 

• The incorrect prevision of the route taken in 
conditional pathways may affect its performance 
considerably. Once the prevision is performed 
statically, important information available in 
execution time is completely neglected. In this 
work we highlight the execution of symmetric 
cryptographic algorithms. Thus, such advantage 
does not have any effect upon performance for 
the algorithms are static codes not changed on 
execution time. 

• Inefficiency in programs with large data 
dependency. In this case, most part of the 
instructions cannot execute in parallel, causing 
harm to the system performance. It is possible to 
identify when there is not much data dependency 
by verifying the occurrence of many NOPs on the 
program. Such disadvantage has an effect on our 
system performance, and the data dependency 
varies from algorithm to algorithm.  

 
 The choice of the VLIW architecture model is 
justified by the need of reaching a distinguished 
performance with a hardware composed by independents 
modules which together can be easily controlled and 
coordinated to the parallel execution of instructions. 
Unlike other architectures with these characteristics, the 
VLIW architecture does not need a sophisticated hardware 
to control the information flow, generating a relatively 
simplified hardware when compared to other architectures 
such as superscalar and superpipeline. 
 The symmetric cryptographic algorithms are 
constituted of a sequency of static operations. It reduces 

the occurrence of random events in execution time which 
may cause harm to the cryptoprocessor performance that is 
not prepared to deal with this kind of execution. It does not 
mean that there will be an error, but will only cause harm 
to the execution performance. 

3. Cryptoprocessor VLIW Architecture  

Some characteristics of the cryptoprocessor are shown as 
follows. They will al be discussed in the next sections. 
VLIW architecture constituted by the Harvard+Pipeline 
model as a RISC instruction set. 

• 160-bit VLIW word 
• Data and instruction cache (Harvard) 
• Eight 128-bit functional units (UFCs) 
• Up to 4 instructions executing in an only cycle 
• 16 permutations per cycle 
• 3 global stage-pipeline 
• 25 instructions 
• 24 registers 
 

 The 160-bit VLIW word stores up to 4 instructions of 
40 bits each, all to be executed in parallel. The parallelism 
over 4 instructions makes the hardware more complex, 
increasing the machine cycle time. Besides, the occurrence 
over 4 instructions executed in parallel would not be 
common, since the data dependency would inhibit this 
possibility as well as jeopardizing the cryptoprocessor’s 
general performance. 
 Some instruction with more frequent occurrences such 
as shifting, rotating, and bits permutation and substitution 
make important the creation of dedicated and 
distinguished modules in order to reach a better 
performance.  
 The bits permutation and substitution module can act 
in one only bit or in a 32-bit block, reducing the number of 
instructions it takes to execute these operations. The 
permutation and substitution function units were designed 
to reach a satisfactory performance and support the most 
number of algorithms. The creation of independents 
LOAD/STORE modules and movement among registers 
and pathways is important in processors which adopt the 
Harvard model and its different memories for instructions 
and data.   
 Figure 1 illustrates the VLIW cryptoprocessor top-
level architecture, which is constituted by four parts: (i) 
instruction dispatcher, (ii) functional units, (iii) register 
bank and (iv) control unit. It is possible to note two cache 
memories: instruction (I-CACHE) and data (D-CACHE). 
The former stores the cryptography algorithms described 
in assembly, while the latter stores information such as the 
S-BOXES content of a certain algorithm, as well as the 
clear text and the results of the operation performed by the 
cryptoprocessor. 
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Figure 1 - VLIW Cryptoprocessor top-level architecture 

I-CACHE size is 16x160, storing little more than 1 
Mbyte of information and allowing the storage of several 
cryptographic algorithms. D-CACHE size is 16x128, 
storing 1 Mbyte. In the figure 1, the memories are 
considered an external part of the cryptoprocessor for in 
this prototype the memories are not implemented in FPGA. 
It would not be feasible to describe memories of such 
dimensions in these devices. 

The instruction dispatcher module is responsible for the 
directing of each instruction in a VLIW word for the 
execution. In principle, this function would require a 
sophisticated hardware in order to make decisions, but in 
the VLIW architecture the dispatcher does not comprise 
functions of execution time decision-making. That is, the 
definition of which instructions will be executed and 
which will be the unit function is total responsibility of the 
compiler. This makes the hardware more simple and 
increase the execution speed. 

Figure 1 shows the eight functional units capable of 
executing a set of operations selected by the instruction 
opcodes: 

•  UF1 e UF2 – ALU: Arithmetical and Logical Unit 
• UF3 – 1,2,3, 8 and 32-bit logical shifter 
• UF4 - 1,2,4, 8 and 32-bit rotator 
• UF5 - Permutation (P-BOX) 
• UF6 - Substitution (S-BOX) 
• UF7 – Load/Store (responsible for the memory 

search and writing 
• UF8 – MOV/Branches 
The functional units are responsible for the execution of 

instructions conducted by the dispatcher module. Each unit 
is able to decoding the instruction to be executed. The 
execution among the functional units is parallel. In a 
certain execution cycle, up to four functional units can be 
in execution, once the maximum number of instructions in 

a VLIW word is of four instructions. Table 1 presents the 
functional units and the main registers they use. 

Table 1 – Main registers used by the functional units 

Functional Unit Main Registers 

ALU 1 A1 e B1 
ALU 2 A2 e B2 
Shifter A3 
Rotator A4 
Permutation A5, B5, X 
Substitution A6, B6, SPC 
Load/Store DPC, IPC 
MOV/Branches JPC 

 
The 128-bit A, B, and X registers store operands and 

functional units results, while 128-bit registers and 
operators optimize the symmetric algorithms descriptions 
which operate with 128-bit text blocks and keys or more. 
Thus, it is possible to perform 128-bit operations in only 
one cycle and store them on the appropriate register, 
optimizing the execution of the implemented algorithm. 

The 16-bit counter registers (SPC, DPC, JPC and IPC) 
are responsible for the addressing of the D-CACHE and I-
CACHE memories. For all operations, the result is stored 
on the A register. Table 2 shows all the registers organized 
according to the function. 

Table 2 – Registers organized according to the function 

Function Registers 

General Registers X, A1, B1, A2, B2, A3, A4, 
A5, B5, A6, B6 

Counters Registers PERAC, AC1, AC2, SPC, 
DPC, IPC, JPC 

Configuration 
Registers 

SBOXEND, SBOXCOL, 
SBOXQ, TBO, TBD, B 

 
Table 2 shows the register bank totalizing 24 registers, 

each functional unit making use of one or more different 
registers. The whole architecture is controlled by the 
control unit, which organizes the execution flow, including 
the three-stage pipeline. 

4. ISA of VLIW Cryptoprocessor 

 
 Our cryptoprocessor instruction set follows the RISC 
model in which, with only 25 instructions, it is possible to 
describe most part of the symmetric cryptography 
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algorithms, as shown in table 3. The instructions can be 
divided into four classes: 
• Logical and Arithmetical (128 bits): AND, OR, XOR, 

ADD, SUB, SHL, SHR, ROL, ROR, INC, DEC, NOT, 
CLR, NOP. 

• Movement: LOAD, STORE, MOV. 
• Pathways: JMP, JZ, JL, JG. 
• Special: PERINIC, PERBIT, SBOXINIC, SBOX. 
 

The special instructions allow the access to the 
cryptoprocessor special module. Each instruction group is 
executed by a specific functional unit. It is important to 
stress that, from the eight functional units, two are 
designed to execute special instructions such as 
permutation and substitution. There are also functional 
units suitable for instructions which deserve some 
attention from the cryptoprocessor project such as the bits 
rotation frequent in symmetric cryptography algorithms. 
The relation between functional unit and instructions is 
described in table 3. 

Table 3 – Relation between functional unit and instructions 

Functional Unit Instructions 

ULA 1 e 2 AND,OR, XOR, ADD, SUB, 
INC, DEC, NOT, CLR,  NOP 

Shifter SHL, SHR 
Rotator ROR, ROL 

Permutation PERINIC, PERBIT 
Substitution SBOXINIC, SBOX 
Load/Store LOAD, STORE  

MOV/Branch MOV, JMP, JZ , JG, JL 

 

In general, each VLIW word is stores in one only 
memory position, i.e., accessing a word takes only one 
memory address. In this cryptoprocessor, each word has 
160 bits. The VLIW word contains four 40-bit instructions 
simultaneously executed. Some of them occupy all the 
VLIW word, that is the case of SBOXINIC and PERBIT.  
Figure 2 shows the VLIW word format. 

 
Figure 2 -  VLIW word format. 

 
Some instructions are exclusive, i.e., they cannot occur 

in the same VLIW word. More details as follows. 

4.1. Exclusive Instructions 

 
The exclusive instructions access the data cache and data 
registers. In order to maintain the coherence and integrity 
to the access of these devices, and it is not possible to 
execute more than one exclusive instruction in the same 
VLIW word. They are: 
• LOAD – Loads the data of a specific memory address 

(D-CACHE) 
• STORE – Stores memory data (D-CACHE) 
• SBOX – Replaces data (D-CACHE). 

These are exclusive instructions because in this case it 
is not physically possible to access the same memory 
simultaneously (D-CACHE). 
Especial case: the MOV instruction moves data between 
registers and one cycle. Depending on the context, this 
instruction can generate incoherence and jeopardize the 
data and execution flow integrity. In this manner, the 
MOV instruction can be considered exclusive in some 
cases: 
 
Example:  VLIW word [ADD A1, B1 | INC A2  |  MOV 
A1,A3  |  NOP ] 
 

This word contains four instructions (ADD, INC, MOV 
e NOP) not executed simultaneously in one cycle. There is 
incoherence, once the A1 value may not be required after 
the execution. That is because the ADD and MOV 
instructions modify the A1 content, and the latter 
predominates. Therefore, in the end of the execution, A1 
stores the value included in A3 (MOV A1, A3).  In this 
context, the MOV instructions can be considered exclusive, 
and its execution is indicated in cycle prior or after the 
ADD instructions, according to the result one wants to 
obtain. 

 

4.2. Special Instructions 
 

Special instructions fit the characteristic pertaining to 
symmetric cryptography algorithms, such as bit 
permutation and substitution. They are special because 
they are in most part of the symmetric algorithms and 
holds functional units dedicated to execute them in the 
VLIW cryptoprocessor, although they are not in the GPP. 
Each special instruction can be considered a 
macroinstruction, that is, they are simple but execute a 
complex task constituted by several operations in one 
machine cycle. 

In order to support the most number of algorithms it 
was necessary to define initializing parameters which 
configure the execution mode of the special instructions, 
as they are: 

Permutation Instructions – PERINIC – Permutation 
instruction starting / PERBIT – Bits permutation (16 e 
permutations per cycle) 
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Substitution Instructions – SBOXINIC – Substitution 
instruction starting / SBOX – bits substitution. 
SBOXINIC and PERBIT are 160-bit instructions 
 
The permutation operation performs the permutation of 

bits predefined in a static permutation table by means of a 
specific functional unit (UF5). The detailed functioning of 
the substitution instructions is presented in the following 
section. 

5. Substitution Operation (S-Box) 

The substitution box (S-BOX) is a data set which 
constitutes a vector or bidimensional matrix. Every S-
BOX is constituted by a bits input (Input S-BOX) which 
determines the substitution data location, and by a bits 
output (Output S-BOX) which returns the substitution data 
value. The substitution data will superscribe the bits used 
in the S-BOX input. 

The SBOX instruction performs the substitution of 
predetermined bits. By means of a search by line and 
column, it is possible to identify the address where the 
substitution data is stored, and then retake and store it in 
the appropriate position in the resulting register, 
performing the substitution. 

This process is executed based on some configurable 
parameters necessary to calculate the memory address 
where the substitution data is located. Some parameters 
may vary according to the cryptographic algorithm 
described, therefore the need of configurable parameters. 
Table 4 shows the result of a study carried on this project 
on how the S-BOX can range from algorithm to algorithm. 

Preliminary studies showed that the following 
parameters are vital to implement any symmetric 
cryptographic algorithms S-BOX: 
• The number of SBOXES of a certain algorithm  
• The number of S-BOX input bits 
• The number of S-BOX output bits 
• The bits which determine the S-BOX line and column 

This variation regarding the size of the S-BOXES, the 
input and output bits, and the quantity of S-BOXES makes 
the hardware project relatively complex. A hardware 
dedicated to each S-BOX described in table 4 may add 
speed to the circuit, but it is necessary a great number of 
components to implement it. 

 
 
 
 
 
 
 
 

Table 4 – Comparison between different cryptography algorithms 
SBOXES. 

Algorithm NSBOX Input Output LIN COL 
DES 8 6 4 1 e 6 2,3,4,5 
AES  1 8 8 1,2,3,4 5,6,7,8 
Serpent 8 4 4 -- 1,2,3,4 
Cast-128 4 8 32 -- 1 - 8 
MARS  2 8 32 -- 1 - 8 
Twofish  8 4 4 -- 1 - 4 
Magenta 1 8 8 -- 1 - 8 
Frog  1 8 8 -- 1 - 8 
BlowFish  4 8 32 -- 1 - 8 
LOKI97 2 14 8 -- 1 - 14  
RC5  -- -- -- -- -- 
RC6  -- -- -- -- -- 
IDEA  -- -- -- -- -- 

    *NSBOX – number of SBOXES 
    *Input – number of S-BOX input bits 
    *Output – number of S-BOX output bits 
    *LIN, COL – bits which determine the S-BOX line and 
column 
 

Developing a general S-BOX which is fast and serves 
most part of the symmetric algorithms is a challenging 
skill. In this project we propose a solution with the aid of 
configuration parameters by softwares, i.e., by means of an 
instruction, the programmer is able to configure the size of 
the S-BOX, input and output bits, bits which determine 
line and column, as well as other parameters necessary to 
configure the S-BOX required. 

One of these future solutions may be the 
reconfiguration in which the hardware decides if it is 
necessary a new S-BOX reconfigured in execution time 
(RTR – Run Time Reconfiguration) [23 ]. 

The configuration parameters are implemented by 
means of the SBOXINIC instruction, and the necessary 
parameters and its description is presented next: 
• SBOXEND – Memory address where the S-BOX is 

located. The S-BOX data is stored in the D-CACHE 
memory. It is only necessary to indicate from which 
address the S-BOX is started, independently from the 
number of S-BOXES used by the algorithm. 

• SBOXCOL – Number of columns of an S-BOX. 
• SBOXQ – Quantity of elements in an S-BOX. 
• TBO – size of the origin block. It represents the 

quantity in bits of a substitution block. In the end, the 
origin block is replaced by the destination block, even 
if they are different in size. The destination block 
stores the substitution result. 

• LIN - Origin block bits and bytes which determine the 
S-BOX address line. Each algorithm has a specific 
form to establish which bits or bytes determine the 
line and column of an S-BOX, where the substitution 
data is located. This parameter determines the bits or 
bytes for such line. 
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• COL – Destination block bits or bytes which 
determine the S-BOX address column in the same 
way as LIN. 

• B – Bit or byte type, when B=0 (zero), the LIN and 
COL values are considered bits. When B=1, the LIN 
and COL values are considered bytes. 

 
All parameters are stored in dedicated registers, and 

there is a physical limit of bits to the respective 
representation of each parameter which determines the 
algorithm supported by the cryptoprocessor. Table 5 
shows the maximum representations of each parameter. 

 

Table 5 – Representation limits of the substitution operation parameters 

Parameter Bits Description 

SBOXEN
D 

16 Up to 65535 positions of  memory 

SBOXCO
L 

16 S-boxes of up to 65535 columns 

SBOXQ 16 S-boxes of up to 65535 elements 

TBO 6 configure blocks origin with up to 64 
elements 

TBD 6 configure blocks destination with up to 64 
elements 

LIN 32 Configure up to 2 bytes for row 

COL 32 Configure up to 2 bytes for colum 

 
The definition of the bit number of each parameter was 

based on table 4, where is possible to identify and quantify 
the bits necessary to represent the maximum number of the 
S-BOX columns, the maximum size of the origin and 
destination block, as well as other parameters. The syntax 
of the S-BOX start and configuration instruction is: 
 
SBOXINIC, SBOXEND, SBOXCOL, SBOXQ, TBO, TBD, LIN, 
COL, B 
 

After the initiation and configuration by meand of the 
SBOXINIC instruction, the operation and substitution 
itself may be performed. The SBOX instruction performs 
calculus necessary to localize the substitution data stored 
in the D-CACHE memory, based on configurable 
parameters. 

The NSBOX parameter used by the instruction SBOX 
identifies which S-box will be used in the substitution. 
When the cryptography algorithm makes use of only one 
S-BOX, the NSBOX value is zero. In order to identify an 
element in the memory, it was developed a mathematic 
formula which is capable of identifying the required 
address by means of some configurable parameters (see 
the next expression). 

 
 

 
 
 
END = SBOXEND + (SBOXC x LIN)  + COL + (SBOXQ x NSBOX) 

 
      
                             

 
The memory is a vector of N positions. In some 

algorithms, the S-BOXES are represented by matrixes 
(DES and AES), while in other algorithms they are 
represented by vectors (Serpent, Magenta and others). 
Independently from the S-BOX type, the formula 1 has to 
be used In order to identify the position of the 
correspondent memory. The value in END after the 
execution represents the memory address where the 
substitution data is stored. To follow, the sequency of 
steps necessary to execute an S-BOX instruction:  

1º step: determine the S-BOX input bits  
2º step: determine the line (LIN) and column (COL) 
value of the required substitution.  
3º step: make use of the formula 1, generate the 
physical address of the substitution data (D-CACHE) 
4º step: determine the destination block and perform 
the substitution  

The SBOX substitution operation uses the following 
registers: 
• A6 – stores the final result of the substitution 
• B6 – stores bits to be substituted  
• Configurable parameters registers: SBOXEND, 

SBOXCOL, SBOXQ, TBO,TBD, LIN, COL. 
• AC1 – Accumulator 1, points to the origin block to be 

substituted 
• AC2 – Accumulator 2, points to the destination block 

to be substituted 
Every substitution, the AC1 is increased with the TBO 

(tamanho do bloco de origem - origin block size) register 
value, pointing to the next origin block to be replaced. The 
same applies to the AC2, but this is increased with the 
TBD value, pointing to the next substitution destination 
block. The SBOX initiation and configuration annul the 
AC1 and AC2 value. 

6. VLIW Cryptoprocessor Pipeline 

The VLIW cryptoprocessor holds a 3- global-stage 
pipeline. Each of them is executed in one machine cycle, 
including the instructions execution stage, and controlled 
by a state finite machine (control unit) synchronized by the 
global clock. These stages are: 
 
• Stage 1 – Search and dispatch of instructions. 

Searches a 160-bits VLIW word, received by the 
instruction dispatcher which directs the predefined 

Initial 
address 

address the 
row of the

address the column of the 
element  

address the 
SBOX of the 

element 
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functional units. This stage is performed in one 
machine cycle.  

• Stage 2 – Decoding and execution. The functional 
units decoding the instructions to be executed, and the 
required operations are accomplished. 

• Stage 3 – Writing in memory or registers. The results 
are stored in the appropriate registers or in the D-
CACHE memory. The Harvard architecture allows the 
simultaneous reading and writing in different 
memories. 

 
In this manner, the pipeline is filled in three machine 

cycles. The pipeline is never interrupted for the treatment 
of special instructions or any other one. Since all 
instructions are executed in only one cycle, the description 
of the hardware which controls the transition among global 
stages is much easier.  

7. Implementation in FPGA 

This section presents the performance statistics of the 
VLIW cryptoprocessor implemented in a FPGA Virtex II 
Pro. The statistics can be visualized in table 6. 

Table 6 - performance statistics in FPGA 

Device Slices LUTs FF PT(ns) Freq.(MHz) 

Virtex II Pro 1315 2484 669 8,618  116,036 

   *PT- Propagation time 
 

The cryptoprocessor delivered a great time performance, 
the circuit propagation time (PT) was 8.667ns, reaching a 
maximum frequency of 116 Mhz, and the cryptoprocessor 
mapped on the FPGA device used 1315 Slices and 669 
Flip-flops. 

Tabela 7 - comparison among general-purpose processors 

Proc. Freq. Memory File Time 

P4 1,6 Ghz 128 MBytes 1 MByte 3,250s 

P3 1.0 Ghz 256 Mbytes 1 MByte 4,256s 

P3 800 Mhz 128 MBytes 1 Mbyte 5,307s 

P3 500 Mhz 512 Mbytes 1 MByte 5,875s 

VLIW 116 Mhz 1 Mbyte 1 MByte 0,36 s 

 
The table 7 shows the comparison among general-

purpose processors (P3 and P4, Pentium III and IV) when 
executing the DES algorithm. Such performance statistics 
show that the VLIW cryptoprocessor may be 16 times 
faster than a Pentium III 500 Mhz. 
 

7.1. DES algorithm implementation   
 

Unlike the sequential program, in VLIW processors the 
instructions are represented by horizontal microcode.  An 
example described below presents a part of the horizontal 
microcode of the DES algorithm according to the 
cryptoprocessor assembly. 

 
 

// expansion exchange 
PERBIT  31,00,01,02,03,04,03,04,05,06,07,08,07,08,09,10 
PERBIT  11,12,11,12,13,14,15,16,15,16,17,18,19,20,19,20 
PERBIT  21,22,23,24,23,24,25,26,27,28,27,28,29,30,31,00 
 
//Xor with the Ki key 
 
MOV  B1,A3 LOAD A1,[K1] XOR  A1,B1 NOP 
 
// S-BOX operation start 
 
SBOXINIC  SBOXEND,SBOXCOL,SBOXQ,TBO,TBD,LIN,COL,B 
SBOX 0 NOP NOP NOP 

 
An important piece of information is the utilization of 

the VLIW cryptoprocessor processing capacity, which 
indicates the utilization rate of all hardware resource 
available for a certain program. 

To calculate this value, it is necessary to quantify the 
utilization percentage of each algorithm VLIW word. In 
our situation, one VLIW word can store 4 instructions to 
be executed in parallel, and the calculus consists of 
quantifying the instructions per VLIW word executed. In 
this case, the DES algorithm had a utilization of 61.18% of 
the cryptoprocessor capacity. This result can be considered 
acceptable, but not ideal – which would be 100% 
hypothetically. However, it is known that such utilization 
rate is not common. Each symmetric cryptography 
algorithm reaches different rates, likewise it is possible to 
find different descriptions for the same algorithm. 

7.2. Data Dependency Impact Minimization – Loop 
Pipelining 
 
Horizontal architectures such as VLIW are characterized 
by the possibility of controlling the several functional units 
independently and directly, usually by means of an only 
control flow, allowing the exploration of only the thinnest 
level parallelism. Making use of a high number of 
functional units is useful when there are data dependency 
or data control. 

For the same total of functional units, the performance 
level can be higher if such units are divided into groups 
and there are parallelism techniques with effect upon the 
destination architecture.  The previous studies of several 
symmetric algorithms showed that most part of them 
execute a high-degree-of-dependency loop among the 
operations called iteration. 

The number of iterations ranges from algorithm to 
algorithm, once they are performed in a main loop. In case 
of symmetric cryptographic algorithms, the iterations act 
upon a text block of permanent size in order to cipher or 
decipher the required information. For instance: the DES 
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algorithm act upon 64-bit blocks, and in this context, it is 
possible to apply the Loop Pipelining technique efficiently, 
in which the operations of different iterations can be 
performed in a same VLIW state or word. In this manner, 
the technique allows a better use of the resources. 

In a first implementation of the DES algorithm, the 
following steps were performed: (i) capture the 64-bit 
block, (ii) process the 16 iterations of DES, and (iii) store 
the ciphered text. Such sequency reached 61,18% of 
effective hardware utilization. 

The Loop Pipelining technique makes the execution 
flow more complex. By the other hand, the utilization of 
the available hardware resources is better, and the 
architecture general performance is optimized. Figure 3 
shows the technique application in order to achieve a 
medium grain parallelism. 
 
 

B1 B2 B3 B4

64 BITS 64 BITS 64 BITS 64 BITS

...

....

....

....

...

DES

 
 

 Figure 3 – Loop Pipelining Illustration 

 
It is important to note on Figure 3 that the DES 

algorithm can act upon four text blocks in parallel. By 
using a loop pipelining, operation of different iterations 
and text blocks can be executed in a same state. The 
beginning of each block processing is required in different 
moments (as indicated by the arrows on Figure 3), 
avoiding competitiveness between two or more 
instructions by the same functional unit. With this 
technique, the hardware utilization rate rose significantly 
from 61.18% to 82,75%. The impact can be observed in 
the data shown as follows. 

The implementation without the loop pipelining can 
execute one 64-bit block in 380 clock cycles. Thus, the 
relation cycles per ciphered bits is 5.94, while the 
implementation with loop pipelining can execute up to 
four 64-bit blocks in a total of 256 bits in 564 cycles. The 
cycle rates per bit is 2,2 cycles/bit, that is, it is necessary 
less cycles in order to cipher on bit in relation to the 
previous implementation. 

The impact of such optimization in the cryptoprocessor 
performance, measured in ciphered text megabits per 

second, was significant. The maximum ciphered was 
19MBits/s, and now it is 51,23MBits/s. It is important to 
highlight that there were not changes on the VLIW 
cryptoprocessor architecture. 

The final implementation of the VLIW Cryptoprocessor 
can be visualized in figure 4 through floorplanne and 
figure 5 with the real system. 

 

 

Figure 4 – Floorplanner of  VLIW Cryptoprocessor 

 

Figure 5 – Real tests with the VLIW Cryptoprocessor 

8. Conclusion  

In this paper, we have showed and discussed a new 
VLIW-based architecture, it is specifically to symmetric 
cryptography algorithms. This approach was project for 
using a FPGA and the preliminary results for executing the 
DES algorithm are acceptable. Thus, the FPGA 
cryptoprocessor implementation had a great time 
performance. One of the most relevant characteristics in 
this project is the number of algorithms supported by the 
cryptoprocessor. Every cryptographic algorithm in table 4 
can be implemented in this architecture. The next activities 
of the project would be: 
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• Optimize the architecture, adding or removing 
elements such as registers and functional registers 

• Study the possibility of architecture reconfiguration 
• Implement a simulator and assembler for the 

cryptoprocessor 
• Implement a high level compiler for the 

cryptoprocessor   
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