
 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

188

Manuscript received August 25, 2006.
Manuscript revised August 30 , 2006.

Complete Discovery of Weighted Frequent Subtrees in Tree-Structured
Datasets

Rahman AliMohammadzadeh , Ashkan Zarnani, Masoud Rahgozar, and Mostafa H. Chehreghani

Database Research Group, Control and Intelligent Processing Center Of Excellence, Faculty of ECE,
School of Engineering, University of Tehran, Tehran, Iran

Summary
Mining frequent subtree patterns has many useful applications in
XML mining, bioinformatics, network routing, etc. Most of the
frequent subtree mining algorithms (such as FREQT, TreeMiner
and CMTreeMiner) use anti-monotone property in the phase of
candidate subtree generation. However, none of these algorithms
seems to verify the correctness of this property in all kinds of tree
structured data. In this paper, we investigate the correctness of
anti-monotone property for the problem of weighted frequent
subtree mining and use multiple examples to elaborate on our
finding about this issue. It is shown that anti-monotonicity does
not generally hold, when using weighed support in tree pattern
discovery. Consequently, the tree mining algorithms that are
based on this property would miss some of the valid frequent
subtree patterns if one considers weighted support. We propose
also a novel algorithm named W3-Miner that uses new data
structures and techniques for full extraction of frequent subtrees.
The experimental results confirm that W3-Miner finds some
frequent subtrees that the previously proposed algorithms would
not discover when if weighted support is required.

Key words:
Semi-Structured Data Mining, Anti-Monotone Property,
Frequent Subtree Mining

Introduction

Mining frequent subtrees has many practical applications
in areas such as computer networks, Web mining,
bioinformatics, XML document mining, etc [2, 5]. These
applications share a requirement for the more expressive
power of labeled trees to capture the complex relations
among data entities. Frequent subtree mining is a more
complex task compared to frequent item-set mining.
However most of existing frequent subtree mining
algorithms borrows techniques from the relatively mature
association rule mining area [1, 9]. So far, many
algorithms have been developed for mining frequent
subtrees from a collection of trees such as XML
documents. We developed W3-Miner [14] for discovering
weighted embedded subtrees from a collection of trees. In
[2, 5, 11] M.J. Zaki presented an algorithm, TreeMiner, to
discover all frequent embedded subtrees, i.e., those

subtrees that preserve ancestor-descendant relationships, in
a forest or a database of rooted ordered

trees. This algorithm used a new data structure, scope-list,
to efficiently count the frequency of candidate subtrees.
The algorithm was further extended in [6] to build a
structural classifier for XML data. Asai et al. in [4]
presented an algorithm, FREQT, to find frequent rooted
ordered subtrees. Also two algorithms were proposed by
Asai et al. and Yun Chi et al. to mine rooted unordered
subtrees, based on enumeration graph and enumeration
tree data structures [7, 8]. Another work has been done in
[3] where a model-validating approach for non-redundant
candidate generation has been proposed. Wang and Liu
[25] developed an algorithm to mine frequently occurring
subtrees in XML documents. They mine induced subtrees
only.
There are several other recent algorithms that mine
different types of tree patterns, which include
FreeTreeMiner [20] which mines induced, unordered, free
trees (i.e., there is no distinct root); FreeTreeMiner for
graphs [19] for extracting free trees in a graph database;
and PathJoin [21], uFreqt [16], uNot [7], and
HybridTreeMiner [22], which mine induced, unordered
trees. TreeFinder [17] uses an Inductive Logic
Programming approach to mine unordered, embedded
subtrees, but it is not a complete method, i.e., it can miss
many frequent subtrees, especially as support is lowered or
when the different trees in the database have common
node labels. SingleTreeMining [18] is another algorithm
for mining rooted, unordered trees, with application to
phylogenetic tree pattern mining. Recently, XSpanner [23],
a pattern growth-based method, has been proposed for
mining embedded ordered subtrees.
Almost all of these methods are based on the well-known
apriori algorithm and have used anti-monotone property
for candidate generation. This property suggests that the
frequency of a super-pattern is less than or equal to the
frequency of a sub-pattern. However, none of these
algorithms have verified the correctness of anti-monotone
property in tree structured data when considering weighted
support.
In this paper, we investigate the correctness of anti-
monotone property in discovering frequent subtrees when

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

189

considering weighted support. When the frequency of a
subtree is based on weighted support, the previously
proposed algorithms would probably miss some of the
frequent subtrees. The reason is that the anti-monotone
property does not necessarily hold in all kinds of tree
structured data. To ensure complete discovery of all
possible frequent subtrees, we propose a new algorithm,
named W3-Miner. In W3-Miner a new method is used to
count the support of a candidate subtree. In addition, a new
join method is applied in the candidate generation phase.
These improvements will guarantee the discovery of all of
the valid frequent subtrees in a forest.
 W3-Miner is an extension of the well-known TreeMiner
[2, 5] algorithm to mine weighted frequent subtrees. For
complete generation of k-subtree candidates, we extend
the concept of scope-list data structure [2, 5] by adding a
new component, called RootPath. Also, a new join method
is applied for k-subtree candidate generation. By means of
multiple examples, the incorrectness of anti-monotone
property and the solution proposed by our algorithm are
fully demonstrated. We also compare W3-Miner with
three other tree mining algorithms. The obtained results
confirm that some frequent subtree patterns are only
discovered by W3-Miner.
This paper is organized as follows. In section 2 some
preliminaries and definitions are given. Section 3 describes
the anti-monotone property in tree structured data. The
extended scope-list is provided in section 4. Section 5
describes the details of the proposed algorithm. We
empirically evaluate the effectiveness of the algorithm in
section 6 and the paper is concluded in section 7.

2. Preliminaries and Definitions

2.1 Association Rule Mining

Association rules were first introduced by Agrawal et al.
[15] to analyze customer habits in retail databases.
Association rule is an implication of the form X Y,
where the rule body X and head Y are subsets of the set I
of items (I = {I1, I2,…, In}) within a set of transactions D
and X ∩ Y = φ. A rule X ⇒ Y states that the transactions
T that contain the items in X are likely to contain also the
items in Y. Association rules are characterized by two
measures: The support, which measures the percentage of
transactions in D that contain both items X and Y; The
confidence, which measures the percentage of transactions
in D containing the items X that also contain the items Y
[Figure 1].
In tree structured data context (XML document), both D
and I are collections of trees [1], in the same way X and Y
are trees (XML fragments) (Figure 2).

There are several algorithms for discovering association
rules from XML documents. Braga et al. introduced
XMINE operator for extracting association rules from
XML documents [27]. Feng et al. proposed a theoretical
framework for XML-Enabled association rule mining from
XML documents [28]. An efficient model for discovering
Association Rules from XML Documents are also
developed in [13, 26] based on mining frequent subtree
patterns. The same model can be used with appropriate
modifications to mine XML association rules with
weighted support using the algorithm proposed in here.
All of the traditional association rule mining algorithms
and almost all of the XML association rule mining
algorithms are using a property named anti-monotone to
efficiently generate the candidate of size k+1 from the
candidates of size k. In the next section, we will briefly
review the definition of anti-monotone and anti-
monotonicity.

[Support = 2%, Confidence = 95%]

Fig 1. Association rule between bread and milk

<Author> Rakesh Agrawal </author>

<Keyword>Data Mining</keyword>

Fig 2. XML Association rule

2.2 Anti-Monotone Property and Anti-monotonicity

In mathematics, functions between ordered sets are
monotonic (or monotone, or even isotone) if they preserve
the given order [30]. These functions first arose in calculus
and were later generalized to the more abstract setting of
order theory. Although the concepts generally agree, the
two disciplines have developed a slightly different
terminology. While in calculus, one often talks about
functions being monotonically increasing and
monotonically decreasing, order theory prefers the terms
monotone and antitone or order-preserving and order-
reversing, respectively [30]. The anti-monotone property
between frequent itemsets says that the support or
frequency of itemsets is a monotonically decreasing
function. This property helps traditional frequent itemset
mining and association rules mining algorithms to
efficiently generate the frequent itemsets and also prune
the infrequent itemsets. This property is used in many
frequent subtree mining algorithms such as TreeMiner [2],
X3-Miner [3], FREQT [7], uFreqt [16], TreeFinder [17],
Singletree Mining [18]. In these algorithms following the
anti-monotone property in the generation of candidate
frequent subtrees consisting of (k+1) nodes the infrequent
subtrees with k nodes are not considered.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

190

The anti-monotone property can be used in a condition
which there is a non-increasing relation between the
frequency of a pattern and the count of its elements. This
condition is show in Figure 3, Where the frequency of the
patterns never increase as the pattern grows.

Fig. 3 Non-increasing relation between the frequency of a pattern and the
count of its elements

In the following sections, we investigate the correctness of
anti-monotone property for the problem of weighted
frequent subtree mining.

2.3 Problem Definition

To explain the problem of mining frequent subtrees in a
forest we provide the following definitions [1, 2 and 5]:

Definition 1. A rooted, labeled, tree,),(EVT = is a
directed, acyclic, connected graph with },...1,0{ nV = as the
set of vertices and },|),{(VyxyxE ∈= as the set of edges.
One distinguished vertex Vr ∈ is selected as the root, and
for all Vx∈ , there is a unique path from r to x. Further,

LVl →: is a labeling function mapping vertices to a set
of labels ,...},{ 21 llL = .

Definition 2. A tree 'T with vertex set 'V and edge set

'E is an induced subtree of T if and only if (1) VV ⊆' , (2)
EE ⊆' , (3) the labeling of 'V is preserved in 'T , (4)

'),(21 Evv ∈ , where 1v is the parent of 2v in 'T , only if 1v
is a parent of 2v in T. (5) if defined for rooted ordered
trees, the left-to-right ordering among the siblings in 'T
should be a sub-ordering of the corresponding vertices in
T.

Table 1. The frequencies of 1-subtrees in T1

1)(=aσ
1)(=awσ

1)(=bσ
1)(=bwσ

1)(=cσ
2)(=cwσ

1)(=dσ
2)(=dwσ

1)(=eσ
1)(=ewσ

Definition 3. For a rooted unordered tree T with vertex set
V, edge set E, and no labels on the edges, a tree 'T with
vertex set V ′ , edge set 'E , and no labels on the edges, is an
embedded subtree of T if and only if (1) VV ⊆' , (2) the
labeling of the nodes of 'V in T is preserved in 'T and
(3) '),(21 Evv ∈ , where 1v is the parent of 2v in 'T , only if

1v is an ancestor of 2v in T. If T and 'T are rooted ordered
trees, then for 'T to be an embedded subtree of T, a fourth
condition must hold: (4) for ', 21 Vvv ∈ , preorder(1v) <
preorder(2v) in 'T if and only if preorder(1v) <
preorder(2v) in T.

Definition 4. Let)(STδ indicate the number of
occurrences of the subtree S in a tree T. Let Td be an
indicator variable, with 1)(=SdT if 0)(>STδ and

0)(=SdT if 0)(=STδ . Let D denote a database of trees.
The support of a subtree S in the database is defined
as () ()TT D

S d Sσ
∈

=∑ . The weighted support of S is

defined as () ()w TT D
S Sσ δ

∈
=∑ . Support is given as a

percentage of the total number of trees in D. Some papers
use Frequency instead of Support. In this paper, we use
Support and Frequency interchangeably. Intuitively, the
support is equal to 1 if the subtree exists in the tree
otherwise it is equal to 0. Weighted support is equal to the
exact number of occurrences of subtree S in a tree T.

Definition 5. An l-subtree S, which is a subtree with l
nodes, is frequent if its (weighted) support is more than or
equal to a user-specified minimum (weighted) support
value.

Fig. 4 A Sample Tree

Consider a sample tree (T1) depicted in Figure 4,
following tables (Table 1 – Table 4) display some sample
subtrees and explore the differences between support
(()Sσ) and weighted support (()w Sσ) in context of tree
structured data.

b d e a c

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

191

As can be seen in Figure 4, the tree T1 has 5 nodes (1-
subtrees). For some 1-subtrees (single nodes) the support
and weighted support are equal. For example both support
and weighted support of node ‘a’ are equal to 1. However,
these values are not the same for node‘d’, which its
weighted support is equal to 2 as it occurs two times in T1.
The same case holds for node ‘c’.

Table 2. Some Sample Induced 2-Subtrees and their frequencies in T1

1)(=⎯⎯⎯ →⎯ ba Inducedσ

1)(=⎯⎯⎯ →⎯ ba Induced
wσ

1)(=⎯⎯⎯ →⎯ ea Inducedσ

1)(=⎯⎯⎯ →⎯ ea Induced
wσ

1)(=⎯⎯⎯ →⎯ cb Inducedσ

1)(=⎯⎯⎯ →⎯ cb Induced
wσ

1)(=⎯⎯⎯ →⎯ db Inducedσ

1)(=⎯⎯⎯ →⎯ db Induced
wσ

1)(=⎯⎯⎯ →⎯ ce Inducedσ

1)(=⎯⎯⎯ →⎯ ce Induced
wσ

1)(=⎯⎯⎯ →⎯ de Inducedσ

1)(=⎯⎯⎯ →⎯ de Induced
wσ

Table 2 displays some induced 2-subtree. As definition 2
suggests, all of the nodes in each of these induced subtrees
are directly connected to each other. In contrast to table 1
in this table, the support and weighted support of these
induced subtrees are equal. For example, the number of
occurrences of 2-subtree ‘a e’ in tree T1 is equal to 1.
But again in table 3 these values become different.
Consider the two embedded 2-subtrees displayed in the
first row of this table. In these subtrees nodes ‘b’ and ‘e’
have been eliminated considering embedded relationship
defined in Definition 3. As can be seen, the embedded
subtree ‘a c’ does exist in tree T1 so its support measure
is equal to 1. But the number of occurrences of subtree
‘a c’ in tree T1 is equal to 2. The first and second
instances of ‘a c’ are depicted in the second and third
row, respectively. The embedded subtree ‘a d’ has the
same properties and its occurrences are shown in two
different rows. The interesting fact in these samples is that
the weighted supports of 2-subtree ‘a c’ and ‘a d’ are
equal to 2 and the weighted support of node ‘a’ is equal to
1. Clearly 1-subtree ‘a’ is a sub-pattern of 2-subtree ‘a c’.
Consequently in contrast to the famous anti-monotonicity
principal, the super-pattern in this case has a greater
frequency compared to its sub-pattern. This is where the
contradiction to the anti-monotone property occurs and
makes weighted support subtree mining a rather different
challenge of large item set discovery problem.

Table 3. Two sample of embedded 2-Subtree and their frequencies in T1

1)(=⎯⎯⎯⎯ →⎯ ca Embeddedσ
2)(=⎯⎯⎯⎯ →⎯ ca Embedded

wσ
1)(=⎯⎯⎯⎯ →⎯ da Embeddedσ

2)(=⎯⎯⎯⎯ →⎯ da Embedded
wσ

In Table 4, two induced 3-subtrees and one embedded 3-
subtree are displayed. As can be seen, both support and
weighted support of induced subtrees are equal to 1. But
the weighted support of embedded subtree ‘a (c, d)’ is
equal to 2.

a

b

a

e

b

c

b

d

e

c

e

d

a

c

a

d

a

c

a

 d

a

 c

a

 d

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

192

Table 4. Some sample of 3-Subtrees in T1 and their support values

1)(=⎯⎯⎯ →⎯⎯⎯⎯ →⎯ cba InducedInducedσ
1)(=⎯⎯⎯ →⎯⎯⎯⎯ →⎯ cba InducedInduced

wσ

1)(=⎯⎯⎯ →⎯⎯⎯⎯ →⎯ dea InducedInducedσ

1)(=⎯⎯⎯ →⎯⎯⎯⎯ →⎯ dea InducedInduced
wσ

1),(=><⎯⎯⎯⎯ →⎯ dca Embeddedσ
(,) 4Embedded

w a c dσ ⎯⎯⎯⎯⎯→< > =

The problem of mining frequent tree patterns in a forest of
tree-structures transactions is to find all of the frequent k-
subtrees, Mk ≤≤1 where M is the maximum number of
nodes in transactions. The desired type of frequent subtree
patterns which is aimed in the mining process can differ
based on the kind of application. In this paper, our goal is
to generally mine all frequent, labeled, ordered, and
embedded subtrees in a forest using weighted support, by
proposing the W3-Miner algorithm.

3. Anti-Monotone Property in Tree
Structured Data

Anti-monotone property says that the frequency of a
super-pattern is less than or equal to the frequency of a
sub-pattern. In this section we show that anti-monotone
property does not hold in tree patterns when using
weighed support. As a result, tree mining algorithms based
on this property are unable to find all of the frequent tree
patterns from a collection of trees.
An example of this case is shown in Figure 5, where the
frequency of 1-subtree ‘a’ is equal to 1 but the frequency
of 2-subtree ‘a-c’ is equal to 2.

Fig. 5 Non-frequent subtree is
in root

Fig. 6 Non-frequent subtree is
in leaf

Figure 5 shows the state where the non-frequent subtree is
placed in a higher level with respect to the frequent subtree
of the transaction. An example of the other state that the
non-frequent subtree is placed in a lower level with respect
to the frequent subtree is depicted in Figure 6. As it is
shown in the figure the frequency of 2-subtrees ‘b-c’ and
‘b-a’ are equal to 2 but the frequency of 1-subtree ‘a’ and
‘c’ are 1. Consequently we suggest the following
proposition:

Proposition 1. Anti-monotone property does not hold in
frequent tree mining when using weighted support.

4. Extended scope-list

We propose a new data structure named extended scope-
list that will be exploited by W3-Miner. M.J. Zaki in
TreeMiner algorithm [2, 5] introduced a new data structure
called scope-list. Scope-list is generated for each candidate
subtree c and is used to efficiently count its frequency. In
scope-list of c, each element is a triple),,(smt , where t
is a tree id in which c occurs, m is a match label of the k-1
length prefix of c in its string representation format, and s
is the scope of the last node of c. The match label gives the
positions of nodes in transaction tree (t) that match the
prefix [2]. S is the scope of the right-most node of t. The
scope of a node determines the range of vertices under that
node. We extend the definition of scope-list by adding a
new component, RootPath, to its elements. RootPath is an
array of tuples (x ,y), where x is the label of a node and y is
preorder number of that node in transaction tree (t). (x, y)
is generated for the root of the transaction tree (t) and all
nodes between it and the root of the candidate tree (c) but
not for the root of c itself. Figure 7 shows an example of
extended scope list.

a

c d

a

b

c

a

e

d

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

193

(a) t0: a transaction tree

(b)

RootPath

t0, 2 3,
[3,3]

(1,1)
(7,0)

(c)

RootPath

t0, 4 6,
[6,7]

(1,1)
(7,0)

(d)

Fig. 7 (a) a sample transaction tree, (b) a sample candidate subtree which
has 2 instances in t0, one of them is indicated by vertical lines and
another is indicated by horizontal lines , (c) the extended scope-list of the
first instance (marked with vertical lines) and (d) the extended scope-list
of the second instance.

5. W3-Miner Algorithm

W3-Miner uses TreeMiner algorithm to generate k+1
candidate subtrees from frequent k subtrees. A join
operation is applied on the generated candidates to
construct their extended scope-lists. Then the algorithm
trims non-frequent k+1 subtrees by using in-scope and
out-scope tests. For more details about this process, the
interested reader can refer to [2, 5]. To generate the k+1
candidate subtrees that are missed by TreeMiner algorithm
when using weighted support, W3-Miner joins a 1-tree
with a k-tree in two steps as follows.

5.1 Extending Candidate Subtrees with RootPath
Elements

For each element e in the extended scope-list of k-frequent
subtree k and for each tuple in the RootPath array of e, the
node of that tuple is joined to k by considering it as the
root of k. For each obtained frequent (k+1)-subtree we
generate its extended scope-list called h, by first copying
extended scope-list of k. Then for each element e in h and
for each element r in RootPath of e, we append the
preorder number of r to the beginning of e’s match label.
After this, the RootPath of each element in h is updated as
follows. Each element r in RootPath of e in h is deleted if
its preorder number y is greater or equal to the number

appended to the match label of e. In Figure 8 node 1 is
added to the root of candidate tree shown in Figure 7.

(a)

RootPath
t0,
1 2 3,
[3,3]

(1,1)
(7,0)

RootPath

t0,
1 2
3,
[3,3]

(7,0)

RootPath

t0,
1 4 6,
[6,7]

(1,1)
(7,0)

(b)

RootPath

t0,1
4 6,
[6,7]

(7,0)

(c)

Fig. 8 A new node is added to the root of tree. (a) The new candidate
subtree. (b) Updating scope-list (c) the final extended scope-list of the
new subtree.

5.2 Extending candidate subtrees by using 1F
elements

1F is an array of triples (x, y, z), where x is the label of
non-frequent node and y is number of that node in preorder
traversal and z is the preorder number of last node in tree
rooted by x. 1F contains all of the non-frequent nodes.
After generating (k+1)-trees by Step 1 of W3-Miner, it is
possible that some frequent (k+1)-Trees have not been
generated yet (consider Figure 6). To solve this problem
each node in 1F is added to the last node of frequent k-
subtree k, if its scope is a proper subset of the scope of the
last node of k.
We say that scope ys is proper subset of scope xs if and
only if yx ll ≤ and yx uu ≥ , where l indicates the lower
bound of a scope and u is its upper bound. We append the
lower bound of each element of extended scope-list to its
match label and the lower bound of the scope is set to y
and the upper bound is set to z.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

194

6. Experimental Results

6.1 Experiment 1: A Simple Forest

M.J. Zaki developed three variants of TreeMiner in [2, 5,
10 and 11]: VTreeMiner, HTreeMiner and TreeMinerD. In
the current work we compare our proposed algorithm
(W3-Miner) with TreeMinerD in terms of discovered
frequent subtrees. Our sample input forest is shown in
Figure 9. This forest consists of three (tree-structured)
transactions. The total number of nodes is 32 and the
number of distinct nodes is 9. We tested these algorithms
with minimum weighted support being equal to 3. The
results are presented in Table 1.

Fig. 9 Sample input forest containing 3 transactions

Table 5 Comparison between results of three different algorithms
TreeMinerD W3-Miner

F1 F1
1 – 3
2 – 3
3 – 3
4 – 3
5 – 3

1 – 5
2 – 5
3 – 7
4 – 4
5 – 4
6 – 3

F2 F2
1 2 – 3
1 3 – 3
1 4 – 3
1 5 – 3
3 4 – 3
3 5 – 3

1 2 - 6
1 3 - 9
1 4 - 4
1 5 - 5
1 6 - 4
2 5 - 3
3 2 - 3
3 3 - 3
3 4 - 4
3 5 - 3
3 6 - 4

In column 1 of Table 5 the frequent subtrees discovered by
TreeMinerD are displayed. However, as can be seen in
column 2, W3-Miner discovers one frequent 1-subtree and
five frequent 2-subtrees (shown in bold) that are missed by
the TreeMinerD algorithm. The different discovered items
are shown in bold. Actually, there are some frequent
subtrees of size 3, 4, 5, …, 8 that are not shown in this
table because of space limitations. The weighted support
of subtree ‘2 5’ is equal to 3 (1 instance in t2 and 2
instances in t1) thus must be considered as a valid frequent
subtree. Also subtree ‘1 2 -1 3’ has four instances in t1 and
two instances in t3 making its weighted support equal to 6.
W3-Miner was able to discover this frequent trees but the
TreeMinerD was not.
We believe that these frequent patterns can be of high
importance in many applications such as RNA structure
mining and phylogenetic tree analysis [2, 12].

6.2 Experiment 2: Synthetic Dataset

We tested our algorithm on a synthetic dataset which is
generated by the ToXgene XML Generator tool. ToXgene
is a template-based generator for large, consistent
collections of synthetic XML documents, developed as
part of the ToX (the Toronto XML Server) project [29].
Our generated data set consists of 100 trees with the
maximum level of 3. Each node has a maximum of 6
children. As a measure of repeated nodes there are at most
3 nodes with same labels among the children of a parent
node.
The TreeMinerD algorithm developed by Zaki [2] is used
in our comparisons as the most recognized algorithm in
this domain. Both of the algorithms were run with support
values between 2 and 50 to verify the number of
discovered frequent subtrees with different support
thresholds. As can be seen in Figure 10 the TreeMinerD
algorithm will miss many of the frequent subtree patterns
because it does not consider weighted support properly
(see section 3).

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

2 4 6 8 10 13 17 30 50Support

Su
bt

re
e

C
ou

nt

W3-Miner

TreeMinerD

`

Fig. 10 Comparison between W3-Miner and TreeMinerD

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

195

The number of missed patterns increases as the support
threshold value decreases. Of course, it should be noted
that the number of extra discovered patterns in W3-Miner
largely depends on the properties of the data set in hand.
More accurately the both algorithms will discover the
same set of patterns when there are not any nodes with the
same label in each tree of the forest. In fact, the more the
number of repeated nodes exists in the trees, the higher
will be the difference between the numbers of discovered
pattern in the two algorithms.

7. Conclusions

In this paper we investigated the anti-monotone property
in tree structured data when weighted support is required.
We showed that this property does not hold in such
context. Consequently we proposed a novel algorithm,
W3-Miner, to find all of the weighted frequent subtree
patterns in a database of trees. We extended the scope-list
data structure by adding a new component, called
RootPath, and applied a new candidate generation
procedure on this data structure. In each stage of this two
step procedure, we cover a set of candidate subtrees that
would not be considered by other algorithms (i.e.
HTreeMiner, VTreeMiner and FREQT). The experimental
results confirmed that W3-Miner can find some frequent
subtrees missed by other algorithms.
The next step to the current work will be to conduct a
performance comparison study on W3-Miner and other
frequent subtree mining algorithms. We believe that a
good future research direction is investigating the
application of weighted frequent subtree mining and W3-
Miner in real application areas such as RNA structure
mining and web mining.

REFERENCES
1. Y. Chi, S. Nijssen, R.R. Muntz, J. N. Kok, “Frequent Subtree

Mining An Overview,” Fundamental Informatics, Special
Issue on Graph and Tree Mining, 2005.

2. M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications,” in IEEE Transaction on
Knowledge and Data Engineering, vol. 17, no. 8, pp. 1021-
1035, 2005.

3. H. Tan, T.S. Dillon, L. Feng, E. Chang, F. Hadzic, “X3-Miner:
Mining Patterns from XML Database,” In Proc. Data Mining
'05. Skiathos, Greece, 2005.

4. K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa,
“Optimized Substructure Discovery for Semi-structured
Data,” In Proc. PKDD’02, 1–14, LNAI 2431, 2002.

5. M. J Zaki,.. Efficient Mining of Trees in the Forest. SIGKDD
'02, Edmonton, Alberta, Canada, ACM. 2002.

6. M. J. Zaki and C. C. Aggarwal. XRules: An effective
structural classifier for XML data. In Proc. of the 2003 Int.
Conf. Knowledge Discovery and Data Mining, 2003.

 7. T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering
frequent substructures in large unordered trees. In Proc. of the
6th Intl. Conf. on Discovery Science, 2003.

 8. Y. Chi, Y. Yang, and R. R. Muntz. Mining frequent rooted
trees and free trees using canonical forms. Technical Report
CSD-TR No. 030043, UCLA, 2003.

9. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.
Inkeri Verkamo, “Fast Discovery of Association Rules,”
Advances in Knowledge Discovery, and Data Mining, U.
Fayyad et al., eds.,pp. 307-328, Menlo Park, Calif.: AAAI
Press, 1996.

10. M.J. Zaki, “Fast Vertical Mining Using Diffsets,” In. Proc. of
Int. Conf. Knowledge Discovery and Data Mining (SIGKDD’03),
2003.
11. M. Zaki. Efficiently mining frequent embedded unordered

trees. Fundamental Informatics, 65:1-20, 2005.
12. B. Shapiro and K. Zhang, “Comparing Multiple RNA

Secondary Structures Using Tree Comparisons,” Computer
Applications in Biosciences, vol. 6, no. 4, pp. 309-318, 1990.

13. R. AliMohammadzadeh, S. Soltan, and M. Rahgozar,
"Template guided association rule mining from XML
documents". In Proceedings of the 15th international
Conference on World Wide Web (Edinburgh, Scotland, May
23 - 26, 2006). WWW '06. ACM Press, New York, NY, 963-
964. DOI= http://doi.acm.org/10.1145/1135777.1135966.

14. R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani,
M. Rahgozar, “W3-Miner: Mining Weighted Frequent
Subtree Patterns in a Collection of Trees”. In Proceedings of
the Second International Conference on Pattern Analysis
(Budapest, Hungary, May 26-28, 2006). ICPA’06.
Transaction on Engineering, Computing and Technology,
ISSN 1305-5313, Pages 164-168, World Enformatika Society.

15. R. Agrawal, T. Imieliński, and A. Swami, “Mining
association rules between sets of items in large databases”. In
Proceedings of the 1993 ACM SIGMOD international
Conference on Management of Data (Washington, D.C.,
United States, May 25 - 28, 1993). P. Buneman and S. Jajodia,
Eds. SIGMOD '93. ACM Press, New York, NY, 207-216.

16. S. Nijssen and J.N. Kok, “Efficient Discovery of Frequent
Unordered Trees,” Proc. First Int’l Workshop Mining Graphs,
Trees, and Sequences, 2003.

17. A. Termier, M-C. Rousset, and M. Sebag, “Treefinder: A
First Step Towards XML Data Mining,” Proc. IEEE Int’l
Conf. Data Mining, 2002.

18. D. Shasha, J. Wang, and S. Zhang, “Unordered Tree Mining
with Applications to Phylogeny,” Proc. Int’l Conf. Data Eng.,
2004.

19. U. Ruckert and S. Kramer, “Frequent Free Tree Discovery in
Graph Data,” Special Track on Data Mining, Proc. ACM
Symp. Applied Computing, 2004.

20. Y. Chi, Y. Yang, and R.R. Muntz, “Indexing and Mining
Free Trees,” Proc. Third IEEE Int’l Conf. Data Mining, 2003.

21. Y. Xiao, J.-F. Yao, Z. Li, and M.H. Dunham, “Efficient Data
Mining for Maximal Frequent Subtrees,” Proc. Int’l Conf.
Data Mining,2003.

22. Y. Chi, Y. Yang, and R.R. Muntz, “HybridTreeMiner: An
Efficient Algorihtm for Mining Frequent Rooted Trees and
Free Trees Using Canonical Forms,” Proc. 16th Int’l Conf.
Scientific and Statistical Database Management, 2004.

23. C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi,
“Efficient Pattern-Growth Methods for Frequent Tree Pattern

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

196

Mining,” Proc. Pacific-Asia Conf. Knowledge Discovery and
Data Mining, 2004.

25. K. Wang and H. Liu, “Discovering Typical Structures of
Documents: A Road Map Approach” Proc. ACM SIGIR Conf.
Information Retrieval, 1998.

26 R. AliMohammadzadeh, M. Rahgozar, “An Efficient Model
for Discovering Association Rules from XML Documents”.
In Proceedings of the Third International Conference on
Knowledge Mining (Prague, Czech Republic, August 25-27,
2006). ICKM’06. Transaction on Engineering, Computing
and Technology, ISSN 1305-5313, Pages 164-168, World
Enformatika Society.

27. Braga D., A. Campi, M. Klemettinen, and P. L. Lanzi.
“Mining association rules from XML data”. In Proceedings of
the 4th International Conference on Data Warehousing and
Knowledge Discovery, September 4-6, Aixen-Provence,
France 2002.

28. Feng L. & T. Dillon. “Mining XML-Enabled Association
Rule with Templates”. In Proceedings of KDID04, 2004.

29. Barbosa D., A. Mendelzon, J. Keenleyside and K. Lyons,
“ToXgene: A template-based data generator for XML”. In
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data. Madison, Wisconsin -
June 4-6, 2002.

30. Abramsky S., A Jung, “Domain Theory”, Handbook of Logic
in Computer Science, 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

