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Summary 
Mining frequent subtree patterns has many useful applications in 
XML mining, bioinformatics, network routing, etc. Most of the 
frequent subtree mining algorithms (such as FREQT, TreeMiner 
and CMTreeMiner) use anti-monotone property in the phase of 
candidate subtree generation. However, none of these algorithms 
seems to verify the correctness of this property in all kinds of tree 
structured data. In this paper, we investigate the correctness of 
anti-monotone property for the problem of weighted frequent 
subtree mining and use multiple examples to elaborate on our 
finding about this issue. It is shown that anti-monotonicity does 
not generally hold, when using weighed support in tree pattern 
discovery. Consequently, the tree mining algorithms that are 
based on this property would miss some of the valid frequent 
subtree patterns if one considers weighted support. We propose 
also a novel algorithm named W3-Miner that uses new data 
structures and techniques for full extraction of frequent subtrees. 
The experimental results confirm that W3-Miner finds some 
frequent subtrees that the previously proposed algorithms would 
not discover when if weighted support is required. 
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Introduction 

Mining frequent subtrees has many practical applications 
in areas such as computer networks, Web mining, 
bioinformatics, XML document mining, etc [2, 5]. These 
applications share a requirement for the more expressive 
power of labeled trees to capture the complex relations 
among data entities. Frequent subtree mining is a more 
complex task compared to frequent item-set mining. 
However most of existing frequent subtree mining 
algorithms borrows techniques from the relatively mature 
association rule mining area [1, 9]. So far, many 
algorithms have been developed for mining frequent 
subtrees from a collection of trees such as XML 
documents. We developed W3-Miner [14] for discovering 
weighted embedded subtrees from a collection of trees. In 
[2, 5, 11] M.J. Zaki presented an algorithm, TreeMiner, to 
discover all frequent embedded subtrees, i.e., those  
 
 

 
subtrees that preserve ancestor-descendant relationships, in 
a forest or a database of rooted ordered  
 
trees. This algorithm used a new data structure, scope-list, 
to efficiently count the frequency of candidate subtrees. 
The algorithm was further extended in [6] to build a 
structural classifier for XML data. Asai et al. in [4] 
presented an algorithm, FREQT, to find frequent rooted 
ordered subtrees. Also two algorithms were proposed by 
Asai et al. and Yun Chi et al. to mine rooted unordered 
subtrees, based on enumeration graph and enumeration 
tree data structures [7, 8]. Another work has been done in 
[3] where a model-validating approach for non-redundant 
candidate generation has been proposed. Wang and Liu 
[25] developed an algorithm to mine frequently occurring 
subtrees in XML documents. They mine induced subtrees 
only.  
There are several other recent algorithms that mine 
different types of tree patterns, which include 
FreeTreeMiner [20] which mines induced, unordered, free 
trees (i.e., there is no distinct root); FreeTreeMiner for 
graphs [19] for extracting free trees in a graph database; 
and PathJoin [21], uFreqt [16], uNot [7], and 
HybridTreeMiner [22], which mine induced, unordered 
trees. TreeFinder [17] uses an Inductive Logic 
Programming approach to mine unordered, embedded 
subtrees, but it is not a complete method, i.e., it can miss 
many frequent subtrees, especially as support is lowered or 
when the different trees in the database have common 
node labels. SingleTreeMining [18] is another algorithm 
for mining rooted, unordered trees, with application to 
phylogenetic tree pattern mining. Recently, XSpanner [23], 
a pattern growth-based method, has been proposed for 
mining embedded ordered subtrees. 
Almost all of these methods are based on the well-known 
apriori algorithm and have used anti-monotone property 
for candidate generation. This property suggests that the 
frequency of a super-pattern is less than or equal to the 
frequency of a sub-pattern. However, none of these 
algorithms have verified the correctness of anti-monotone 
property in tree structured data when considering weighted 
support. 
In this paper, we investigate the correctness of anti-
monotone property in discovering frequent subtrees when 
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considering weighted support. When the frequency of a 
subtree is based on weighted support, the previously 
proposed algorithms would probably miss some of the 
frequent subtrees. The reason is that the anti-monotone 
property does not necessarily hold in all kinds of tree 
structured data. To ensure complete discovery of all 
possible frequent subtrees, we propose a new algorithm, 
named W3-Miner. In W3-Miner a new method is used to 
count the support of a candidate subtree. In addition, a new 
join method is applied in the candidate generation phase. 
These improvements will guarantee the discovery of all of 
the valid frequent subtrees in a forest.  
 W3-Miner is an extension of the well-known TreeMiner 
[2, 5] algorithm to mine weighted frequent subtrees. For 
complete generation of k-subtree candidates, we extend 
the concept of scope-list data structure [2, 5] by adding a 
new component, called RootPath. Also, a new join method 
is applied for k-subtree candidate generation. By means of 
multiple examples, the incorrectness of anti-monotone 
property and the solution proposed by our algorithm are 
fully demonstrated. We also compare W3-Miner with 
three other tree mining algorithms. The obtained results 
confirm that some frequent subtree patterns are only 
discovered by W3-Miner. 
This paper is organized as follows. In section 2 some 
preliminaries and definitions are given. Section 3 describes 
the anti-monotone property in tree structured data. The 
extended scope-list is provided in section 4. Section 5 
describes the details of the proposed algorithm. We 
empirically evaluate the effectiveness of the algorithm in 
section 6 and the paper is concluded in section 7. 

2. Preliminaries and Definitions 

2.1 Association Rule Mining  

Association rules were first introduced by Agrawal et al. 
[15] to analyze customer habits in retail databases. 
Association rule is an implication of the form X  Y, 
where the rule body X and head Y are subsets of the set I 
of items (I = {I1, I2,…, In}) within a set of transactions D 
and X ∩ Y = φ. A rule X ⇒ Y states that the transactions 
T that contain the items in X are likely to contain also the 
items in Y. Association rules are characterized by two 
measures: The support, which measures the percentage of 
transactions in D that contain both items X and Y; The 
confidence, which measures the percentage of transactions 
in D containing the items X that also contain the items Y 
[Figure 1].  
In tree structured data context (XML document), both D 
and I are collections of trees [1], in the same way X and Y 
are trees (XML fragments) (Figure 2).  

There are several algorithms for discovering association 
rules from XML documents. Braga et al. introduced 
XMINE operator for extracting association rules from 
XML documents [27]. Feng et al. proposed a theoretical 
framework for XML-Enabled association rule mining from 
XML documents [28]. An efficient model for discovering 
Association Rules from XML Documents are also 
developed in [13, 26] based on mining frequent subtree 
patterns.  The same model can be used with appropriate 
modifications to mine XML association rules with 
weighted support using the algorithm proposed in here. 
All of the traditional association rule mining algorithms 
and almost all of the XML association rule mining 
algorithms are using a property named anti-monotone to 
efficiently generate the candidate of size k+1 from the 
candidates of size k. In the next section, we will briefly 
review the definition of anti-monotone and anti-
monotonicity. 

   
[Support = 2%, Confidence = 95%] 

Fig  1. Association rule between bread and milk 

<Author> Rakesh Agrawal </author> 
 

<Keyword>Data Mining</keyword> 

Fig 2. XML Association rule 

2.2 Anti-Monotone Property and Anti-monotonicity 

In mathematics, functions between ordered sets are 
monotonic (or monotone, or even isotone) if they preserve 
the given order [30]. These functions first arose in calculus 
and were later generalized to the more abstract setting of 
order theory. Although the concepts generally agree, the 
two disciplines have developed a slightly different 
terminology. While in calculus, one often talks about 
functions being monotonically increasing and 
monotonically decreasing, order theory prefers the terms 
monotone and antitone or order-preserving and order-
reversing, respectively [30]. The anti-monotone property 
between frequent itemsets says that the support or 
frequency of itemsets is a monotonically decreasing 
function. This property helps traditional frequent itemset 
mining and association rules mining algorithms to 
efficiently generate the frequent itemsets and also prune 
the infrequent itemsets. This property is used in many 
frequent subtree mining algorithms such as TreeMiner [2], 
X3-Miner [3], FREQT [7], uFreqt [16], TreeFinder [17], 
Singletree Mining [18]. In these algorithms following the 
anti-monotone property in the generation of candidate 
frequent subtrees consisting of (k+1) nodes the infrequent 
subtrees with k nodes are not considered. 
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The anti-monotone property can be used in a condition 
which there is a non-increasing relation between the 
frequency of a pattern and the count of its elements. This 
condition is show in Figure 3, Where the frequency of the 
patterns never increase as the pattern grows.  
 

 

Fig. 3 Non-increasing relation between the frequency of a pattern and the 
count of its elements  

In the following sections, we investigate the correctness of 
anti-monotone property for the problem of weighted 
frequent subtree mining.  

2.3 Problem Definition 

To explain the problem of mining frequent subtrees in a 
forest we provide the following definitions [1, 2 and 5]: 
 
Definition 1. A rooted, labeled, tree, ),( EVT =  is a 
directed, acyclic, connected graph with },...1,0{ nV = as the 
set of vertices and },|),{( VyxyxE ∈= as the set of edges. 
One distinguished vertex Vr ∈ is selected as the root, and 
for all Vx∈ , there is a unique path from r to x. Further, 

LVl →: is a labeling function mapping vertices to a set 
of labels ,...},{ 21 llL = .  
 
Definition 2. A tree 'T with vertex set 'V  and edge set 

'E is an induced subtree of T if and only if  (1) VV ⊆' , (2) 
EE ⊆' , (3) the labeling of 'V  is preserved in 'T , (4) 

'),( 21 Evv ∈ , where 1v  is the parent of 2v  in 'T , only if 1v  
is a parent of 2v  in T. (5) if defined for rooted ordered 
trees, the left-to-right ordering among the siblings in 'T  
should be a sub-ordering of the corresponding vertices in 
T. 

Table 1. The frequencies of 1-subtrees in T1 
 
     

1)( =aσ
1)( =awσ

 

1)( =bσ
1)( =bwσ

 

1)( =cσ
2)( =cwσ

 

1)( =dσ
2)( =dwσ

 

1)( =eσ
1)( =ewσ  

 
Definition 3. For a rooted unordered tree T with vertex set 
V, edge set E, and no labels on the edges, a tree 'T with 
vertex set V ′ , edge set 'E , and no labels on the edges, is an 
embedded subtree of T if and only if (1) VV ⊆' , (2) the 
labeling of the nodes of 'V in T is preserved in 'T and 
(3) '),( 21 Evv ∈ , where 1v  is the parent of 2v  in 'T , only if 

1v  is an ancestor of 2v  in T. If T and 'T are rooted ordered 
trees, then for 'T to be an embedded subtree of T, a fourth 
condition must hold: (4) for ', 21 Vvv ∈ , preorder( 1v ) < 
preorder( 2v ) in 'T if and only if preorder( 1v ) < 
preorder( 2v ) in T. 
 
Definition 4. Let )(STδ indicate the number of 
occurrences of the subtree S in a tree T. Let Td be an 
indicator variable, with 1)( =SdT if 0)( >STδ and 

0)( =SdT  if 0)( =STδ . Let D denote a database of trees. 
The support of a subtree S in the database is defined 
as ( ) ( )TT D

S d Sσ
∈

=∑ . The weighted support of S is 

defined as ( ) ( )w TT D
S Sσ δ

∈
=∑ . Support is given as a 

percentage of the total number of trees in D. Some papers 
use Frequency instead of Support. In this paper, we use 
Support and Frequency interchangeably.  Intuitively, the 
support is equal to 1 if the subtree exists in the tree 
otherwise it is equal to 0. Weighted support is equal to the 
exact number of occurrences of subtree S in a tree T.  
 
Definition 5. An l-subtree S, which is a subtree with l 
nodes, is frequent if its (weighted) support is more than or 
equal to a user-specified minimum (weighted) support 
value.  

 

Fig. 4 A Sample Tree 

Consider a sample tree (T1) depicted in Figure 4, 
following tables  (Table 1 – Table 4)  display some sample 
subtrees and explore the differences between support 
( ( )Sσ ) and weighted support ( ( )w Sσ ) in context of tree 
structured data. 

 
 

b d e a c 
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As can be seen in Figure 4, the tree T1 has 5 nodes (1-
subtrees). For some 1-subtrees (single nodes) the support 
and weighted support are equal. For example both support 
and weighted support of node ‘a’ are equal to 1. However, 
these values are not the same for node‘d’, which its 
weighted support is equal to 2 as it occurs two times in T1. 
The same case holds for node ‘c’. 
 

Table 2. Some Sample Induced 2-Subtrees and their frequencies in T1 
   

1)( =⎯⎯⎯ →⎯ ba Inducedσ

1)( =⎯⎯⎯ →⎯ ba Induced
wσ  

1)( =⎯⎯⎯ →⎯ ea Inducedσ

1)( =⎯⎯⎯ →⎯ ea Induced
wσ  

1)( =⎯⎯⎯ →⎯ cb Inducedσ

1)( =⎯⎯⎯ →⎯ cb Induced
wσ

 
   

1)( =⎯⎯⎯ →⎯ db Inducedσ

1)( =⎯⎯⎯ →⎯ db Induced
wσ

 

1)( =⎯⎯⎯ →⎯ ce Inducedσ

1)( =⎯⎯⎯ →⎯ ce Induced
wσ  

1)( =⎯⎯⎯ →⎯ de Inducedσ

1)( =⎯⎯⎯ →⎯ de Induced
wσ  

 
Table 2 displays some induced 2-subtree. As definition 2 
suggests, all of the nodes in each of these induced subtrees 
are directly connected to each other. In contrast to table 1 
in this table, the support and weighted support of these 
induced subtrees are equal.  For example, the number of 
occurrences of 2-subtree ‘a e’ in tree T1 is equal to 1.  
But again in table 3 these values become different. 
Consider the two embedded 2-subtrees displayed in the 
first row of this table. In these subtrees nodes ‘b’ and ‘e’ 
have been eliminated considering embedded relationship 
defined in Definition 3. As can be seen, the embedded 
subtree ‘a c’ does exist in tree T1 so its support measure 
is equal to 1. But the number of occurrences of subtree 
‘a c’ in tree T1 is equal to 2. The first and second 
instances of ‘a c’ are depicted in the second and third 
row, respectively. The embedded subtree ‘a d’ has the 
same properties and its occurrences are shown in two 
different rows. The interesting fact in these samples is that 
the weighted supports of 2-subtree ‘a c’ and ‘a d’ are 
equal to 2 and the weighted support of node ‘a’ is equal to 
1. Clearly 1-subtree ‘a’ is a sub-pattern of 2-subtree ‘a c’. 
Consequently in contrast to the famous anti-monotonicity 
principal, the super-pattern in this case has a greater 
frequency compared to its sub-pattern. This is where the 
contradiction to the anti-monotone property occurs and 
makes weighted support subtree mining a rather different 
challenge of large item set discovery problem. 

Table 3.  Two sample of embedded 2-Subtree and their frequencies in T1 
  

  

  

1)( =⎯⎯⎯⎯ →⎯ ca Embeddedσ  
2)( =⎯⎯⎯⎯ →⎯ ca Embedded

wσ  
1)( =⎯⎯⎯⎯ →⎯ da Embeddedσ  

2)( =⎯⎯⎯⎯ →⎯ da Embedded
wσ  

 
In Table 4, two induced 3-subtrees and one embedded 3-
subtree are displayed. As can be seen, both support and 
weighted support of induced subtrees are equal to 1. But 
the weighted support of embedded subtree ‘a  (c, d)’ is 
equal to 2.  

 

 

 

 

 

 

 

 

 

 

a 

b 

a 

e 

b 

c 

b 

d 

e 

c 

e 

d 

a 

c 

a 

d 

a 

  

c    

a 

  

 d   

a 

  

  c  

a 

  

   d 



    IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006 
           
 

 

192 

 

Table 4. Some sample of 3-Subtrees in T1 and their support values 
 

 

1)( =⎯⎯⎯ →⎯⎯⎯⎯ →⎯ cba InducedInducedσ  
1)( =⎯⎯⎯ →⎯⎯⎯⎯ →⎯ cba InducedInduced

wσ  
 

1)( =⎯⎯⎯ →⎯⎯⎯⎯ →⎯ dea InducedInducedσ

1)( =⎯⎯⎯ →⎯⎯⎯⎯ →⎯ dea InducedInduced
wσ  

 
 

1),( =><⎯⎯⎯⎯ →⎯ dca Embeddedσ  
( , ) 4Embedded

w a c dσ ⎯⎯⎯⎯⎯→< > =  
 
 
The problem of mining frequent tree patterns in a forest of 
tree-structures transactions is to find all of the frequent k-
subtrees, Mk ≤≤1  where M is the maximum number of 
nodes in transactions. The desired type of frequent subtree 
patterns which is aimed in the mining process can differ 
based on the kind of application. In this paper, our goal is 
to generally mine all frequent, labeled, ordered, and 
embedded subtrees in a forest using weighted support, by 
proposing the W3-Miner algorithm.   

3. Anti-Monotone Property in Tree 
Structured Data 

Anti-monotone property says that the frequency of a 
super-pattern is less than or equal to the frequency of a 
sub-pattern. In this section we show that anti-monotone 
property does not hold in tree patterns when using 
weighed support. As a result, tree mining algorithms based 
on this property are unable to find all of the frequent tree 
patterns from a collection of trees.  
An example of this case is shown in Figure 5, where the 
frequency of 1-subtree ‘a’ is equal to 1 but the frequency 
of 2-subtree ‘a-c’ is equal to 2. 

 

 
 

Fig. 5 Non-frequent subtree is 
in root 

Fig. 6 Non-frequent subtree is 
in leaf 

 
Figure 5 shows the state where the non-frequent subtree is 
placed in a higher level with respect to the frequent subtree 
of the transaction. An example of the other state that the 
non-frequent subtree is placed in a lower level with respect 
to the frequent subtree is depicted in Figure 6. As it is 
shown in the figure the frequency of 2-subtrees ‘b-c’ and 
‘b-a’ are equal to 2 but the frequency of 1-subtree ‘a’ and 
‘c’ are 1. Consequently we suggest the following 
proposition: 
 
Proposition 1. Anti-monotone property does not hold in 
frequent tree mining when using weighted support. 

4. Extended scope-list 

We propose a new data structure named extended scope-
list that will be exploited by W3-Miner. M.J. Zaki in 
TreeMiner algorithm [2, 5] introduced a new data structure 
called scope-list. Scope-list is generated for each candidate 
subtree c and is used to efficiently count its frequency. In 
scope-list of c, each element is a triple ),,( smt  , where t 
is a tree id in which c occurs, m is a match label of the k-1 
length prefix of c in its string representation format, and s 
is the scope of the last node of c. The match label gives the 
positions of nodes in transaction tree (t) that match the 
prefix [2]. S is the scope of the right-most node of t. The 
scope of a node determines the range of vertices under that 
node. We extend the definition of scope-list by adding a 
new component, RootPath, to its elements. RootPath is an 
array of tuples (x ,y), where x is the label of a node and y is 
preorder number of that node in transaction tree (t). (x, y) 
is generated for the root of the transaction tree (t) and all 
nodes between it and the root of the candidate tree (c) but 
not for the root of c itself. Figure 7 shows an example of 
extended scope list. 

a 

c d 

a 

b 

c 

a 

e 

d 
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(a) t0: a transaction tree 

 

 
(b) 
 

RootPath 

t0, 2 3, 
[3,3] 

(1,1) 
(7,0)  

(c) 
 

RootPath 

t0, 4 6, 
[6,7] 

(1,1) 
(7,0)  

(d) 

  
 

Fig. 7  (a) a sample transaction tree, (b) a sample candidate subtree which 
has 2 instances in t0, one of them is indicated by vertical lines and 
another is indicated by horizontal lines , (c) the extended scope-list of the 
first instance (marked with vertical lines) and (d) the extended scope-list 
of the second instance.  

5. W3-Miner Algorithm 

W3-Miner uses TreeMiner algorithm to generate k+1 
candidate subtrees from frequent k subtrees. A join 
operation is applied on the generated candidates to 
construct their extended scope-lists. Then the algorithm 
trims non-frequent k+1 subtrees by using in-scope and 
out-scope tests. For more details about this process, the 
interested reader can refer to [2, 5]. To generate the k+1 
candidate subtrees that are missed by TreeMiner algorithm 
when using weighted support, W3-Miner joins a 1-tree 
with a k-tree in two steps as follows. 

5.1 Extending Candidate Subtrees with RootPath 
Elements 

For each element e in the extended scope-list of k-frequent 
subtree k and for each tuple in the RootPath array of e, the 
node of that tuple is joined to k by considering it as the 
root of k. For each obtained frequent (k+1)-subtree we 
generate its extended scope-list called h, by first copying 
extended scope-list of k. Then for each element e in h and 
for each element r in RootPath of e, we append the 
preorder number of r to the beginning of e’s match label. 
After this, the RootPath of each element in h is updated as 
follows. Each element r in RootPath of e in h is deleted if 
its preorder number y is greater or equal to the number 

appended to the match label of e. In Figure 8 node 1 is 
added to the root of candidate tree shown in Figure 7. 
 

 
(a) 

 
 

RootPath 
t0, 
1 2 3, 
[3,3] 

(1,1) 
(7,0)   

 
RootPath 

t0, 
1 2 
3, 
[3,3] 

(7,0)  

 
RootPath 

t0, 
1 4 6, 
[6,7] 

(1,1) 
(7,0)  

(b) 

RootPath 

t0,1 
4 6, 
[6,7] 

(7,0)  

(c)  

Fig. 8 A new node is added to the root of tree. (a) The new candidate 
subtree. (b) Updating scope-list (c) the final extended scope-list of the 
new subtree. 

5.2 Extending candidate subtrees by using 1F  
elements 

1F  is an array of triples (x, y, z), where x is the label of 
non-frequent node and y is number of that node in preorder 
traversal and z is the preorder number of last node in tree 
rooted by x. 1F  contains all of the non-frequent nodes. 
After generating (k+1)-trees by Step 1 of W3-Miner, it is 
possible that some frequent (k+1)-Trees have not been 
generated yet (consider Figure 6). To solve this problem 
each node in 1F  is added to the last node of frequent k-
subtree k, if its scope is a proper subset of the scope of the 
last node of k. 
We say that scope ys  is proper subset of scope xs  if and 
only if yx ll ≤ and yx uu ≥ , where l  indicates the lower 
bound of a scope and u is its upper bound. We append the 
lower bound of each element of extended scope-list to its 
match label and the lower bound of the scope is set to y 
and the upper bound is set to z. 
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6. Experimental Results 

6.1 Experiment 1: A Simple Forest 

M.J. Zaki developed three variants of TreeMiner in [2, 5, 
10 and 11]: VTreeMiner, HTreeMiner and TreeMinerD. In 
the current work we compare our proposed algorithm 
(W3-Miner) with TreeMinerD in terms of discovered 
frequent subtrees. Our sample input forest is shown in 
Figure 9. This forest consists of three (tree-structured) 
transactions. The total number of nodes is 32 and the 
number of distinct nodes is 9. We tested these algorithms 
with minimum weighted support being equal to 3. The 
results are presented in Table 1. 

 

Fig. 9 Sample input forest containing 3 transactions 

Table 5 Comparison between results of three different algorithms 
TreeMinerD W3-Miner 

F1 F1 
1 – 3 
2 – 3 
3 – 3 
4 – 3 
5 – 3 

1 – 5 
2 – 5 
3 – 7 
4 – 4 
5 – 4 
6 – 3 

F2 F2 
1 2 – 3 
1 3 – 3 
1 4 – 3 
1 5 – 3 
3 4 – 3 
3 5 – 3 

 

1 2 - 6 
1 3 - 9 
1 4 - 4 
1 5 - 5 
1 6 - 4 
2 5 - 3 
3 2 - 3 
3 3 - 3 
3 4 - 4 
3 5 - 3 
3 6 - 4 

In column 1 of Table 5 the frequent subtrees discovered by 
TreeMinerD are displayed. However, as can be seen in 
column 2, W3-Miner discovers one frequent 1-subtree and 
five frequent 2-subtrees (shown in bold) that are missed by 
the TreeMinerD algorithm. The different discovered items 
are shown in bold. Actually, there are some frequent 
subtrees of size 3, 4, 5, …, 8 that are not shown in this 
table because of space limitations. The weighted support 
of subtree ‘2 5’ is equal to 3 (1 instance in t2 and 2 
instances in t1) thus must be considered as a valid frequent 
subtree. Also subtree ‘1 2 -1 3’ has four instances in t1 and 
two instances in t3 making its weighted support equal to 6. 
W3-Miner was able to discover this frequent trees but the 
TreeMinerD was not.  
We believe that these frequent patterns can be of high 
importance in many applications such as RNA structure 
mining and phylogenetic tree analysis [2, 12]. 

6.2 Experiment 2: Synthetic Dataset 

We tested our algorithm on a synthetic dataset which is 
generated by the ToXgene XML Generator tool. ToXgene 
is a template-based generator for large, consistent 
collections of synthetic XML documents, developed as 
part of the ToX (the Toronto XML Server) project [29]. 
Our generated data set consists of 100 trees with the 
maximum level of 3. Each node has a maximum of 6 
children. As a measure of repeated nodes there are at most 
3 nodes with same labels among the children of a parent 
node.  
The TreeMinerD algorithm developed by Zaki [2] is used 
in our comparisons as the most recognized algorithm in 
this domain. Both of the algorithms were run with support 
values between 2 and 50 to verify the number of 
discovered frequent subtrees with different support 
thresholds. As can be seen in Figure 10 the TreeMinerD 
algorithm will miss many of the frequent subtree patterns 
because it does not consider weighted support properly 
(see section 3).  
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The number of missed patterns increases as the support 
threshold value decreases. Of course, it should be noted 
that the number of extra discovered patterns in W3-Miner 
largely depends on the properties of the data set in hand. 
More accurately the both algorithms will discover the 
same set of patterns when there are not any nodes with the 
same label in each tree of the forest. In fact, the more the 
number of repeated nodes exists in the trees, the higher 
will be the difference between the numbers of discovered 
pattern in the two algorithms.  

7. Conclusions 

In this paper we investigated the anti-monotone property 
in tree structured data when weighted support is required. 
We showed that this property does not hold in such 
context. Consequently we proposed a novel algorithm, 
W3-Miner, to find all of the weighted frequent subtree 
patterns in a database of trees. We extended the scope-list 
data structure by adding a new component, called 
RootPath, and applied a new candidate generation 
procedure on this data structure. In each stage of this two 
step procedure, we cover a set of candidate subtrees that 
would not be considered by other algorithms (i.e. 
HTreeMiner, VTreeMiner and FREQT). The experimental 
results confirmed that W3-Miner can find some frequent 
subtrees missed by other algorithms. 
The next step to the current work will be to conduct a 
performance comparison study on W3-Miner and other 
frequent subtree mining algorithms. We believe that a 
good future research direction is investigating the 
application of weighted frequent subtree mining and W3-
Miner in real application areas such as RNA structure 
mining and web mining. 
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