
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

9

Manuscript received August 5, 2006.

Manuscript revised August 25, 2006.

This paper is sponsored by National Natural Science

Foundation of China (NO. 90604027)

A Multi-Agents System for Program Mining: Architecture,

Interaction Protocol and Implementation

Fang Cunhao,
†
 and Zhang Yaoxue

 ††
,

Tsinghua University, Beijing, China

Summary

With the rapid development of computer network, Internet

is used not only to publish and share Information, but also

to provide many kinds of computing services. Program

Mining is presented to deal with customized computing

problem on demand for Internet users. This paper first

introduce the basic concept of Program Mining: Program

Mining makes use of several task-specific software agents,

analyzes user requests for computing, searches the

component candidates from online component libraries

according to the request, and reassembles them to form

programs that perform the expected computing.According

to the general process of Program Mining, a multi-agent

system for Program Mining is designed and the

communication protocols between the agents are also

developed. After analyzing the function of each entity in

Program Mining system, we design one or more agent to

act as the each entity. Then for each agent, the function and

the process are provided in detail. Based on the Agent

Communication Language, the communication protocols

are presented for the multi-agent system. Via the

communication protocols, it is assured that the actions of

agents are consistent to the whole multi-agent system. In

the implementation of multi agent system, we have

developed a agent interaction protocol and language based

dynamic agent infrastructure, which applies XML to

specify the messages among mobile agents and define their

tasks and access rights, to support multi-agent cooperation

for program mining.Input here the part of summary.

Key words:
Multi-agent, Interaction Protocol, Program Mining, Computing-

on-demand

Introduction

For the past few years, the Internet is often regarded as a

super information database, where information related to a

wide range of topics is disseminated and shared. To help

users find needed information on the Internet, many efforts

have been made to develop information on demand

systems, such as news on demand, video on demand, or

other personalized or intelligent information retrieval

systems. Some researchers implement Data Mining

techniques to discover knowledge from Web sites, we

regard it as knowledge on demand approach [1,4].

However, with the evolution of network technology,

especially the prosperity of Java, the Internet is emerging

as a large-scale distributed computing platform, where all

kinds of Internet applications (web services) are deployed,

providing various services for users. Traditionally, these

applications often employ prepackaged monolith systems

containing any conceivable features, which are not easily

extended and customized. Whereas in large scale

distributed networks (e.g., the Internet), network services

and applications are diffused to a very large scope. This

makes it necessary to increase the customizability of

services, so that different classes of users in heterogeneous

networks can tailor the functionality and interface of a

service according to their specific needs [1]. An ideal

solution to this problem is to implement applications as

component-based systems and deliver them at an on-

demand manner, so that new features can be added on

demand at different granularities. Therefore, in Internet

world, besides the need for personalized information, users

have similar needs for computing. They need customized

computing functionalities to process customized

information. We regard it as the need for computing-on-

demand at application level.

Based on these observations, we propose a new computing

paradigm—Program Mining (PM) to deal with the

increasing needs of computing-on-demand. The basic idea

of PM is making use of several task-specific software

agents, analyzing user’s requests for computing, searching

and retrieving candidates from online component

repositories according to this request, composing and

reassembling them to form programs that perform the

expected computing. In this way, computing on demand

can be provided for users, achieving great flexibility and

customizability.

The rest of this paper organize as follows: In section 2, we

present a more concrete concept of Program Mining;

Based on this concept, we discusses and a multi-agent

system framework for program mining. In section 3, we

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

10

present the agent interaction mechanism for component

retrieval with XML messaging. Finally, we summarize this

paper by drawing a conclusion.

2. The Concept Diagram of Program Mining

In our proposal, software agents are utilized to

discover programs among large amount of component

resources. The users present what they want in terms of

functionalities, which may be described in natural language

and the concept of component is transparent to end users.

The request is analyzed and the computing functionality is

decomposed into smaller modules, possible components or

component compositions that can realize these functional

modules are identified. Then corresponding software

agents are activated to search and retrieve potential

component candidates, analyze and discover the

dependencies among them, find out the possible

component compositions that implement the needed

computing logic. Just as Data Mining systems that discover

implicit relations and patterns in a vast amount of data,

Program Mining is to discover the dependencies and

relationships among a great deal of software components,

and compose executable programs using various task-

oriented software agents. In the intermediary nodes of

active networks, this mechanism can be used to

dynamically discover programs that provide needed active

services; in end systems, some network applications can

also be composed on-the-fly using ProgramMining. The

concept of Program Mining is depicted in Fig.1.

Component
Server

Component
Server

Component
ServerAgent

Program
Mi ni ng
Server

Act i ve
NodesEnd

Systems

Agent Agent
User

Autonomous Mi grat i ng

Component
Server

Fig. 1. Illustrates the basic concepts of Program Mining.

 We suppose that reusable software components have

been organized in different component servers on the

network. Software agents migrate autonomously among

these servers to search and retrieve potential component

candidates. On the Program Mining server, according to

users’ high-level requests, application level programs and

network level computing logic can be discovered from the

candidates. Particularly, in active nodes, active services are

provided for the end users to perform customized

computation, forming the programmable network API of

active nodes. Software agents on the Program Mining

server can carry out the composition of these services. In

end systems, applications that utilize the underlying

network services can also be composed using Program

Mining mechanisms. Depending on the complexity of

mining tasks, user intervention with agents might be

needed when necessary.

3. The Multi Agent System Architecture for

Program Mining

To provide users with Active Services, the program

mining system needs to access and search the

heterogeneous component warehouses distributed on the

Internet and LANs, as well as realize the co-sharing and

reuse of the component resources distributed in these

component warehouses. In the process of program mining,

it is necessary to make functional decomposition of user

service requests, and make a judgment upon whether the

service offered by the component can meet functional

needs. If the services offered by the components can meet

the demand of the user, the system can directly return the

service functionality offered by the component to the user.

Otherwise, the system will further the component searching

and matching according to the service functions after

further subdividing. After the relevant components are

found, the system will compose, compile, validate, and test

them. Finally, the system will submit the requested services

to the user. Besides, the intelligent agent can also record

the former cases and and learn them to increase its

capability, no matter whether they are successful or not.

3.1 Agents Involved in Program Mining Process

In Section 2, we have introduced the general process of

program mining:

(1)the user submitting computing requests;

(2)the system analyzing user requirements and making a

functional decomposition;

(3)component searching and acquiring;

(4)component analyzing, selecting, and composing;

(5)validating the consistency of the composing program

and the service required;

(6)compiling and executing the mined program and

offering services to the user.

To implement the program mining progress, the

program mining system should set up relevant intelligent

agents in the client and server, and organize them in

accordance with a certain protocol to constitute a multi-

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

11

agent system in support of program mining. We propose

and implement a multi-agent cooperation model for

program mining. This multi-agent system consists of the

following agents:

� User Interface Agent (UIAgent) at the client side

� Task Management Agent (TMAgent) at the

program mining server side

� Task Analysis Agent (TAAgent) at the program

mining server side

� Component Retrieval Agent (CRAgent) at the

program mining server side

� Composing and Validating Agent (CVAgent) at the

program mining server side

� Domain Knowledge Agent (DKAgent) at the

domain knowledge base side

� Directory Library Agent (DLAgent) at the

component warehouse side

� Component Library Agent (CLAgent) at the

component warehouse side.

Now, we briefly discuss the main functions of these agents.

� UIAgent. The UIAgent (User interface agent) is

located at the client end. It interacts with, guides, and

helps the user to put in program mining task, or in

other words, accepts the user’s computing requests

actively. Then, it submits the computing requests to

the program mining server and records the user’s

requests using history and characteristics. After

program mining servers return mined components or

component sets, it will provide the user with these

components.

� TMAgent. The TMAgent (Task management agent)

receives the computing requests from the UIAgent,

and allocates the needed resources to these requests.

Meanwhile, the TMAgent is responsible for recording

the status of each task, including the execution status

and result of the task. Here,we term every single

computing request from the user as a task.

� Task Analysis Agent (TAAgent). The task analysis

agent is responsible for user requirement analysis and

corresponding function decomposition. We term

functions that cannot be further subdivided as

primitive functions, which corresponds to a service

function provided by a single component. Here, we

should note that, due to the heterogeneity of

components and the diversity of developers, it is

inevitable to witness a component whose functions

contain another component’s functions, or the

functional intersection with another component. It thus

demands that the TAAgent should be equipped with

the capability of partitioning primitive functions and

recording the partition process and history. Before

decomposing of primitive functions, the task analysis

agent demands that the domain knowledge agent

supply the classification information about the relevant

components in the component warehouse, as well as

the component’s service functions. After the task

analysis agent decomposes the user requirements into

a group of primitive functions, it will transfer the

primitive function requests to the component retrieval

agent.

� Component Retrieval Agent (CRAgent). The

component retrieval agent is a movable agent, which is

used to search and acquire the components that can

meet the required primitive functions from the

distributed component warehouses or local ones. It has

two functions: (1)Accept requests from the task

analysis agent and acquire the component resource

information from the component directory library, or,

according to the component resource information,

move to the corresponding component warehouse, and

query and acquire the component entity. (2)Accept the

request of the component directory library agent,

search in the stored component information in each

component warehouse, and update the component

resource information in the component directory

library.

� Composing and Validating Agent (CVAgent). When

the component retrieval agent has found the needed

component, it transfers the component’s information to

the CVAgent. The CVAgent, according to the user

requirements and the Component Composing scheme,

composes the components into an application program

that can offer the service required by the user, and then

validates its consistency. Finally, the CVAgent

compiles and runs the composed and validated

application program to offers active service for the

user.

� Domain Knowledge Agent (DKAgent). The DKAgent

accepts the request from the TAAgent and sends back

the relevant domain knowledge and component service

function to the TAAgent after searching the domain

knowledge base. The domain knowledge includes the

domain classification information and the function sets

information in the domain. In addition, the domain

knowledge agent is responsible for updating the

domain knowledge base.

� Directory Library Agent (DLAgent). The DLAgent

accepts the request from the CRAgent, and, after

querying the component directory library, sends back

the relevant component resource location information

to the CRAgent for the component searching. Besides,

it also accepts the component resource’s update

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

12

information obtained from the search engine agent,

and maintains and updates the component’s resource

information.

� Component Library Agent (CLAgent). The CLAgent

accepts the request from the component retrieval

agent, and, after querying the component warehouse,

sends the relevant component information and

component entity to the component retrieval agent.

Meanwhile, the CLAgent is also responsible for the

management and maintenance of the components in

the warehouse, including the addition, deletion, or

modification of the components.

3.2 Multi-Agent Cooperation Model

The collaborative work relationship among the above

agents in the mining system are shown in Figure 2.

Fig. 2 Cooperation Model of multi-agent system in program mining

In Figure 2, the user interface agent is set at the client to

complete interactive functions with the user. Other agents

are located in the component management server,

component directory library, component warehouse, etc.

Since the intelligent multi-agent system is an Internet-

based distributed computing system, the locations of these

intelligent agents in the above-mentioned servers, directory

library, or component warehouse have relative and

changing positions.

The communication between different agents is directed by

the protocol connecting them.

Figure 3 indicates the protocol link relations among these

intelligent agents. As shown in Figure 3, the connective

protocol between the UIAgent and TMAgent is UITM.

Moreover, the connective protocol between the TMAgent

and task analysis agent is TMTA, the UIAgent and task

analysis agent, UITA, the task analysis agent and domain

knowledge agent, TADK, the task analysis agent and

component retrieval agent, TACR, the task analysis agent

and composing and validating agent, TACV, the

component retrieval agent and directory library agent,

CRDL, and the component retrieval agent and component

warehouse agent, CRCL.

These protocols define the information interactive rules,

formats and orders among intelligent agents. The

interactive messages are described by the relevant agent

communication languages.

Fig. 3 Protocols of intelligent agents.

4. Agent Interaction Protocol and Language

4.1 Agent Interaction Protocol

This section is concerned with the agent’s interaction

protocol. Because the agent interaction protocols between

intelligent agents depends on the task classification of each

agent and functional interrelationship between agents, and

also because there is little difference between interaction

protocols themselves, we only specify UITM the

interaction protocol between the UIAgent and TMAgent.

Figure 9.5 is the state transition of a UIAgent in UITM.

Figure 9.6 is the state transition of the TMAgent in UITM.

In the figures, the state of the agent is indicated by an

ellipse. The arrow refers to the target directions of the state

transition. The notes above the arrow with “+” indicate the

received message during the state transition, and indicate

the sent message with “-” below the line.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

13

Fig. 4 State transition map of the UIAgent in UITM.

As shown in Figure 9.5, in the whole interaction process of

the UTIM protocol, the UIAgent should undergo six states:

INITIAL, WAIT, SENT-1, SENT-2, DELAY, and FAIL.

The UIAgent’s state transition is triggered by sending or

receiving of the message. Initially, the UIAgent is in state

INITIAL. When the user inputs the request, the UIAgent

packs it into the message “Request Service”and sends it to

the TMAgent, meanwhile shifting the current state to

SENT-1. If the TMAgent is busy, it answers “NCK”. Then,

the UIAgent changes to state DELAY, and resends the

message “Request Service” after a while, shifting to state

SENT-2. If TMAgent replies “NCK” for two successive

times, the UIAgent will shift to state FAIL, reporting to the

user that this task fails and then returning to state INITIAL

automatically. If the UIAgent, in state SENT-1 or SENT-2,

receives “ACK” from the TMAgent, it means that the

TMAgent has accepted “Request Service.” In turn, the

UIAgent will send “RSP” to the TMAgent, requesting the

TMAgent to process “Request Service” and shifting to

state WAIT. When the program mining server returns

mined components or component sets, it is up to the

TMAgent to send “AWAKE” to UIAgent, which is then

awakened and shifts its status to state INITIAL, submits

the mining results to the user, and starts to accept the next

request service.

Fig. 5 State transition map of the TMAgent in UITM.

Figure 5 is a state transition of the TMAgent in the UITM

protocol. In the beginning the TMAgent is in state

INITIAL. When receiving the “Request Service”message

from the UIAgent, TMAgent will decide whether to accept

this request of service or not, according to its service type,

current resource status, etc. If it has been declined, the

TMAgent will answer a “NCK” and return to state

INITIAL, waiting for the next service request. If accepted,

the TMAgent will answer “ACK,” shifting to state

READY. After receiving the UIAgent’s message “RSP,”

the TMAgent will go into state “PROCESS” and work

with other agents to jointly process the service request of

the “Request Service” message. When it is done, the

TMAgent sends a “AWAKE” to the UIAgent to awaken it

for corresponding processing. Then, the TMAgent returns

to state INITIAL.

4.2 Agent Interaction Language

The agent interaction protocol prescribes the rules,

sequence, and formats of agent communication. The agent

interaction language is used to describe the messages

among agents. Different from the messages transmitted by

other protocols, messages of the intelligent agents contain

three basic elements: the agent interaction language, the

universal format of message content, and the ontology

defined among the agents for mutual understanding.

XML can be used to describe the messages exchanged

between agents. An example of a message format defined

by XML is as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

14

Example 1 The common format of message described by XML

Each message has a sender, and one or more receivers. The

“content” in a message corresponds to the concrete content

sent in the message.

The “ontology” in a message refers to the commonly

understood terms by the intercommunicating agents. It is a

description of some terms contained in the content, such as

objects, methods, etc. For example <content> <Domain

name=”car”>...</Domain></content>contains a domain

object named car. Domain is an ontology understood by

multi-agents. The definition is given as follows:

Example 2 Domain’s definition in ontology

Example 3 The XML description of the message “ Request

Service” to the TMAgent, sent by the UIAgent

5 Agent Function Design and Implementation

In this section, we give an introduction to the function

designs of agents, because the functions each intelligent

agent is about to fulfill depend on the system designer’s

allocation of each agent’s tasks, and on the functionality

and supporting environments of the selected intelligent

agent platform. The functional design of the UIAgent is

illustrated as an example.

Eample 4 The function design of the UIAgent

As stated, UIAgents are mainly used to help and guide the

user to accomplish program mining. The UIAgent, by

means of learning, will adapt to the user’s preference, and

automatically run some commonly used procedures.

Generally speaking, the UIAgent adopts four approaches to

learning:

(1)observing the user’s operations and conducting

imitation learning;

(2)making suggestions to the user, or executing operations

on behalf of the users, then learning and adjusting itself

through receiving the feedback or evaluation from the user;

(3)directly accepting the user’s commands and then

learning and recording relevant operating flows;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

15

(4)consulting other agents for their experience.

With such a broad learning mechanism, the interface agent

can offer users personalized interaction interfaces to

customize users’ own interaction styles. Besides, interface

agents can co-share the knowledge by bilateral

collaboration. When a user customizes or modifies an

application service with the help of the program mining

system, the UIAgent can learn and remember this

procedure and lay a foundation for other users to share the

service in future.

Figure 6 illustrates the module structure of the UIAgent,

which consists of the sensor module, reasoning machine,

communication module, knowledge base, database,

controller, and effect module. Users submit computing

service requests through the input/output interface. When

the sensor module receives the user’s computing service

requests, it will send messages to the reasoning machine,

which analyzes the sensed events according to the rules in

the knowledge base and the statistical data in the database.

Then, the reasoning machine will decide the subsequent

actions in accordance with the analysis result. Particularly,

if an event has been input by a user, the application result

of this event will serve as a reference for future handling of

the user’s input. Similarly, when the same user has been

using the agent for a while, the UIAgent is supposed to

memorize the user’s input habit and character, such as the

frequently used input modes or frequently requested

services.

Therefore, once the sensor module perceives that one

user’s input can match the related habit or character, the

reasoning machine can instantly confirm the user requested

services, and start corresponding, subsequent acts. The acts

are sent to the controller, which will trigger them in some

arranged sequence. The controller executes the acts

according to their concrete contents, which ranges from

sending messages to other agents, generating new rules and

putting them into the knowledge base, recording the latest

statistical data, or outputting information through the effect

module.

The UIAgent can intercommunicate with other agents

through communication modules. As shown in Figure 3,

the communication objects of the UIAgent are the

TMAgent and TAAgent, and the communication protocol

and message have be elaborated in Section 4.

Fig 6 Functional structure of the UIAgent.

6 Conclusions

With the rapid development of computer networks and

communication infrastructure, the Internet accessing

technologies and devices are becoming more diverse. End

users want to customize the functional feature sets of

programs according to the network environment and

resource constraints. Aiming at this problem, we propose a

new computing paradigm— Program Mining to approach

computing on demand in distributed environments.

We also discussed the basic concepts, a multi-agent system

framework for Program mining general process in program

mining. With the penetration of Internet into everyone’s

daily life, we believe that the change from

information/knowledge-on-demand to computing-on-

demand will be an important trend in the way people using

Internet. More efforts should be made to achieve this goal.

Program Mining is an initial attempt to approach it.

Although the work in this paper represents only a

beginning, we feel that Program Mining as a new

computing paradigm offers a broad new field of research.

Acknowledgement

We would like to thank the support of the National Nature

Science Foundation of China (No. 90604027).

References
[1] Alfonso Fuggetta, Gian Pietro Picco and Giovanni Vigna,

“Understanding Code Mobility”, IEEE Transactions on

Software Engineering, Vol. 24, No. 5, May 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

16

[2] D.Tennenhouse and D.Wetherall, “Towards an Active

Network Architecture”, Computer Communication Review,

26(2), April 1996.

[3] L.A.Guedes, P.C. Oliveira, L.F. Faina and E.Cardozo, “An

Agent-based Approach for Supporting Quality of Service in

Distributed Multimedia Systems”. Computer

Communications 21 (1998) 1269-1278.

[4] Minos N. Garofalakis, Rajeev Rastogi, S.Seshadri and

Kyuseok Shim, “Data Mining and the Web: Past, Present

and Future” WIDM99 Kansas City Mo USA.

[5] RIG Uniform Data Model for Reuse Libraries (UDM), RPS-

0002, Reuse Library Interoperability Group, January 1994.

[6] Sanjiva Weerawarana and Matthew J. Duftler, “Bean

Markup Language (Version 2.3) User’s Guide”,

http://www.alphaWorks.ibm.com/formula/bml.

[7] The Common Object Request Broker: Architecture and

Specification, Version 3.0, CCM FTF Draft ptc/99-10-04,

29 October 1999.

[8] Wienberg A, Matthes F and Boger M, “Modeling Dynamic

Software Components in UML”, UML’99, 1723: 204-219,

1999.

[9] XMI http://www.software.ibm.com/ad/features/xmi.html.

[10] Fang, C. H., Zhang, Y. X., and Xu, K. G. (2003). An XML-

based data communication solution for program mining.

Intelligent Data Engineering and Automated Learning, 4th

International Conference (pp. 569–575). Hong Kong, Berlin

Heidelberg: Springer-Verlag.

[11] Hull, R., Benedikt, M., Christophides, V., and Su, J. W.

(2003). E-Services: a look behind the curtain. Proc. of the

ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, 22, 1–14.

[12] McIlraith, S. A., Son, T. C., and Zeng, H. (2001). Semantic

web services. IEEE Intelligent Systems and Their

Applications, 16(2), 46–53.

[13] Nunez, S. J., O’Sullivan, D., Brouchoud, H., et al. (2000).

Experiences in the use of FIPA agent technologies for the

development of a personal travel application. Proc. of the

International Conference on Autonomous Agents (pp. 357–

364).

[14] O’Sullivan, D., and Lewis, D. (2003). Semantically driven

service interoperability for pervasive computing. Proc. of

the Third ACM International Workshop on Data

Engineering for Wireless and Mobile Access: MobiDE 2003

(pp. 17–24).

[15] Raman, B., and Katz, R. H. (2003). Load balancing and

stability issues in algorithms for service composition.

Proceedings—IEEE INFOCOM,2 (pp. 1471–1487).

[16] Tosic, V., Pagurek, B., Esfandiari, B., et al. (2002).

Management of compositions of E- and M-business web

services with multiple classes of service. IEEE Symposium

Record on Network Operations and Management

Symposium (pp. 935–939).

[17] Vidal, J. M., Buhler, P., and Stahl, C. (2004). Multiagent

systems with workflows. IEEE Internet Computing, 8(1),

76–82.

[18] Xia, D. L., Zhang, Y. X., and Fang, C. H. (2003). Design

and implementation of an agent-based program mining

system. Chinese Journal of Electronics, 31(5), 793–796.

