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Summary 
For improving the efficiency of resource use in 
dynamic network environment, the computational 
model base on multiagent is adopted, and an effective 
learning model based on the reinforcement learning and 
the multi-level organization learning is proposed in this 
paper. A series of formal definitions, such as the 
dynamic network grid (DNG), the computing agent, the 
cooperation computing team and the relations among 
them, were given. The rules are classified into the basic 
rules, the static rules and the dynamic rues. Using the 
generation technique of dynamic knowledge, the 
knowledge revision technique based on the 
reinforcement learning and the learning framework 
based on multi-level organizations of agents, the 
learning model was studied. The migration learning 
process was described in DNG. The experiment results 
show that this model resolves effectively the problems 
of optimization use of resources in DNG. It can be fit 
for grid computing and pervasive computing. 
Key words: 
multiagent; learning model; migration learning; grid. 

1. Introduction 

With the rapid development of the information techniques 
and their popular applications, and facing the problems of 
complex computations and massive data process, the 
demand for the high performance processing devices is 
becoming more and more vehement. Nowadays, the 
numbers of Intranet composed of many computer clusters 
are quickly increasing, and a great deal of cheap personal 
computers are distributed everywhere, but the using rate of 
their resources is very low[1-3]. The grid [4] techniques 
and pervasive computation can become the main approach 
to use effectively these resources. Mining and adopting 
these idle resources, we can get a lot of large-scale high 
performance computation, storage and communication 
resources which are not special. However, the dynamic 
and unstable characteristic of these resources brings the 
huge obstacle for us. The multiagent [5, 6] techniques 

have already become the feasible solutions for supporting 
the grid computing and the pervasive computing in 
dynamic network environment. There are many successful 
examples [7] [8] of researches and applications which are 
in conjunction with the automatic multiagent system. The 
one of key techniques about multiagent is the improving 
intelligence by self-learning. There are a lot of researches 
about agent learning [9-13]. It includes two aspects: 
passive learning and active learning. The main theory of 
active learning is the reinforcement learning. However, 
these techniques can’t be fit the dynamic and unstable 
network computation. The problem of distributed and 
cooperative multiagent learning is studied through 
complex fuzzy theory in paper [14], but it can’t satisfy the 
need of dynamic network. On the other hand, the more 
effective solutions are the learning during the migration 
process and the agent organization learning [15, 16]. 
This paper proposed a multiagent learning model, which 
support the grid computing and pervasive computing in 
dynamic network environment that is composed of many 
computer-clusters connected by Intranet. Using of the 
multi-level cooperation agent organizations and adopting 
the dynamic knowledge revising based on reinforcement 
learning, we studied and implemented this model. This 
model can support the grid computing and pervasive 
computing based on task-migratory mechanism, and it can 
fit the heterogeneous and dynamic network environment. 

2. Definitions of architecture 

Definition1. Computing Node (CN).  CN is defined as 
CN (id, CT, Am, AS), where id denotes the identifier of 
CN; CT denotes the type of computing node (defination7); 
Am denotes the main control agent of CN; AS is the set of 
agents running on CN.  
Definition2.computer cluster (CC). CC is defined as CC 
(Ma, CS), where Ma denotes the main computer of CC; 
CS= {CN1, CN2… CNp} denotes the set of all computing 
nodes which CC includes;  
Definition3.dynamic network grid (DNG). DNG is 
defined as DNG (Ma, CCS, N, R), where Ma denotes the 
main computer of DNG; CCS denotes the set of all 
computer clusters which DNG includes; N is the 
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connection network set of DNG. R is the rules of 
connections. 
Definition4. Computing Agent (CA) . CA is defined as 
CA (id, PRG, BDI, KS, CE), where id denotes the 
identifier of CA; PRG denotes the executable program set 
of CA; BDI is the description of its BDI; KS is its 
knowledge set; CE is its configuration environment. 

A CA is the basic element to execute computation task. 
If a CA could complete independently the task, we call it 
as the independent computing agent (ICA). If a CA 
couldn’t complete independently the task, and it must 
cooperate with others, we call it as the cooperative 
computing agent (CCA). 
Definition5. Cooperation Computing Team (CCT) . 
CCT is defined as CCT (id, Am, CAS, BDI, CKS, CCE), 
where id denotes the identifier of CCT; Am denotes the 
main control agent of CCT; CAS denotes the set of all 
cooperative computing agents which CCT includes; BDI is 
the description of its BDI; CKS is its knowledge set. CCE 
is its configuration environment. 
Definition6. Global Computing Group (GCG) . GCG is 
defined as GCG (id, Am, ICAS, CCTS, GKS, GCE), where 
id denotes the identifier of GCG; Am denotes the main 
control agent of GCG; ICAS denotes the set of ICA which 
GCG includes; CCTS denotes the set of CCT which GCG 
includes; GKS is its knowledge set. GCE is its 
configuration environment. 

Many tasks are executed together in GCG during the 
same time, and the tasks are calculated by a lot of ICAs or 
CCTs. A DNG can support many units of GCG. Because 
of the dynamic variety of DNG, the computing agents 
(ICA, CCT) are often migrated in DNG. Owing to 
migration of the agents, the environment of the computing 
agents (ICA, CCT) is changed in dynamic. So, their 
behavior and knowledge should be adjusted automatically 
in order to keep with dynamic demand. The relations 
between DNG and GCG are presented in Figure 1. 
 

 
Definition7. Computing Node Type (CNT). CNT is 
defined as CNT (cpu, mem, disk, net), where cpu denotes 
the power of processor of CN; mem denotes the power of 

storage of CN; disk denotes the power of the input/output 
of CN; net denotes the power of communication of CN. 

According to the real conditions of each CN in DNG, 
the CN types can be formed a type set CTS= {CT1, 
CT2,...,CTct}, and the CTS is called as the set of computing 
node type 
Definition8. Network Type (NT). NT is defined as NT (B, 
PRT), where B denotes the network bandwidth of CC; 
PRT denotes the network protocols of CC. 

According to the real condition of networks in DNG, 
the network types can be formed into the type set NTS= 
{NT1, NT2,...,NTnt}. 
 
Definition9. Basic Rule (br).  br is defined as br (id, rul, 
MRS), where id denotes its identifier; rul denotes the 
formalization description of br; MRS denotes the meta-rule 
set for revising br. 
Definition10. Basic Rule Set (BRS) . BRS is the set of all 
the basic rules which GCG includes. 
Definition11. Dynamic Rule (dr). dr is defined as dr (ct, 
nt, br, rul, w, sta, life), where ct∈CTS,  nt∈NTS, 
br∈BRS； rul is the formalization description of rule; w 
is the value of its weight; and sta is its state, and 
sta∈{“Naive”, “Trainable”, “Stable”}; “Naive” denotes 
that the dr is a new rule; “Trainable” denotes that the dr is 
revising;  “Stable” denotes that the dr is a mature rule; life 
denotes the  value of its life. 
Definition12. Static Rule (sr). If dr is a dynamic rule and 
dr.w>MaxWeight, which MaxWeight is a constant in GCG, 
we can call dr as a static rule (sr). Its state is “Static”. 
Definition13. Castoff Rule (cr). If dr is a dynamic rule 
and dr.w<MinWeight, which MinWeight is a constant in 
GCG, we can call dr as a castoff rule (cr).   Its state is 
“Castoff”. 

The state graph of rules is presented in Figure 2. 

 
The dynamic knowledge is the set of all the dynamic 

rules in GCG. The static knowledge is the set of all static 
rules in GCG. The basic knowledge can be formed by 
passive learning. For adjusting the dynamic knowledge 
established according to basic knowledge, we can revise 

Figure2. State Graph of Rules  
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them through reinforcement learning and multiagent 
cooperation during the computing process in DNG. 
Definition14. Task (TSK). TSK is defined as TSK (id, 
DAT, AS), where id denotes the identifier of TSK; DAT 
denotes the data set; AS is the set of agents which execute 
TSK. 

3 Description of learning model  

3.1 Initialization of knowledge 

Suppose that TSK is a new computing task, and GCG is 
the global computing group in DNG. The rule initialization 
works about TSK are as follows: 

Algorithm1. Initialization of basic rules 

① Decide AS for TSK; 
② Establish  the static rule set for each computing agent 

CA of AS ,and form its KS(or CKS);  
③ While AS ≠φ  do 

Get a computing agent CA from AS; 
 While KS ≠φ  do 
    Get a basic rule br from KS; 

        Construct the meta-rule set MRS for br; 
        KS=KS-{br}; 
    End do; 

AS=AS-{CA}; 
   End do; 

④ Commit TSK into GCG, and GCG dispatch a 
computing device(CN or CC) for TSK, and the 
computing device start to calculate  TSK;  

⑤ End. 
   After it is dispatched in DNG, TSK is executed. For 
fitting the variety of computing device resources, the 
dynamic rules must be generated. The generation process 
is as follows: 
Algorithm2. Generation of dynamic rules 

Input: TSK (id, DAT, AS) 
Output: the TSK having dynamic KS   

① TmpAS=TSK.AS;  
/* TmpAS is the control variable */ 

② When  TmpAS ≠φ  do ③~⑧: 
③ Get a CA from TmpAS; 

TmpDr=φ ;  
/* TmpDr is a temporary set for new dr*/ 

TmpKS=CA.KS; /* TmpKS is the control variable */ 
④     When  TmpKS ≠φ  do ⑤~⑥: 
⑤         Get a br from TmpKS; 

       Set dr=br;/* construct a new dynamic rule for 
br*/ 

       Set dr.w=MinWeight; 
     Set dr.life=0;/*the value of life is 0*/ 

               Set dr.ct and dr.nt by the information of the 
computing device and DNG; 

               Revise dr.rul through br.MRS, dr.ct and dr.nt; 
               Set dr.sta= “Naive”; 

       Set TmpKS= TmpKS-{br}; /*Remove br */ 
               Set TmpDr= TmpDr+ {dr}; /*save new dr*/ 
⑥    End do; 
⑦    CA.KS=CA.KS + TmpDr;/*Add the new dr into 

CA.KS */ 
          TmpAS= TmpAS-{CA}; 
⑧ End do; 
⑨ Output the new TSK. 

3.2 Revising for dynamic knowledge 

The dynamic knowledge constructed through algorithm2 
must be revised during the TSK be calculated. The revising 
mechanism can adopt the reinforcement learning, and the 
use rate of resource for TSK can be as the reinforcement 
function. 
Algorithm3. Revising for Dynamic knowledge based on 
reinforcement learning. 
Suppose that Y1 is the castoff threshold, and Y2 is the 
mature threshold ；  Q (urt) is the reinforcement 
function， and Q (urt) >0, and urt is the use rate of 
resources; MaxWeight is the maximum of the rule weight, 
and MinWeight is the minimum of the rule weight, and let 
MinWeight<Y1<Y2< MaxWeight; MaxLife is the maximum 
of life value. 
① Suppose that a computing agent CA adopted a 

dynamic rule dr of CA.KS;  
dr.life + +; /* increase the value of life */ 
Wait for the urt from the computing system; 

② If  urt >0  then  dr.w=dr.w + Q(urt);/*increase 
weight*/ 

 If urt <0 then dr.w=dr.w－Q (urt); /*decrease weight*/ 
③ If dr.w>MaxWeight then dr.w=MaxWeight;  

If dr.w<MinWeight then dr.w=MinWeight; 
④ If dr.w<Y1 and dr.life>MaxLife then dr.sta= 

“Castoff”;/*Castoff rule  */ 
⑤ If Y2< dr.w < MaxWeight then dr.sta= “Stable”;  

/*Stable rule  */ 
⑥ If dr.w >= MaxWeight then dr.sta= “Static”;  /*Static 

rule  */ 
⑦ If Y1<dr.w<Y2 then dr.sta= “Trainable”; /*Trainable 

rule  */ 
⑧ If MinWeight <dr.w<Y1 then dr.sta= “Naive” ; 

/*Naive rule  */ 
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⑨ End.   
Algorithm3.1. Revising for CCT. 
The dynamic cooperation Knowledge of CCT usually 
involves the using of share resources, such as the network 
bandwidth, so the urt value is the average using rate of 
CCT resources. The revising learning process is similar to 
Algorithm3. 

When the learning and executing process continues for 
a long time, the dynamic knowledge is excessive and it 
will lower the searching efficiency. So, it needs the 
artificial adjustment for dynamic knowledge to reduce the 
numbers of the rules. The process is presented as follows: 
Algorithm4. Artificial adjustment 
Y3 is the adjustment factor. CA is a computing agent. 

① Num is the numbers of dynamic rules which state is  
“Trainable”; 

② If num > Y3 then  
  {Show an interface to adjust; 

   Let DelSet is the rule set that will be deleted;  

   Show the rules that state are “Trainable”; 

   Decide DelSet by users; 

   Delete DelSet from KS ;} 

③ Delete the rules which state are “Naive” from KS. 

3.3 Learning in migration process 

In order to persist and improve the global knowledge in 
DNG , the main control agents Am in CN, CCT and GCG 
get the share organization knowledge through the 
organization learning [15, 16]. Owing to the agent 
migration in DNG, the running environments of ICA and 
CCT are in the dynamic change. For fitting the change, the 
migration organization learning is very important. 
Algorithm5. Migration learning of ICA 
An ICA running on the computing node CNi must be 
migrated into the computing node CNj, so the migration 
learning process is presented as follows: 

① ICA commits its KS to Am in CNi, and Am in CNi 
saves the KS; 

② ICA asks for a new computing node CNj from GCG, 
and it consults with Am of CNj, and migrates into CNj; 

③ ICA gets the current  knowledge about CNj and the 
other agents from Am of CNj; 

④ ICA and Am of CNj learn each other, and they resolve 
the conflicts, and they refresh their KS and CE; 

⑤ CNi and CNj report their KS and CE into DNG and 
GCG; 

⑥ ICA continues for executing and Learning on CNj;  
 

Algorithm6. Migration learning of CCT 
Suppose that CCT(id, Am, CAS, BDI, CKS, CCE) is a 
cooperation computing team running on the computer 
cluster CCi, and CAS=MIG∪NMIG, where MIG is the set 
of the computing agents that will be migrated; NIMG is 
the set of the non-migration computing agents. The 
migration process includes three sub-algorithms. 
Algorithm.6.1  
While NMIG≠φ  and Am∈NMIG, the migration learning 
process is as follows: 
① All the computing agents of MIG migrate into their 

new computing nodes severally, and learn the new 
knowledge according to the algorithm5; 

② for all CA∈MIG do ③④⑤: 
③ CA learns the cooperation knowledge from Am of 

NMIG, and consults to resolve the conflicts;  
④If the conflict consultation was failure, CCT will retract 

the task t from CA and expel CA;/*MIG=MIG-{CA}*/ 
⑤If the conflict consultation is successful, then  
     {CA refreshes its KS;       NMIG=MING+ {CA};       
MIG=MIG-{CA}}; 
⑦ End. 
Algorithm.6.2  
While NMIG≠φ  and Am∉NMIG, the migration learning 
process is as follows: 
① All the computing agents in NMIG cooperate to elect 

a new  main control agent  Anm from NIMG, Am 
submits the cooperation knowledge about CCT  to  
Anm; 

② Do the algorithms.6.1; 

Algorithm.6.3  
While NMIG= φ , the migration learning process is as 
follows: 
① Am migrates into the new computing node according 

to algorithm5, and notices GCG; 
② Am broadcasts its new conditions to all members of 

CAS of CCT;  The other members of CAS receive the 
messages from Am ,and  they do the migration 
learning by algorithm 5, and they submits the learning 
results to Am;  

③ After all the cooperation computing agents finish the 
migration learning ,CAS cooperate to produce the new 
CKS by Am control ; 

The process of knowledge consultation and 
organization learning is described in paper [15] [16]. 

3.4 Learning process of GCG 

Algorithm7. GCG learning process 
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①GCG receives a task TSK; 
②GCG calls the algorithm.1 to do initialization work for 

TSK; 
③CGG allots a computing device PE (that is a CN or a 

CC) for TSK; 
④The computing agents (ICA or CCT) for TSK construct 

the dynamic knowledge according to the algorithm2; 
⑤Repeat  do ⑥⑦: 
⑥All the computing Agents calculate the TSK, and they 

start the algorithm3 and algorithm4 to revise the 
dynamic knowledge; 

⑦Until finished(TSK) or migrating(TSK);  
/* finished () and migrating () is two boolean functions*/ 

⑧ If migrating (TSK)=true then 
{GCG searches a new computing device NPE; 

  The computing agents do the migration learning 
process according to the algorithm5 and the 
algorithm6; 
Goto ④;} 

⑨ End. 

4 Experiments  

We built a DNG that is composed of 24 computers and 4 
computer-clusters that connected by Intranet. All the 
computers are classified into 6 types according to their 
types of cpu, memory, disk, and net adapter. The operating 
systems of the computers are the Windows series or 
LINUX. The computing tasks provided by DNG are the 
matrix operations and the linear programming. The CCT 
algorithms (Parallel algorithms based on computer cluster) 
for the matrix operations and the linear programming are 
given. The Development tools are the JAVA. The intranet 
clock is synchronous by GTS protocol.The initialization 
basic rules include 24 rules for CA and 7 rules for CCT, 
and the parameter values are as follows: 
MaxLife=43200(s), Y1=15, Y2=80, Y3=0.3 MaxWeight=100 
and MinWeight=0.The experimentation includes seven 
times, and each time has 12 hours, and the total amount is 
84 hours.  The tests adopt a random function to choose 
some tasks (the matrix operation, the linear programming 
and their parallel edition) in each time. In order to make 
the tasks to migrate as far as possible in the DNG, We 
make use of the random migration function 
RandMigration() and form the migration strategy during 
the test processes. Through the average values of the test 
information, we observe the learning results by this model. 
The experiment results are as follows: 
Experiment1. We tested the variety of the average use 
rates of DNG resources along with the learning process. 
The thick solid line means the use rate distribution in the 

figure 3(a). This test result shows that this model can raise 
the use rates of DNG resources consumedly. 
 
Experiment2. We tested the variety of the numbers of 
new dynamic rules which are generated during the 
learning process. The solid line means the distribution of 
the dynamic rules that their state is always in the “Naive” 
state during their life period in the figure 3(a). The dotted 
line means the distribution of the “Trainable” dynamic 
rules that their sate has became the “Stable” during their 
life period in the figure 3(a). This test results show that the 
learning efficiency of this model increases gradualy along 
with learning process . 
Experiment3. We counted the numbers of the artificial 
adjustments. The solid line means the distribution of the 
numbers during the tests in the figure 3(b). This test result 
shows that the numbers of artificial adjustments decreases 
gradualy along with learning process. 

 

5 Conclusions 

Because of the heterogeneous resources, the difference of 
the computing ability of computers and the migration of 
computing agent, the effective use of resources is very 
difficult for the grid computing in the dynamic network 
environment. A good learning model can improve the 
intelligence of multiagent, and it can raise the use rate of 
resources. Our learning model and organization learning 
frame solve these problems.  
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