
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

99

Manuscript received July 27, 2006.
Manuscript revised August 25, 2006

Private Channels in Wireless Local Networks

Maurizio Adriano Strangio

Department of Information, Systems and Production, University of Rome “Tor Vergata”, Rome, ITALY

Summary
This paper presents a modified version (DHBT-E) of an existing
two-party key agreement protocol (DH-BT) used for efficiently
establishing secure communication sessions in local wireless
networks. A formal security analysis in the model of Bellare and
Rogaway is provided to justify the relevant security properties
and thus to enforce trustworthiness.

The basic intuition is that key agreement in a wireless network
should provide forward secrecy, since eavesdropping is
essentially for free in open-air-networks and hence gives the
adversary a small but significant advantage. For this reason, the
protocol uses basic Diffie-Hellmann key exchange.

Entity authentication is based on the shared string model, with
the key formed by a cryptographic key and eventually a
low-entropy human memorable string, thus guaranteeing a
stronger level of security.

Key words:
Wireless networks, Diffie-Hellman key exchange, Symmetric key
authentication, Key agreement protocol

1. Introduction

This paper describes a modified version (DHBT-E) of the
DH-BT implicitly authenticated key agreement protocol
presented in [1]. The protocol is targeted for
resource-constrained devices communicating via local
wireless network technologies (e.g. Wi-Fi, IrDA,
Bluetooth). We expand the informal arguments given to
justify the security of the protocol in [1] and provide a
more detailed analysis to prove the relevant security
properties and thus to enforce trustworthiness. In particular,
a formal security proof is developed in the formal model
of distributed computing originally proposed by Bellare
and Rogaway [2].

Our main thesis is that key agreement protocols for
wireless networks should provide forward secrecy since
eavesdropping is essentially for free in open-air-networks
(with low cost hardware and open source software tools).
For this reason, the protocol is based on basic
Diffie-Hellman key exchange (although not all DH-based

protocols achieve forward secrecy) since forward secrecy
is difficult to achieve in other ways.

The computational complexity of the protocol is close to
optimum since only two exponentiations are required (only
one if pre-computation is possible). There is also a flexible
choice of the underlying group that allows efficient storage
and implementations (e.g. elliptic curve groups). It is hard
to come up with a more efficient protocol under the
specified security properties.

The protocol operates with two symmetric key-based
authentication modes. The shared key is composed of a
primary cryptographic key embedded in the code (a midlet
that resides on the device) and a secondary key provided
by the user. In manual mode, the user must type in the
secondary key (typically a human-memorable string such
as a PIN or password) to complete a protocol run. In
transparent mode, the secondary key is provided by the
user via a portable secure token (e.g. secure digital card or
USB device).

2. Related Work

 A protocol proposed by Maher [3] uses a hash function to
authenticate Diffie-Hellman exponents exchanged by two
principals. Both users input a key K into their devices and
a one-way hash function h is used to obtain h(K); this
value is truncated to the desired length by taking the most
significant bits. However, this technique can be ineffective
since it requires at least 48 bits of the hash to offer a
reasonable amount of security and requires the devices to
possess either a display or keypad. This protocol is
specifically designed for Personal Area Networks (PANs).

Garefalakis and Mitchell [4] describe another solution for
PANs based on Diffie-Hellman key exchange. The
resulting protocol requires a device acting as a Private Key
Generator (PKG) which is responsible, among other
things, of issuing and distributing shared random data to
every device forming the network. Again, users must
manually enter data delivered by the PKG into their
devices to authenticate the Diffie-Hellman exponents. This

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

100

protocol also suffers from the drawbacks that were pointed
out for the preceding one.

A third protocol based on string comparison has been
recently presented by Cagalj et al. [5]. It is also based on
Diffie-Hellman key exchange, authenticated using an ideal
commitment scheme. The resulting protocol (DH-SC) has
an increased communication complexity (in terms of the
number of rounds and number of bits exchanged).

An advantage of the three aforementioned (manual
authentication) protocols is that if the human assisted
authentication phase fails the principals need not compute
the Diffie-Hellman secret.

With protocol DHBT-E we avoid the above problems since
a (secondary) key (held by the users) is required to
compute the session key, at the expense of one more
exponentiation.

3. The Key Agreement Protocol

3.1 Preliminaries

Given any two strings 21 , ss the construct || 1s denotes
string concatenation. Sampling of the random variable

ix (according to the probability distribution iD) over the
set iX is denoted by i

D
i Xx i⎯⎯← (or by i

R
i Xx ⎯⎯←

if iD is the uniform distribution). If iX is neither an
algorithm nor a set ii Xx ⎯⎯← represents a simple
assignment statement. We denote by

]),...;,(:;...;Pr[2121 yrxxAEE = the probability that event
yrxxA =),...;,(21 occurs in the context of an experiment

where the sequence of events ;...; 21 EE have occurred
first.

Let GD be an algorithm which on input k1 outputs a
description of a group G of prime order q (with

kq =|| bits) and a generator Gg∈ . The security of many
cryptosystems is based on the assumption that the
computation of discrete logarithms in the group G is
infeasible; this is known as the Discrete Logarithm
Problem (DLP). More formally:

Assumption 1 [DLP] Algorithm GD satisfies the DL
assumption if for all PPT algorithms A the probability of
computing xg for random x is negligible:

ε<

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎯⎯←

⎯⎯←

⎯⎯←

xXgqGA
gX

Zx
GDgqG

x

q
R

k

),,,(

)1(),,(

Pr
*

where the probability is taken over the coin tosses of A
(and random choices of x).

In a concrete security analysis we drop the dependence on
k and consider the maximum probability over all
adversaries A running in time bounded by t, in this case
we say that GD (or simply G) is (t, ε)-secure with
respect to the DLP.

A formal definition of the Computational Diffie-Hellmann
Problem (CDHP) is set out below.

Assumption 2 [CDHP] Algorithm GD satisfies the CDH
assumption if for all PPT algorithms A the
probability of computing xyg given yx gg , is
negligible:

ε<

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎯⎯←⎯⎯←

⎯⎯←⎯⎯←

⎯⎯←

xy

yRx

q
R

q
R

k

gYXgqGA
gYgX

ZyZx
GDgqG

),,,,(
;

;
)1(),,(

Pr
**

In a concrete security analysis we drop the dependence on
k and consider the maximum probability over all
adversaries A running in time bounded by t, in this case
we say that GD (or simply G) is (t, ε)-secure with
respect to the CDHP.

3.2 The protocol specification

Prior to execution of the protocol, two principals BA,
(say, with respective identities BA IDID ,) agree upon the
long-term shared key 〉〈== ABABBAAB KKKK ,2,1 , . The
main protocol actions are summarised below (refer to Fig.
1 for the details):

(1) A , the initiator, selects a random number a in *

qZ

computes the DH exponent ag and sends it to B ;
(2) B , the responder, selects a random b in *

qZ

computes the DH exponent bg and sends it to A ;
(3) A and B compute their respective session keys

BA sksk , using the hash function H ; if both hold the
same shared key)(BAAB KK = then BA sksk = .

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

101

BAAB KKBA =:,

 *: q

R ZaA ⎯⎯←
 agX ⎯⎯←

XBA :→
 *: q

R ZbB ⎯⎯←
 bgY ⎯⎯←

YAB :→
),,,,,(: AB

a
BAA KYYXIDIDHskA ⎯⎯←

),,,,,(: BA
b

BAB KXYXIDIDHskB ⎯⎯←

Fig. 1 Protocol DHBT-E.

The secrecy of the session key formed in an execution of
the protocol rests upon the CDHP assumption described in
Section 3.1.

One of the fundamental properties to be upheld by an
implicitly authenticated key exchange protocol is the
privacy and authenticity of the resulting session key. To
this end, it is required that the established key and the
authentication of both principals must be inextricably
linked to avoid one of A or B being fooled into
associating the key with the wrong principal.
For protocol DHBT-E, only principals with knowledge of
both 〉〈 ABAB KK ,2,1 , will possibly compute the exact same
session key. Key confirmation is implicit, i.e. it is achieved
by subsequent use of the session key by the calling
application. When required, explicit key confirmation can
be added to the protocol (at the expense of increased
communication complexity) by using the compilers of
[6,7].

The devices are initialised with a midlet having the secret
key ABK ,1 securely embedded in the code uploaded from
a trusted computer via some authenticated link (e.g. IrDA,
USB cable). Thereafter the protocol operates with
essentially two authentication modes based on the
secondary key

ABK ,2
:

manual: key ABK ,2 is a low entropy string (perhaps just a
password or Personal Identification Number - PIN) which
is manually typed into the devices by both parties to
complete a protocol run. When the devices return into
network range the users are re-prompted for the key if the
preceding authentication period has expired or if the
connection is lost due to the devices moving out of
network range;

transparent: key ABK ,2 is read from a cryptographic token
that is inserted into the device prior to a protocol run (the
device is protected, for example, with a pass-phrase or
biometric data).

Notice that in both modes no information on ABK is ever
sent across the network.

4. Formal security model

Informally, a secure key agreement protocol should not
allow a resource-bound adversary to manipulate the
message flows in any (polynomial) number of protocol
executions between honest parties, in such a way that
information is leaked on the session key (or one or more
protocol goals are subverted).
We try to formally capture this notion in the formal model
of [2] in the symmetric key setting. A two-party key
agreement protocol is defined as a pair),(ΠΚ=Σ G of
poly-time computable functions where GΚ specifies
how to compute the long-term private key and Π
specifies the protocol actions and message formats. There
is a finite number nq of principals denoted by iP . Any
two principals (say

ji PP,) that engage in a protocol run
invoke algorithm GΚ to establish the shared key

)(jiij KK =). The symbol l denotes the security
parameter.

Adversary A has complete control over the
communication link, hence she can eavesdrop on a
(polynomial) number of protocol transcripts and also
delete, add, modify and replay legitimate messages
exchanged by any two parties.

The adversary interacts with a polynomial number (in the
security parameter l) of running instances of the protocol,
a.k.a. oracles; the r-th oracle, simulating the messages sent
by iP (to its intended partner

jP) is represented by the

symbol r
iΠ , the corresponding (s-th) instance simulating

jP 's responses is represented by s
jΠ . Honest party oracles

behave according to the description of protocol Σ . When
referring to the intended partner of oracle r

iΠ we may use
the notation

j
r
i

r
i Ppidpid ==Π . (and

i
s
j

s
j Ppidpid ==Π .). Analogously, the variables

r
i

r
i accterm , respectively indicate whether oracle r

iΠ has
terminated or has accepted, meaning that an accepting
oracle has output a session key while a terminating oracle
has accepted but has no more messages to send nor to
receive.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

102

The session identifier r
isid (resp. s

jsid) is defined as the
concatenation of all the messages originating from and
received by instance r

iΠ (resp. s
jΠ) in a protocol run

while communicating with r
ipid (resp. s

jpid). Session
identifiers serve to define matching conversations between
instances and therefore to account for mutual
authentication. More formally, we give the following
definition:

Definition 1 [Partnered Instances] For any two principals

ji PP, running protocol Σ , the instances r
iΠ and s

jΠ
are partnered if the following conditions hold:
(i)

i
s
jj

r
i PpidPpid =∧= ;

(ii) TRUEtermTRUEterm s
j

r
i =∧= ;

(iii) NULLsidsid s
j

r
i ≠=

Condition (i) requires that a principal is aware of the exact
identity of its partner. Condition (ii) requires that both
instances have terminated, i.e. they have sent out and
received all messages according to the protocol
specification. Observe that condition (ii) implies that two
instances cannot explicitly verify whether they are
partnered or not. Only implicit key confirmation can be
achieved if the sids are included in the computation of the
session key. Condition (iii) requires that the both principals
have had a matching conversation.

The following correctness condition should be satisfied by
any protocol.

Definition 2 [Protocol Correctness] For any two principals

ji PP, running protocol Σ in the presence of a passive
adversary, the following conditions hold:
(i) s

j
r
i Π∧Π are partnered;

(ii) NULLsksk s
j

r
i ≠= ;

The adversary can initiate and interact with protocol
instances (oracles) by asking the following queries:

- (init,i,j): this query sets

 j
r
i Ppid = and activates (say,

the r-th) instance r
iΠ of the protocol at principal iP .

As a result, oracle r
iΠ enters the idle state;

- (send,i,r,M): this query allows the adversary to send a
message M to instance r

iΠ while impersonating the
intended partner r

ipid (say
jP of iP The response

is computed exactly as specified by the protocol
specification (unless iP is corrupted --- see below)

with instance r
iΠ entering an expecting state. When

M=start instance r
iΠ in the idle state is prompted to

send the first message according to the protocol
specification;

- (execute,i,j): this query models a passive adversary
eavesdropping on a run of the protocol between
honest principals

ji PP , . The resulting transcript is
given to the adversary. In principle, an execute query
can be simulated by send and init queries. However, in
an execute query the parties and oracle instances
strictly adhere to the protocol specification (hence the
resulting protocol executions are correct as by
Definition 2.). This is opposed to send queries
wherein the adversary can specify messages of her
own choice (which are indistinguishable from valid
ones and may cause the recipient oracle to accept);

- (reveal,i,r): this query models exposure of the session
key of the instance r

iΠ due, for example, to improper
erasure after its use, hijacking of the machine running
the protocol or perhaps cryptanalysis. It is applicable
only to instances that have accepted;

- (corrupt,i): there is a weak corruption model, wherein
this query returns only the long-term private key of
principal r

iΠ , and a strong corruption model where
the adversary also obtains the internal state of the
instances run by iP (and where sometimes the
adversary is allowed to replace the private key of iP).
The adversary can use the compromised private key to
impersonate iP with send queries. We stress that the
adversary does not obtain the session key as the result
of a corrupt query on a instance r

iΠ that has
accepted;

- (test,i,r): when the adversary A asks this query an

unbiased coin b is flipped and bK is returned. If
0=b then 0K is equal to the real session key,

otherwise 1K it a random number sampled from the
distribution of the session keys. The adversary must
distinguish which one.

The security of a protocol is defined in the context of the
following game between a challenger C and the
adversary A :

(a) Setup: The challenger C runs algorithm)1(kGD (l

is the security parameter) to generate private keys for
all principals

ji PP, . The challenger also initialises all
oracles (including random number generators);

(b) Queries: Adversary A adaptively asks queries init,
send, execute, reveal, corrupt, but only a single test

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

103

query to a fresh oracle. The challenger responds to
each query as described above and also answers to
random oracles queries (modeling hash functions).
We stress that the adversary may diverge from the
protocol specification;

(c) Output: Eventually, the adversary wins the game if
she can distinguish whether a key obtained from the
test query is a real session key or a random one with
the same distribution (or equivalently, if the adversary
correctly outputs its guess 'b of the bit b chosen by
the challenger when answering the test query).

At the end of the game the advantage of the adversary
must be negligible for the protocol to be secure. In a
concrete analysis the advantage is expressed as a function
of the resource expenditure required to win the game.

A meaningful notion of security depends on the
capabilities of the adversary, which are expressed in terms
of the types of queries she is allowed to ask during the
game. For example, the above game allows the modeling
of Forward Secrecy (FS), which captures the inability of
the adversary to obtain information on previously
generated session keys even after principals are corrupted.

To win the game the adversary must try to guess the
session key of a FS-fresh oracle; for an oracle (and its
partner) that has not been the target of send queries (for the
whole duration of the game above), even with the
subsequent corruption of the principals, the adversary is
unable to obtain any information on already established
session keys. This property is formally stated as follows:

Definition 3 [FS-fresh oracle] An oracle r

iΠ is FS-fresh
if the following conditions hold at the end of the game:
(i) TRUEaccr

i = ;
(ii) The adversary has not asked (reveal,i,r);
(iii) If a (corrupt,i) query was invoked then no (send,i,r,*)

was asked;
(iv) If there exists oracle s

jΠ partnered with r
iΠ then

TRUEaccs
j = , the adversary has not queried

(reveal,j,s) nor (send,j,s,*) queries were asked if a
(corrupt,j) query was issued;

The advantage of the adversary is denoted by

|1]'Pr[2|)(−==Σ bbAdvFS l . A key agreement protocol is
FS-secure if this advantage is maximized over all
adversaries running in polynomial time t.

5. Security of protocol DHBT-E

In this section we prove the main result concerning the
security of the protocol in the formal model of Section 4. It
is straightforward to verify the correctness condition of
Definition 2; if the adversary is passive and the messages
exchanged by (honest) principals comply with the protocol
specification then BA sidsid = in every protocol
execution, therefore the oracles are partnered and accept
holding the same key (by the random oracle assumption).
Usage of a composite symmetric cryptographic key allows
for a two factor authentication mechanism to enforce the
protocol against attacks from an active adversary that has
corrupted a party. Formally we are only able to prove
resistance against a passive adversary as far as party
corruption is concerned. We now prove the following
theorem:

Theorem 1 Protocol DHBT-E is an FS-secure
authenticated key agreement protocol assuming G is a
(t,ε)-secure q-order group satisfying the CDH assumption
and H is a random oracle. We have

qqqqqqqtAdv sex
K

excoreh
FS

EDHBT
ij 232),,,,,(++≤ −

− εl
where t is the total running time of the game including the
adversary's execution time, l the security parameter and

excoreh qqqq ,,, , respectively, the number of random oracle,
corrupt, reveal and execute queries. In addition, nq is an
upper bound on the number of principals and sq is an
upper bound on the number of sessions initiated by the
adversary.

Proof. For yx gYgX == , the symbol DH(X,Y) represents
the Diffie-Hellman secret xyg . Consider an adversary A
attacking the protocol in the game (see Definition 3). Let
col denote the event that a pair of DH exponents ba gg ,
have repeated for the same two principals and corrupt the
event that the adversary asks its test query to an oracle r

iΠ
having j

r
i Psid = , for some i,j,r and either (corrupt,i) or

(corrupt,j) were asked.
Let ask be the event that, for some i,j, the adversary
queries the random oracle H at the point (i,j,U,V,W,K)
where W=DH(U,V), neither iP nor

jP were corrupted

nor reveal queries were asked of oracles s
j

r
i ΠΠ , for some

r,s during the entire course of the game and
ijKK = .

Let Fs denote the event that the adversary asks its test
query to an FS-fresh oracle. Finally, let Asucc denote the
event that A outputs bit 'b that is a correct guess of the
bit b chosen by the challenger C when answering a test
query in the game. With simple (but a little tedious)
calculations one can see that

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

104

[] |2/1−AA succPr|

|2/1][Pr

][Pr

][Pr

][Pr|

−∧∧∧

+∧∧∧

+∧∧∧

+∧=

askcorruptcolsucc

askcorruptcolsucc

Fscorruptcolsucc

colsucc

AA

AA

AA

AA

|2/1][(Pr

])[Pr][Pr][(Pr2/1

])[Pr][Pr][(Pr2/1

][Pr][Pr]|[Pr|

−∧∧

+∧∧−∧−

+∧∧−∧−

+∧∧+⋅≤

askcorruptcol

askcorruptcolcorruptcolcol

Fscorruptcolcorruptcolcol

Fscorruptcolcolcolsucc

A

AAA

AAA

AAAA

])[Pr][Pr][Pr3(2/1

2/1][Pr])[Pr2/1][Pr2/1][Pr

][Pr2/1][Pr2/1][Pr

askcorruptFscorruptcol

askcorruptcolcolcol

Fscorruptcolcol

AAA

AAAA

AAA

∧+∧−=

−∧++−

+∧++≤

where we used the fact that

2/1]|[Pr

2/1]|[Pr

=∧∧

=∧∧

askcorruptcolsucc

Fscorruptcolsucc

AA

AA

If any two principals

ji PP , generate the same ephemeral
random data a,b in two different runs of the protocol then
event col has occurred. The (t,ε)-adversary plays the game
asking a polynomial number (in the security parameter) of
execute and reveal queries and stores the resulting sids and
session keys until event col occurs. By asking the test
query of the (fresh) oracle that has output the repeating sid
the adversary can easily distinguish whether it was given a
real or random key (by comparing it with the previously
generated identical session key). However, the probability
of event col occurring corresponds to an instance of the
birthday problem, therefore we have qqcol sA /][Pr 2≤ .

Now consider the term][Pr askcorruptA ∧ . Consider the
adversary A simulating a man-in-the-middle attack in
the game by issuing an (init,i,j) query and a (send,i,r,M)
query with egM = for random e. On receipt of the
response ag from oracle r

iΠ , if A asks the query

),,,,,(ij
aeae KgggjiH then event ask has occurred.

However, since A must guess the correct value of
ijK

we have ijK
A askcorrupt −≤∧ 2][Pr where

ijijij KKK ,2,1 += and the expression x represents

the bit-length of x .
Next we claim that εexA qFscorrupt ≤∧][Pr . To prove the
later bound we construct an algorithm F that outputs
DH(X,Y) when given in input a tuple (yx gYgX == ,) by

embedding the DH-tuples in all execute queries. The
adversary F runs algorithm A as a subroutine and
must simulate the challenger C in the game by
responding to the queries of A in such a way that A 's
view is indistinguishable from the real game. Algorithm
F runs as follows:

(1) F receives in input YX , runs)1(kGD generating

keys
ijK for all pairs of principals

ji PP , ;
(2) F answers the queries of A as follows:

− For (execute,i,j) queries (which include implicit
calls to the random oracle H), F chooses
random a,b, outputs the transcript ba YgXg ||
and sets 1}1,0{ l∈= s

j
r
i sksk (1l is polynomially

related to l). Notice that, under the random
oracle model, the above session keys will be
indistinguishable from the real ones. Likewise,
the transcript ba YgXg || is uniformly distributed
just as in the real world;

− For queries of the form),,,,,(ijKWVUjiH the

output is 1}1,0{ l⎯⎯←Rv . If the same query was
already asked before then the answer given
previously is returned. If the query was asked as
the result of an (execute,i,j) call (causing the
partnered instances s

j
r
i ΠΠ , to accept, for some r,

s---see preceding item) then store (U,V,W) in the
list 1L (observe that the probability that 1L is
not empty is exq/1). Observe that by definition
oracles s

j
r
i ΠΠ , are both FS-fresh;

− Queries init, reveal, test, send, corrupt are
answered as usual. For instances s

j
r
i ΠΠ , that are

the target of (send,i,j) queries, F eventually
computes the session key by invoking the random
oracle as discussed in the preceding item (using
the private key

ijK);
(3) Once the game has finished (i.e. A has terminated),

F returns a random tuple (U,V,W) from 1L (if this
list is empty then return fail---i.e. neither execute nor
corrupt queries were asked by the adversary during
the game). F finds a,b such that aXgU = and

bYgV = and outputs)(/ baab ggDHYXW .

If event Fs occurs the probability that event Fsucc
occurs (i.e. the probability that F wins the game) is

exA qFs /][Pr (this is the probability that F chooses a
DH-tuple in the 1L that is from the same session that A
attempts to break when event ask occurs). Since the
running time of F is essentially the same as the running
time of A the claim follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

105

References
[1] F. Dellutri and G. Me and M.A. Strangio, “Local

Authentication with Bluetooth enabled Mobile Devices”,
Proceedings of IEEE International Joint Conferences
ICAS'05 and ICNS'05, 2005.

[2] M. Bellare and P. Rogaway, “Entity Authentication and Key
Distribution”, In Proceedings of CRYPTO 1993, LNCS 773,
232-249, 1993.

[3] D. Maher, “USA Patent (No. 5,450,493):Secure
Communication Method and Apparatus”, Transactions of
IEICE, 1993.

[4] T. Garefalakis and C. J. Mitchell, “Securing Personal Area
Networks”, 13th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, vol.3,
pp.1257-1259, 2002.

[5] M. Cagalj and S. Capkun and J. P. Hubaux, “Key agreement
in peer-to-peer wireless networks”, In Proceedings of the
IEEE (Special Issue on Cryptography and Security, 2005.

[6] S. Blake-Wilson and D. Johnson and A. Menezes, “Key
Agreement Protocols and their Security Analysis”, In
Proceedings of the 6th IMA Int.l Conf on Cryptography
and Coding, LNCS 1355, pp. 30-45, 1997.

[7] M. Bellare and D. Pointcheval and P. Rogaway,
Authenticated key exchange secure against dictionary
attacks”, LNCS 1807, pp. 139-155, 2000.

Maurizio Adriano Strangio received his B.S. degree in
computer science from the Univ. of BARI in 1989. He received
the PhD from the Univ. of “Tor Vergata”, Rome in 2006. His
research interest include cryptography, computer forensics and
security and signal processing. He is currently a member of the
ACM and IEEE.

