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Summary 
This paper presents a modified version (DHBT-E) of an existing 
two-party key agreement protocol (DH-BT) used for efficiently 
establishing secure communication sessions in local wireless 
networks. A formal security analysis in the model of Bellare and 
Rogaway is provided to justify the relevant security properties 
and thus to enforce trustworthiness. 
 
The basic intuition is that key agreement in a wireless network 
should provide forward secrecy, since eavesdropping is 
essentially for free in open-air-networks and hence gives the 
adversary a small but significant advantage. For this reason, the 
protocol uses basic Diffie-Hellmann key exchange.  
 
Entity authentication is based on the shared string model, with 
the key formed by a cryptographic key and eventually a 
low-entropy human memorable string, thus guaranteeing a 
stronger level of security. 
 
Key words: 
Wireless networks, Diffie-Hellman key exchange, Symmetric key 
authentication, Key agreement protocol 

1. Introduction 

This paper describes a modified version (DHBT-E) of the 
DH-BT implicitly authenticated key agreement protocol 
presented in [1]. The protocol is targeted for 
resource-constrained devices communicating via local 
wireless network technologies (e.g. Wi-Fi, IrDA, 
Bluetooth). We expand the informal arguments given to 
justify the security of the protocol in [1] and provide a 
more detailed analysis to prove the relevant security 
properties and thus to enforce trustworthiness. In particular, 
a formal security proof is developed in the formal model 
of distributed computing originally proposed by Bellare 
and Rogaway [2].  
 
Our main thesis is that key agreement protocols for 
wireless networks should provide forward secrecy since 
eavesdropping is essentially for free in open-air-networks 
(with low cost hardware and open source software tools). 
For this reason, the protocol is based on basic 
Diffie-Hellman key exchange (although not all DH-based 

protocols achieve forward secrecy) since forward secrecy 
is difficult to achieve in other ways. 
 
The computational complexity of the protocol is close to 
optimum since only two exponentiations are required (only 
one if pre-computation is possible). There is also a flexible 
choice of the underlying group that allows efficient storage 
and implementations (e.g. elliptic curve groups). It is hard 
to come up with a more efficient protocol under the 
specified security properties. 
 
The protocol operates with two symmetric key-based 
authentication modes. The shared key is composed of a 
primary cryptographic key embedded in the code (a midlet 
that resides on the device) and a secondary key provided 
by the user. In manual mode, the user must type in the 
secondary key (typically a human-memorable string such 
as a PIN or password) to complete a protocol run. In 
transparent mode, the secondary key is provided by the 
user via a portable secure token (e.g. secure digital card or 
USB device).  
 
2. Related Work 
 
 A protocol proposed by Maher [3] uses a hash function to 
authenticate Diffie-Hellman exponents exchanged by two 
principals. Both users input a key K into their devices and 
a one-way hash function h is used to obtain h(K); this 
value is truncated to the desired length by taking the most 
significant bits. However, this technique can be ineffective 
since it requires at least 48 bits of the hash to offer a 
reasonable amount of security and requires the devices to 
possess either a display or keypad. This protocol is 
specifically designed for Personal Area Networks (PANs).   
 
Garefalakis and Mitchell [4] describe another solution for 
PANs based on Diffie-Hellman key exchange. The 
resulting protocol requires a device acting as a Private Key 
Generator (PKG) which is responsible, among other 
things, of issuing and distributing shared random data to 
every device forming the network. Again, users must 
manually enter data delivered by the PKG into their 
devices to authenticate the Diffie-Hellman exponents. This 
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protocol also suffers from the drawbacks that were pointed 
out for the preceding one. 
 
A third protocol based on string comparison has been 
recently presented by Cagalj et al. [5]. It is also based on 
Diffie-Hellman key exchange, authenticated using an ideal 
commitment scheme. The resulting protocol (DH-SC) has 
an increased communication complexity (in terms of the 
number of rounds and number of bits exchanged).  
 
An advantage of the three aforementioned (manual 
authentication) protocols is that if the human assisted 
authentication phase fails the principals need not compute 
the Diffie-Hellman secret.  
 
With protocol DHBT-E we avoid the above problems since 
a (secondary) key (held by the users) is required to 
compute the session key, at the expense of one more 
exponentiation.                               

 
3. The Key Agreement Protocol  
 
3.1 Preliminaries 
 
Given any two strings 21 , ss  the construct || 1s  denotes 
string concatenation. Sampling of the random variable  

ix  (according to the probability distribution iD ) over the 
set iX  is denoted by i

D
i Xx i⎯⎯←  (or by i

R
i Xx ⎯⎯←   

if iD  is the uniform distribution). If iX  is neither an 
algorithm nor a set ii Xx ⎯⎯←  represents a simple 
assignment statement. We denote by 

]),...;,(:;...;Pr[ 2121 yrxxAEE =  the probability that event 
yrxxA =),...;,( 21  occurs in the context of an experiment 

where the sequence of events ;...; 21 EE  have occurred 
first. 
 
Let GD  be an algorithm which on input k1   outputs a 
description of a group G  of prime order q  (with 

kq =||  bits) and a generator Gg∈ . The security of many 
cryptosystems is based on the assumption that the 
computation of discrete logarithms in the group G  is 
infeasible; this is known as the Discrete Logarithm 
Problem (DLP). More formally: 
 
Assumption 1 [DLP] Algorithm GD  satisfies the DL 
assumption if for all PPT algorithms A  the probability of 
computing xg  for random x is negligible: 
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where the probability is taken over the coin tosses of A  
(and random choices of x). 
 
In a concrete security analysis we drop the dependence on 
k and consider the maximum probability over all 
adversaries A  running in time bounded by t, in this case 
we say that GD  (or simply G ) is (t, ε )-secure with 
respect to the DLP.   
 
A formal definition of the Computational Diffie-Hellmann 
Problem (CDHP) is set out below. 
 
Assumption 2 [CDHP] Algorithm GD  satisfies the CDH 
assumption if for all PPT algorithms A  the 
probability of computing xyg  given yx gg ,  is 
negligible:  
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In a concrete security analysis we drop the dependence on 
k and consider the maximum probability over all 
adversaries A  running in time bounded by t, in this case 
we say that GD  (or simply G ) is (t, ε )-secure with 
respect to the CDHP. 
 
3.2 The protocol specification 
 
Prior to execution of the protocol, two principals BA,  
(say, with respective identities BA IDID , ) agree upon the 
long-term shared key 〉〈== ABABBAAB KKKK ,2,1 , . The 
main protocol actions are summarised below (refer to Fig. 
1 for the details): 
 
(1) A , the initiator, selects a random number a  in *

qZ  

computes the DH exponent ag  and sends it to B ;  
(2) B , the responder, selects a random b  in *

qZ  

computes the DH exponent bg  and sends it to A ;  
(3) A  and B  compute their respective session keys 

BA sksk ,  using the hash function H ; if both hold the 
same shared key )( BAAB KK =  then BA sksk = . 
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BAAB KKBA =:,  

 
    *: q

R ZaA ⎯⎯←  
      agX ⎯⎯←  

XBA :→  
    *: q

R ZbB ⎯⎯←  
      bgY ⎯⎯←  

YAB :→  
    ),,,,,(: AB

a
BAA KYYXIDIDHskA ⎯⎯←  

    ),,,,,(: BA
b

BAB KXYXIDIDHskB ⎯⎯←  
 

Fig. 1 Protocol DHBT-E. 

The secrecy of the session key formed in an execution of 
the protocol rests upon the CDHP assumption described in 
Section 3.1.  
 
One of the fundamental properties to be upheld by an 
implicitly authenticated key exchange protocol is the 
privacy and authenticity of the resulting session key. To 
this end, it is required that the established key and the 
authentication of both principals must be inextricably 
linked to avoid one of A  or B  being fooled into 
associating the key with the wrong principal.  
For protocol DHBT-E, only principals with knowledge of 
both 〉〈 ABAB KK ,2,1 ,  will possibly compute the exact same 
session key. Key confirmation is implicit, i.e. it is achieved 
by subsequent use of the session key by the calling 
application. When required, explicit key confirmation can 
be added to the protocol (at the expense of increased 
communication complexity) by using the compilers of 
[6,7]. 
 
The devices are initialised with a midlet having the secret 
key ABK ,1  securely embedded in the code uploaded from 
a trusted computer via some authenticated link (e.g. IrDA, 
USB cable). Thereafter the protocol operates with 
essentially two authentication modes based on the 
secondary key 

ABK ,2
: 

 
manual: key ABK ,2  is a low entropy string (perhaps just a 
password or Personal Identification Number - PIN) which 
is manually typed into the devices by both parties to 
complete a protocol run. When the devices return into 
network range the users are re-prompted for the key if the 
preceding authentication period has expired or if the 
connection is lost due to the devices moving out of 
network range; 
  

transparent: key ABK ,2  is read from a cryptographic token 
that is inserted into the device prior to a protocol run (the 
device is protected, for example, with a pass-phrase or 
biometric data). 
 
Notice that in both modes no information on ABK  is ever 
sent across the network. 
 
4. Formal security model 
 
Informally, a secure key agreement protocol should not 
allow a resource-bound adversary to manipulate the 
message flows in any (polynomial) number of protocol 
executions between honest parties, in such a way that 
information is leaked on the session key (or one or more 
protocol goals are subverted).  
We try to formally capture this notion in the formal model 
of [2] in the symmetric key setting. A two-party key 
agreement protocol is defined as a pair ),( ΠΚ=Σ G  of 
poly-time computable functions where GΚ  specifies 
how to compute the long-term private key and Π  
specifies the protocol actions and message formats. There 
is a finite number nq  of principals denoted by iP . Any 
two principals (say 

ji PP, ) that engage in a protocol run 
invoke algorithm GΚ  to establish the shared key 

)( jiij KK = ). The symbol l  denotes the security 
parameter.  
 
Adversary A  has complete control over the 
communication link, hence she can eavesdrop on a 
(polynomial) number of protocol transcripts and also 
delete, add, modify and replay legitimate messages 
exchanged by any two parties.  
 
The adversary interacts with a polynomial number (in the 
security parameter l ) of running instances of the protocol, 
a.k.a. oracles; the r-th oracle, simulating the messages sent 
by iP  (to its intended partner 

jP ) is represented by the 

symbol r
iΠ , the corresponding (s-th) instance simulating 

jP 's responses is represented by s
jΠ . Honest party oracles 

behave according to the description of protocol Σ . When 
referring to the intended partner of oracle r

iΠ  we may use 
the notation 

j
r
i

r
i Ppidpid ==Π .  (and 

i
s
j

s
j Ppidpid ==Π . ). Analogously, the variables 

r
i

r
i accterm , respectively indicate whether oracle r

iΠ  has 
terminated or has accepted, meaning that an accepting 
oracle has output a session key while a terminating oracle 
has accepted but has no more messages to send nor to 
receive.  
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The session identifier r
isid  (resp. s

jsid ) is defined as the 
concatenation of all the messages originating from and 
received by instance r

iΠ  (resp. s
jΠ ) in a protocol run 

while communicating with r
ipid (resp. s

jpid ). Session 
identifiers serve to define matching conversations between 
instances and therefore to account for mutual 
authentication. More formally, we give the following 
definition: 
 
Definition 1 [Partnered Instances] For any two principals 

ji PP,  running protocol Σ , the instances r
iΠ  and s

jΠ  
are partnered if the following conditions hold: 
(i) 

i
s
jj

r
i PpidPpid =∧= ;  

(ii) TRUEtermTRUEterm s
j

r
i =∧= ; 

(iii) NULLsidsid s
j

r
i ≠=  

 
 
Condition (i) requires that a principal is aware of the exact 
identity of its partner. Condition (ii) requires that both 
instances have terminated, i.e. they have sent out and 
received all messages according to the protocol 
specification. Observe that condition (ii) implies that two 
instances cannot explicitly verify whether they are 
partnered or not. Only implicit key confirmation can be 
achieved if the sids are included in the computation of the 
session key. Condition (iii) requires that the both principals 
have had a matching conversation.  
 
The following correctness condition should be satisfied by 
any protocol. 
 
Definition 2 [Protocol Correctness] For any two principals 

ji PP, running protocol Σ  in the presence of a passive 
adversary, the following conditions hold: 
(i) s

j
r
i Π∧Π  are partnered; 

(ii) NULLsksk s
j

r
i ≠= ; 

 
The adversary can initiate and interact with protocol 
instances (oracles) by asking the following queries: 
 
- (init,i,j): this query sets 

 j
r
i Ppid =  and activates (say, 

the r-th) instance r
iΠ  of the protocol at principal iP . 

As a result, oracle r
iΠ  enters the idle state; 

- (send,i,r,M): this query allows the adversary to send a 
message M to instance r

iΠ  while impersonating the 
intended partner r

ipid  (say 
jP  of iP  The response 

is computed exactly as specified by the protocol 
specification (unless iP  is corrupted --- see below) 

with instance r
iΠ  entering an expecting state. When 

M=start instance r
iΠ  in the idle state is prompted to 

send the first message according to the protocol 
specification;  

- (execute,i,j): this query models a passive adversary 
eavesdropping on a run of the protocol between 
honest principals 

ji PP , . The resulting transcript is 
given to the adversary. In principle, an execute query 
can be simulated by send and init queries. However, in 
an execute query the parties and oracle instances 
strictly adhere to the protocol specification (hence the 
resulting protocol executions are correct as by 
Definition 2.). This is opposed to send queries 
wherein the adversary can specify messages of her 
own choice (which are indistinguishable from valid 
ones and may cause the recipient oracle to accept);   

- (reveal,i,r): this query models exposure of the session 
key of the instance r

iΠ  due, for example, to improper 
erasure after its use, hijacking of the machine running 
the protocol or perhaps cryptanalysis. It is applicable 
only to instances that have accepted;  

- (corrupt,i): there is a weak corruption model, wherein 
this query returns only the long-term private key of 
principal r

iΠ , and a strong corruption model where 
the adversary also obtains the internal state of the 
instances run by iP  (and where sometimes the 
adversary is allowed to replace the private key of iP ). 
The adversary can use the compromised private key to 
impersonate iP  with send queries. We stress that the 
adversary does not obtain the session key as the result 
of a corrupt query on a instance r

iΠ  that has 
accepted;  

 
- (test,i,r): when the adversary A  asks this query an 

unbiased coin b  is flipped and bK  is returned. If 
0=b  then 0K  is equal to the real session key, 

otherwise 1K  it a random number sampled from the 
distribution of the session keys. The adversary must 
distinguish which one.  

 
The security of a protocol is defined in the context of the 
following game between a challenger C  and the 
adversary A : 
 
(a) Setup: The challenger C  runs algorithm )1( kGD  ( l  

is the security parameter) to generate private keys for 
all principals 

ji PP, . The challenger also initialises all 
oracles (including random number generators);  

(b) Queries: Adversary A  adaptively asks queries init, 
send, execute, reveal, corrupt, but only a single test 
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query to a fresh oracle.  The challenger responds to 
each query as described above and also answers to 
random oracles queries (modeling hash functions). 
We stress that the adversary may diverge from the 
protocol specification; 

(c) Output: Eventually, the adversary wins the game if 
she can distinguish whether a key obtained from the 
test query is a real session key or a random one with 
the same distribution (or equivalently, if the adversary 
correctly outputs its guess 'b  of the bit b  chosen by 
the challenger when answering the test query).   

 
At the end of the game the advantage of the adversary 
must be negligible for the protocol to be secure. In a 
concrete analysis the advantage is expressed as a function 
of the resource expenditure required to win the game.   
 
A meaningful notion of security depends on the 
capabilities of the adversary, which are expressed in terms 
of the types of queries she is allowed to ask during the 
game. For example, the above game allows the modeling 
of Forward Secrecy (FS), which captures the inability of 
the adversary to obtain information on previously 
generated session keys even after principals are corrupted.  
 
To win the game the adversary must try to guess the 
session key of a FS-fresh oracle; for an oracle (and its 
partner) that has not been the target of send queries (for the 
whole duration of the game above), even with the 
subsequent corruption of the principals, the adversary is 
unable to obtain any information on already established 
session keys. This property is formally stated as follows: 
 
Definition 3 [FS-fresh oracle] An oracle r

iΠ  is FS-fresh 
if the following conditions hold at the end of the game: 
(i) TRUEaccr

i = ; 
(ii) The adversary has not asked (reveal,i,r); 
(iii) If a (corrupt,i) query was invoked then no (send,i,r,*) 

was asked; 
(iv) If there exists oracle s

jΠ partnered with r
iΠ  then 

TRUEaccs
j = , the adversary has not queried 

(reveal,j,s) nor (send,j,s,*) queries were asked if a 
(corrupt,j) query was issued; 

 
The advantage of the adversary is denoted by 

|1]'Pr[2|)( −==Σ bbAdvFS l . A key agreement protocol is 
FS-secure if this advantage is maximized over all 
adversaries running in polynomial time t.  
 
 
 
 
 

5. Security of protocol DHBT-E 
 
In this section we prove the main result concerning the 
security of the protocol in the formal model of Section 4. It 
is straightforward to verify the correctness condition of 
Definition 2; if the adversary is passive and the messages 
exchanged by (honest) principals comply with the protocol 
specification then BA sidsid =  in every protocol 
execution, therefore the oracles are partnered and accept 
holding the same key (by the random oracle assumption). 
Usage of a composite symmetric cryptographic key allows 
for a two factor authentication mechanism to enforce the 
protocol against attacks from an active adversary that has 
corrupted a party. Formally we are only able to prove 
resistance against a passive adversary as far as party 
corruption is concerned.  We now prove the following 
theorem: 
 
Theorem 1 Protocol DHBT-E is an FS-secure 
authenticated key agreement protocol assuming G  is a 
(t,ε)-secure q-order group satisfying the CDH assumption 
and H  is a random oracle. We have 

qqqqqqqtAdv sex
K

excoreh
FS

EDHBT
ij 232),,,,,( ++≤ −

− εl  
where t is the total running time of the game including the 
adversary's execution time, l  the security parameter and 

excoreh qqqq ,,, , respectively, the number of random oracle, 
corrupt, reveal and execute queries. In addition, nq  is an 
upper bound on the number of principals and sq  is an 
upper bound on the number of sessions initiated by the 
adversary.  
 
Proof. For yx gYgX == , the symbol DH(X,Y) represents 
the Diffie-Hellman secret xyg . Consider an adversary A  
attacking the protocol in the game (see Definition 3). Let 
col denote the event that a pair of DH exponents ba gg ,  
have repeated for the same two principals and corrupt the 
event that the adversary asks its test query to an oracle r

iΠ  
having j

r
i Psid = , for some i,j,r and either (corrupt,i) or 

(corrupt,j) were asked.  
Let ask be the event that, for some i,j, the adversary 
queries the random oracle H  at the point (i,j,U,V,W,K) 
where W=DH(U,V), neither iP  nor 

jP  were corrupted 

nor reveal queries were asked of oracles s
j

r
i ΠΠ ,  for some 

r,s during the entire course of the game and 
ijKK = . 

Let Fs denote the event that the adversary asks its test 
query to an FS-fresh oracle. Finally, let Asucc  denote the 
event that A outputs bit 'b  that is a correct guess of the 
bit b  chosen by the challenger C  when answering a test 
query in the game. With simple (but a little tedious) 
calculations one can see that 
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where we used the fact that 
 

2/1]|[Pr

2/1]|[Pr

=∧∧

=∧∧

askcorruptcolsucc

Fscorruptcolsucc

AA

AA  

 
If any two principals 

ji PP ,  generate the same ephemeral 
random data a,b in two different runs of the protocol then 
event col has occurred. The (t,ε)-adversary plays the game 
asking a polynomial number (in the security parameter) of 
execute and reveal queries and stores the resulting sids and 
session keys until event col occurs. By asking the test 
query of the (fresh) oracle that has output the repeating sid 
the adversary can easily distinguish whether it was given a 
real or random key (by comparing it with the previously 
generated identical session key). However, the probability 
of event col occurring corresponds to an instance of the 
birthday problem, therefore we have qqcol sA /][Pr 2≤ . 
 
Now consider the term ][Pr askcorruptA ∧ . Consider the 
adversary A  simulating a man-in-the-middle attack in 
the game by issuing an (init,i,j) query and a (send,i,r,M) 
query with egM =  for random e. On receipt of the 
response ag  from oracle r

iΠ , if A  asks the query 

),,,,,( ij
aeae KgggjiH  then event ask has occurred. 

However, since A  must guess the correct value of 
ijK  

we have ijK
A askcorrupt −≤∧ 2][Pr  where 

ijijij KKK ,2,1 +=  and the expression x  represents 

the bit-length of x . 
Next we claim that εexA qFscorrupt ≤∧ ][Pr . To prove the 
later bound we construct an algorithm F  that outputs 
DH(X,Y) when given in input a tuple ( yx gYgX == , ) by 

embedding the DH-tuples in all execute queries. The 
adversary F  runs algorithm A  as a subroutine and 
must simulate the challenger C  in the game by 
responding to the queries of A  in such a way that A 's 
view is indistinguishable from the real game. Algorithm 
F  runs as follows: 
 
(1) F  receives in input YX ,  runs )1( kGD  generating 

keys 
ijK  for all pairs of principals 

ji PP , ;  
(2) F  answers the queries of A  as follows:  

− For (execute,i,j) queries (which include implicit 
calls to the random oracle H ), F  chooses 
random a,b, outputs the transcript ba YgXg ||   
and sets 1}1,0{ l∈= s

j
r
i sksk  ( 1l  is polynomially 

related to l ). Notice that, under the random 
oracle model, the above session keys will be 
indistinguishable from the real ones. Likewise, 
the transcript ba YgXg ||  is uniformly distributed 
just as in the real world; 

− For queries of the form ),,,,,( ijKWVUjiH  the 

output is 1}1,0{ l⎯⎯←Rv . If the same query was 
already asked before then the answer given 
previously is returned. If the query was asked as 
the result of an (execute,i,j) call (causing the 
partnered instances s

j
r
i ΠΠ ,  to accept, for some r, 

s---see preceding item) then store (U,V,W) in the 
list 1L  (observe that the probability that 1L is 
not empty is exq/1 ). Observe that by definition 
oracles s

j
r
i ΠΠ ,  are both FS-fresh; 

− Queries init, reveal, test, send, corrupt are 
answered as usual. For instances s

j
r
i ΠΠ ,  that are 

the target of (send,i,j) queries, F  eventually 
computes the session key by invoking the random 
oracle as discussed in the preceding item (using 
the private key 

ijK ); 
(3) Once the game has finished (i.e. A  has terminated), 

F  returns a random tuple (U,V,W) from 1L  (if this 
list is empty then return fail---i.e. neither execute nor 
corrupt queries were asked by the adversary during 
the game). F  finds a,b such that aXgU =  and 

bYgV =  and outputs )(/ baab ggDHYXW .  
 
If event Fs occurs the probability that event  Fsucc   
occurs (i.e. the probability that F  wins the game) is 

exA qFs /][Pr  (this is the probability that F  chooses a 
DH-tuple in the 1L  that is from the same session that A  
attempts to break when event ask occurs). Since the 
running time of F  is essentially the same as the running 
time of A  the claim follows.    
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