
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

135

Manuscript received May 25, 2006.
Manuscript revised May 30 , 2006.
This paper was supported by the BB21 project.

Design of the Kernel Hardening
Function in the Linux Network Module

Seung-Ju Jang*

Dongeui Univ. Dept. of Computer Engineering, Korea

Summary
A panic state is often caused by careless computer control. It
could be also caused by a kernel programmer's mistake. It can
make a big problem in computer system when it happens a lot.
When a panic occurrs, the process of the panic state has to be
checked, then if it can be restored, operating system restores it,
but if not, operating system runs the panic function to stop the
system in the kernel hardening O.S. To decide recovery of the
process, the type of the panic for the present process should be
checked. The value type and the address type have to restore the
process. If the system process is in a panic state, the system
should be designed to shutdown hardening function in the Linux
operating system. So it has to decide whether the process should
be restored or not before going to the panic state.
Key words:Kernel Hardening, Linux, Network Module,
ASSERT() macro

Introduction

Nowaday, the usage of Linux O.S is increasing. The
Linux O.S is open source. Therefore, many people and
companies use this at web server, file server, and DB
server. Somebody can modify and change part of device
driver, file system, and network kernel source of the Linux.
While the open source is not an advantage in terms of
standard and system reliability[1, 2, 3, 4, 5, 6]. The Linux
O.S is not commercial product so that it is not stable S/W.
When you modify the kernel source or build a dynamic
kernel module of Linux O.S, that can make a fatal system
error. The error code makes system halt. In fatal error, it
will make system data crash[2,13,14,15,16,17].

 This paper designs kernel hardening function to
recovery for the error in the network module of Linux
kernel. The network hardening module in this paper
recovers a memory data for recoverable memory using
ASSERT() macro. The ASSERT() function is categorized
into two types. One is address type. The other is value
type. For example, the address type is “ASSERT(new !=
NULL, return -1;);”. The new variable is char type. The
value type is ”ASSERT(self->magic == LAP_MAGIC,
return;);“. The self->magic is value type. This paper
proposes a new modified ASSERT() macro and it is
applied to the network module of Linux kernel. The value
type of ASSERT() macro will set correct value when it is
incorrect value. The address type of ASSERT() macro will

set correct address variable when it is incorrect address
and it is possible recovery. Otherwise, the ASSERT()
macro makes system panic.

 This paper composed of related study in chapter 2,
describing a design concept in chapter 3, experimental
result in chapter 4, and conclusion in chapter 5..

2. Related Studies

The Linux O.S has usually hierarchical structure. Each
level incurs several errors. Therefore, HW, kernel, and
application program should be supported fault recovery
mechanisms. All fault recovery procedures are related
with each others. The fault recovery of O.S is kernel or
system administration part. According to strength of fault
recovery, the level is categorized five levels: L1-L5.

 The commercial fault tolerant systems are Tandem,
Fujitsu, Stratus, and DEC. The Tandem developed safety
emergency system for OLTP(On-Line Transaction
Processing) market. The Tandem system has a dual path of
each Hardware element to guarantee fail-safe. A fault
detection uses hardware and software mechanism. All
processes running two machines which is process pair
concept. Stratus system’s fault recovery supports failover
concept that is guarantee non-stop system. The Fujitsu ’s
fault recovery supports general business model.

 The Tandem NonStop system aims non-stop
operation during system running. So, this system has dual
components for all elements of HW. The file system is not
also exceptional. According to UI HAWG(UNIX
International Hardware Working Group), this system
architecture is perfect fault tolerance system. The Tandem
NonStop system has a primary and backup process. “I’m
alive” message originates from a primary process
periodically. It signals no fault in the system. A backup
process runs instead of a primary process during system
fault. Fault recovery uses check point function. When a
primary process has a fault, a backup process reruns the
last check point position.

 The Chorus O.S intends to open, distributed, and
variable features. To satisfy these features, it adopts
micro-kernel technology. The micro-kernel technology is
supporting independent server which is existing O.S’s
function. To satisfy these features in the Chorus, it
provides asynchronous message exchange and

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

136

RPC(Remote Procedure Call). The file system failover in
the Chorus is a fault tolerance using takeover. Takeover
function is running two process pairs. Two processes are a
primary process and backup process. A backup process
runs instead of a primary process during system fault for
each server. The file system’s server in the Chorus O.S is
FM(File Manager). The two FM server do a fault
tolerance’s role [2].

 The kernel hardening study didn’t achieve much
until now. The representative product of kernel hardening
is the Monta Vista O.S. A Monta Vista company sells a
CGE(Carrier Grade Edition) version Linux O.S which
includes kernel hardening [3,6,7,8,9]. Monta Vista CGE
classifies three categories in kernel hardening [3]. The
kernel hardening is generally classified into code review,
panic removal, and fault injection testing [3]. Code
reviews prevents kernel code error originally by
continuously checking a kernel code’s error. Panic
removal decides a process kill or panic by checking O.S
code. Fault injection testing checks a Linux kernel can
recover some S/W error or not.

 The Monta Vista O.S rechecks kernel code by a
code review concept. When a specific process enters a
panic routine, the Monta Vista O.S kills that process. If the
current killed process is system-related process, the kernel
will panic the system. But if the error kernel code is made
by a programmer, the kernel will just kill the process and
will not disturb system running. The Monta Vista kernel
hardening checks all kinds of kernel panic conditions. The
kernel hardening guarantees high availability system [1, 3,
4, 10, 11, 12].

3. Design of the kernel hardening in the
network module

3.1 Design of the kernel hardening

The suggesting basic concept of kernel hardening in this

paper is that if a kernel error can be recovered the kernel
hardening module recovers an error kernel code before
kernel panic() execution. We can make a stable system by
supporting kernel hardening. But the kernel hardening is
not an almighty. Panic() execution can not make fatal error
in some cases of kernel error. In those cases the kernel
hardening module leads panic() execution. In order to
implement the kernel hardening in this paper, the
ASSERT() macro is available. The kernel hardening
procedure in the ASSERT() macro is [Fig. 2].

Fig. 1 ASSERT() macros procedure for the kernel hardening

The proposing kernel hardening in this paper is implemented

ASSERT() macros function. The ASSERT() macros decides

panic() function execution. When the macros can recover kernel

code error, it will recover error kernel code. If the macros can

recover error kernel code, the system acts normal operation. The

[Table 1] shows the case whether recoverable kernel error or not.

[Table 1] The Recoverable Type of Kernel Hardening

If expression type is value in the ASSERT() macros,
the wrong value is recovered. The

Recoverable
Type of Kernel
Hardening

If expression type is address in the ASSERT() macros
and that address is accessable, that address is
recovered.

The recovery procedure is as following in the kernel hardening.
The expression types are two kinds in ASSERT() macros.: value
and address. In value type if the wrong value of the ASSERT()
macros can be changed, the Linux kernel does not run panic().
The error kernel code can be recovered.
 The proposing algorithm of the ASSERT() macros is as
follow.: when expr1 that is argument in ASSERT() macros

ASSERT(expr1,expr2,expr3,ex
pr4)

expr4 ==
1

expr1 ≠ 1

EXPR(expr1)==TRUE

expr1 ≠ 1

expr2 = expr3

expr2 = expr3

Normal

EXPR(expr1)==FALS
E

EXPR(expr1)==FAL
SE

N

N Y

Y

N

N

N

N

Y

Y

Y

Y

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

137

is FALSE, the hardening algorithm decides value or
address type. The expr1 value is determined result of
“expr2==expr3". When expr1 is FALSE, the wrong expr2 value
is changed with normal expr3 value in value type. In address
type, access_ok() checks that the (expr2, expr3) arguments are an
available memory area or not. And then the kernel hardening
module decides recoverable or not.
 When one of (expr2,expr3) is NULL, the kernel hardening
module handles like this. The kernel hardening module run
access_ok() function for this address. When the two comparing
arguments are all NULL, the force_sig() kills a process so that it
makes there is no exceptional events. The force_sig() removes
the root of generating panic process. It only kills the process so
that other processes run normally. The force_sig() only kills a
user process. But, force_sig() does not kill the system
process(daemon process). Because the system process does not
kill forever during system is running. When the system process
have an error condition, the kernel hardening module do panic()
procedure. [Algorithm 1] shows kernel hardening procedure in
the address type.

Algorithm RAT_KH_NM(Recovery-Address-Type for Kernel
Hardening in Network Module)
Input : The set of the Expr = {expr1, expr2, expr3, expr4} and
process id(pid)
Output : recovery variable, kill process or execute panic()

RAT1 : if address type then RAT2
 else RAT7
 end
RAT2 : expr1 = FALSE(in the wrong address value)
RAT3 : check the expr2 and expr3 are normal main memory address
 if expr2 and expr3 are normal address
 then RAT4
 else
 goto RAT6
 end
RAT4 : if pid = user process then RAT5
 else
 goto RAT6
 end
RAT5 : force_sig_kill(pid)
RAT6 : Panic()
RAT7 : Stop

[Algorithm 1] Procedure of Kernel Hardening in the
Address Type

[Algorithm 1] shows kernel hardening procedure in the
address type of Linux network module. Left side(RAT) of
[Algorithm 1] shows the statement number. When expr4 is
2 in ASSERT() macros and address type, the kernel hardening

module checks expr1 is TRUE or FALSE. The kernel
hardening module proceeds normal procedure when expr1
is TRUE. The kernel hardening module checks whether
expr2 and expr3 is normal memory address or not when
when expr1 is FALSE. The access_ok() that needs three
arguments checks legal memory address. The first argument is
readable or writable memory. The second argument is memory
address. The third argument is memory size.

The return value of access_ok() is 0 that the memory
address is normal. The return value of access_ok() is 1 that
the memory address is abnormal. One return value of
access_ok() among expr2 and expr3 is 1 that is abnormal
memory address. All return values are 0 that is normal
memory address.

3.2 System Architecture

The designed system architecture is Intel CPU 450MHz
Processor, 128 MByte RAM and RedHat 9.0 Linux O.S.
The Linux kernel version is 2.4.20. The GNU tool is used
to develop program.

Fig. 2. System Architecture

3.3 Design of Kernel Hardening in a Network
Module

The ASSERT() macros types are four in Linux network

module. This four types are [Table 2].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

138

[Table 2] ASSERT() macros Types

route.c

ip_rt_init(

)

tcp_ipv4.c

tcp_v4_init()

tcp.c

tcp_init(

)

tcp_diag.c

tcpdiag_init(

)

icmp.c

icmp_init(

)
ASSERT_TCP_CACH

E
O O

ASSERT_TCP_PAGE O O

ASSERT_NETLINK O

ASSERT_CREATE O O

[Table 2] shows implemented network module of kernel
hardening in a types of ASSERT() function.
ASSERT_TCP_CACHE()and ASSERT_TCP_PAGE() macros
shows a kernel hardening in TCP related part. This macros
is in implemented into route.c tcp.c source code.
kmem_cache_create() function uses ASSERT_TCP_CACHE()
macros in network module. __get_free_pages()function uses
ASSERT_TCP_PAGE() macros in network module.
ASSERT_NETLINK() macros is applied to network diagnostics.
ASSERT_CREATE() macros is available on TCP protocol and
ICMP protocol for kernel hardening. Some source files of
directory Linux/net/ipv4 makes a panic(). Tcp_init()
function of tcp.c source file makes a panic(). When a
specific variable of tcp_init() function is NULL, system
makes a panic. This variable’s value is determined return
value of __get_free_pages() and kmem_cache_create ().
The route.c source file has also this kind panic. These
types of variable is [Fig. 3].

tcp_openreq_cachep =
kmem_cache_create("tcp_open_request",sizeof(struct
open_request),0,

SLAB_HWCACHE_ALIGN,NULL, NULL);
if(!tcp_openreq_cachep)
 panic("tcp_init: Cannot alloc open_request cache.");
tcp_bucket_cachep =

kmem_cache_create("tcp_bind_bucket",sizeof(struct
tcp_bind_bucket),0,

 SLAB_HWCACHE_ALIGN, NULL, NULL);
if(!tcp_bucket_cachep)
 panic("tcp_init: Cannot alloc tcp_bind_bucket cache.");
tcp_timewait_cachep =

kmem_cache_create("tcp_tw_bucket",sizeof(struct
tcp_tw_bucket),0,

 SLAB_HWCACHE_ALIGN,NULL, NULL);
if(!tcp_timewait_cachep)

panic("tcp_init: Cannot alloc tcp_tw_bucket cache.");

tcp_ehash = (struct tcp_ehash_bucket
*)__get_free_pages(GFP_ATOMIC, order);

if(!tcp_ehash)
 panic("Failed to allocate TCP established hash table\n");

tcp_bhash = (struct tcp_bind_hashbucket
*)__get_free_pages(GFP_ATOMIC, order);

if(!tcp_bhash)
 panic("Failed to allocate TCP bind hash table\n");

[Fig. 3] Panic Decision Variable Type in Network Module

The condition decides panic() execution or not. The
designed kernel hardening is running that the panic()
function is executed in case of a panic condition. That is,
The new designed ASSERT() macros is applied to the
kernel. The argument values are using in the ASSERT()
macros. The new designed ASSERT() macros is defined
[Fig.4], [Fig. 5].

#define
ASSERT_TCP_CACHE(expr1,expr2,expr3,expr4,
 expr5,expr6,expr7,expr8) \
 if(!expr1){\
 expr1 = kmem_cache_create(expr2,expr3,
 expr4,expr5,expr6,expr7);\
 if(expr1 == NULL){\
 expr8=1;\
 }else{\
 expr8=0;\
 }
 }

[Fig. 4] The new designed ASSERT macros in the
kmem_cache_create() function

#define ASSERT_TCP_PAGE(expr1,expr2,expr3,expr4) \
 if(!expr1){\
 expr1 = __get_free_pages(expr2, expr3);\
 if(expr1 == NULL){\
 expr4=1;\
 }else{\
 expr4=0;\
 }\
 }

[Fig. 5] The new designed ASSERT macros in the
__get_free_pages() function

Let us look about decision condition in ASSERT() macros,
you can think the ASSERT(a != NULL, a, NULL, 2) case.
When we cannot decision for the recoverable address
value in ASSERT() macros, it is efficient that exits the
“panic” incurring process using "force_sig(SIGKILL,
p_pid)" rather than “panic” proceeding. The user process
is applied to process exit of force_sig(). The system
process(like daemon) should not exit using force_sig() because it

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

139

is abnormal system down. Accordingly, the system process
should do “panic” procedure rather than “exit” process procedure.
A way of classification user and system process is PID
number(p_pid) in proc. table. The usage format of ASSERT()
based on [Fig. 5] is [Table 2].

Table 2. An Argument Value for ASSERT() Macros

Arguments function

expr1 Obtain result of expr2 == expr3
expr2, expr3 Variable or address for a specific value
expr4 Decides address or value

[Fig. 5] shows the kernel hardening source code that is
really applied to network module in Linux O.S. The
applied network function is “tcp_init()” that is executed
“ping(1)” command.

 if (!tcp_ehash){
 ASSERT_TCP_PAGE(tcp_ehash,GFP_
 ATOMIC,order,p_flag);
 if(p_flag==1)
 panic("Failed to allocate TCP established
 hash table\n");
 }
 for (i = 0; i < (tcp_ehash_size<<1); i++) {
 tcp_ehash[i].lock = RW_LOCK_UNLOCKED;
 tcp_ehash[i].chain = NULL;
 }
 do {
 tcp_bhash_size = (1UL << order) *
 PAGE_SIZE /sizeof(struct tcp_bind_
 hashbucket);
 if ((tcp_bhash_size > (64 * 1024)) &&
 order > 0)
 continue;
 tcp_bhash = (struct tcp_bind_hashbucket *)
 __get_free_pages(GFP_ATOMIC, order);
 } while (tcp_bhash == NULL && --order >= 0);

[Fig. 6] Example Code of Kernel Hardening in Network
Module

ASSERT_TCP_PAGE() function is kernel hardening code
in [Fig.4] and [Fig. 5]. tcp_돔노 variable is a return value
of _get_free_pages(GFP_ATOMIC, order) in this function.
p_flag is assigned to 0 in case of allocating tcp_ehash
and 1 in case of non-allocating tcp_ehash.
ASSERT_TCP_PAGE() function is added into primitive
network-related function for kernel hardening in [Fig. 6].
The tcp_ehash, order variables are primitive variables in
ASSERT_TCP_PAGE() function. GFP_ATOMIC is
defined value to assign memory allocation. p_flag has 1

value which is added when unrecoverable kernel. The
panic() function is executed when this variable has 1.
Otherwise kernel recovery is doing in the
ASSERT_TCP_PAGE() macros.

4. Experiments

4.1 Experiments Methods

The suggesting kernel hardening algorithm has
implemented and experimented in the Linux O.S. The
implemented source code is compiled. We can test the
implemented module. That booting kernel initializes
double linked list in the ip_rcv(). When intermediate link
pointer unlinks, the kernel cannot find next node. At this
time, in the ASSERT() macros calls do_page_fault() of
fault.c like [Fig. 6]. The do_page_fault() executes die()
function so that the system makes panic state. The
experiment case of double linked list has a wrong forward
link pointer, but previous link pointer has a correct link
pointer. At this time the wrong link pointer can be
recovered by set the previous link pointer. Without system
panic, the system is recoverable.

[Fig. 7] Double Linked List

[Fig. 8] Execute ip_rcv() function

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

140

[Fig. 9] Execute asl program

5. Conclusion

The wrong operation and program makes an error in the

Operating System and halts the system. If a kernel has a
problem, it makes serious problem in the computer system.
In this case, if we can recover a kernel problem so that
makes no error status system, the system runs well. This
paper designs kernel hardening module which recovers
some recoverable errors in the Linux O.S.
 The recoverable errors are killing error process and
memory error in the Linux O.S. The suggested kernel
hardening module is implemented in the ASSERT macro.
The function of killing error process is implemented into
ASSERT macro. The ASSERT macro checks whether
condition is FALSE or TRUE. If FALSE condition, the
kernel hardening module checks that is recoverable or not.
If recoverable process, the kernel hardening module kills
that process. Otherwise, the kernel hardening module runs
panic() function and normal procedure as original Linux
O.S method. I experimented the suggested kernel
hardening module. As the experiment, the suggested
kernel hardening module is working well.

References
[1] Beck, Linux Kernel Programming, pp2 ~ 5,

ADDISON WESLEY,2002.
[2]

http://hpc.postech.ac.kr/~dolphin/research/ds/mighty/
design/designfault.html,2000.

[3] Jeffery Oldham & Alex Samuel, Advanced Linux
Programming, pp45-55, Mark Mitchell, 2001.

[4] John Mehaffey, Montavista Linux Carrier
GradeEdition[WHITE PA PER],Montavista Software
Inc., April 8, 2002.

[5] Tim Udalll, "kernel Hardening Guidelines", SEQUOIA,
1994.

[6] SILBERSCHATZ&GALVIN&GAGNE, Operating
System Concepts(6th), JOHNWILEY&SONGS INC.
2002.

[7] Software Fault Tolerant,
http://user.chollian.net/ ~hsn3/korea/study_k2.html,
2000.

[8] http://www.mvista.com/cge/index.html, 2002.
[9] Michael Beck,Mirko Dziadzka,Ulrich Kunitz and

Harald Bohme, Linux Kernel Internals, Addison-
Wesley,1997.

[10] The Linux Online, http://www.linux.org
[11] Gary Nutt, Kernel Projects for Linux,Addison Wesley

L-ongman, 2001.
[12] A.Rubini&J.Corbet, Linux Device Driver(2nd),

O'Relly, 2001.
[13] BOVET & CESATI, OREILLY, Understanding the

Linux Kernel, p216-p222, 2001.
[14] http://nodevice.com/sections/ManIndex/man055.html,

2002.
[15] G.B.Adams III, and H.J.Siegel,“The Extra Stage

Cube: A Fault-Tolerant Interconnection Network for
Supersystems, pp.443-454. IEEE Trans. on Computer.
Vol. C-31, No.5 May 1982.

Seung-Ju, Jang received a B.Sc. degree
in Computer Science and Statistics, and
M.Sc. degree, and his Ph.D. in Computer
Engineering, all from Busan National
University, in 1985, 1991, and 1996,
respectively. He is a member of IEEE
and ACM. He has been an associate
Professor in the Department of
Computer Engineering at Dongeui
University since 1996. He was a member
of ETRI(Electronic and
Telecommunication Research Institute)

in Daejon, Korea, from 1987 to 1996, and developed the National
Administration Multiprocessor Minicomputer during those years. His
current research interests include fault-tolerant computing systems,
distributed systems in the UNIX Operating Systems, multimedia
operating systems, security system, and parallel algorithms.

