
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

162

Manuscript received August 25, 2006.
Manuscript revised August 30 , 2006.

A New Tool to Check the Coherence of Constraints
Defined on UML Class Diagrams

Djamel Berrabah1, Faouzi Boufarès2, Charles-François Ducateau1
1{berrabad,ducateau}@univ-paris5.fr

Centre de recherche en Informatique de Paris 5

Université Paris 5, 45 rue des Saints Pères
75270 Paris Cedex 06, France

Laboratoire d'Informatique de Paris-Nord

Université Paris-Nord, 99 avenue Jean-Baptiste Clément
93430 Villetaneuse, France

Summary
The unified modeling language (UML) is an important and
efficient industry standard language for modeling databases. It is
supported by most of CASE tools available on the market.
However, these tools do not preserve the efficiency of UML
during translation. In other words, they often do not take into
account all the information (structures and constraints) given in a
UML class diagram. The goal of this paper is to enrich and
improve these tools in order to solve this problem. So we aim to
propose an efficient approach to generate automatically
mechanisms that check participation constraints. These
mechanisms are active during the maintenance of databases. If
any operation brings about an inconsistent database state (i.e.
violates constraints) it will be rejected and the data of the
database will remain unchanged
Key words:
UML for databases design, class diagram translation,
active database, integrity constraints checking.

1. Introduction

The Unified Modeling Language (UML) [20, 22] became
a powerful and a commonly used formalism for database
(DB) analysis and design. Most of CASE tools available
on the market, such as Power AMC, Rational Rose and
DB-Main, [10, 24, 26], are improved to support UML.
They produce a flexible environment for data modeling.
Despite these features, designer’s needs are not totally
satisfied. For instance, some constraints, such as
disjointness, covering and Exclusion, are neither
expressed nor translated by any CASE tool. CASE tools
are based on database design methodologies [13, 27] to
translate a UML class diagram into a relational schema
(RS). Class diagrams are also called conceptual schemas
(CS). The RS elements obtained during translation
processes do not completely coincide with the CS
elements, thus bringing about some semantic losses [4].
This problem often arises when most of the constraints

that are established in the CS and that reflect the real
world are not translated correctly. The standardization of
SQL is still work in progress. However, the latest revision
of SQL [11] did not bring significant improvement with
regards to participation constraints, and many other
constraints.

Our aim through this paper is to study participation
constraints which are used in a class diagram. These
constraints can be defined on binary relationships as well
as on generalization/specialization relationships. Their
behaviors are not the same in either case, even though they
have the same semantics. Our contribution in this work is
to give a means to express and translate automatically
these constraints using event-condition-action (ECA) rules.
Of course, the implementation of well-known constraints
in relational databases using ECA rules or triggers has
already been thoroughly studied. The main goal of our
study is to develop a new CASE tool (Fig.1). This tool
provides the possibility to take all constraints into account
(their global coherence and their translation) within
database analysis and design process.

This paper is organized as follows. Section 2
synthesizes the basic principles of constraints and their
role in preserving the semantics of the real world. Section
3 introduces participation constraints in UML. Sections 4
and 5 show how to express and translate participation
constraints on binary relationships and generalization/
specialization relationships with a constraint specification
language. Our study is based on trigger-based SQL scripts.
Section 6 contains our conclusions and prospects.

2. Integrity Constraints Checking

2.1 Constraints

Maintaining the database consistency is a very interesting
challenge. Generally, the consistency is enforced by

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

163

integrity constraints (ICs), which are assertions that
database instances are compelled to obey. A database is
consistent if and only if all ICs are satisfied. ICs have been
classified according to various criteria. The first criterion
distinguishes between state constraints, which characterize
valid database states, and transition constraints, which
impose restrictions on the possible transition state of a
database. The problem of checking integrity constraints is
not recent. Many works related to this problem can be
found in the literature [6, 7, 9]. The authors in [12, 15]
represent an attractive synthesis of different approaches
related to IC checking. Indeed, two major levels can
appear throughout database design. The first one is related
to conceptual schema checking. On this level, the CS

syntax and especially its semantics must be checked [4,
19]. For instance, an XOR constraint defined on two
relationships can be in contradiction with multiplicity
constraints; it therefore remains unchecked. On the second
level, the CS is translated in a target language. This
translation can be made into a formal specification such as
Z and B [17, 18, 23] or in a query language such as SQL
[1, 5]. These works concern data structures (classes,
relationships, etc…) and chiefly multiplicities in
constraints. Few works deal with the participation
constraints. Active mechanisms are used in [2] to translate
the participation constraints defined on binary
relationships. This same kind of constraints can be defined
on the relations of heritage.

Verifications:
structures and global coherence of

constraints

Valid schema

Conceptual Schema translation
into a Target Schema

(Into a target environment)

Conceptual Schema =
Structures + Constraints

No
Yes

Data warehouse
construction

Meta models
UML-EER

Algorithms and rules
[Boufarès et al, 2005]

Information System
integration

& DB integration

Reverse
engineering

Heterogeneous
databases

InputA new CASE tool

Fig. 1 A new tool to integrity constraint checking

2.2 Triggers

Some conditions are checked by declarative constraints.
Sometimes, however, declarative constraints are not
sufficient. Thus more powerful systems such as triggers
[9] have to be used. Triggers constitute a good means to
implement referential actions. On the majority of DBMSs,
it is necessary to use triggers to perform actions other than
those defined by defect. Though triggers are found in the
majority of DBMSs, unfortunately the execution models of
the triggers vary from one DBMS to another. Main
components are valid for all the systems and generally do
not change. In SQL 2003 [11], a trigger is expressed by
ECA rules [8, 9, 16]. It is activated during DB transition
state. Each trigger is associated to one or more events on a
table. It is activated if one of these events is performed on
this table. An event can be an IDU (Insert, Delete or

Update) statement applied on a table of the DB. Once the
trigger is activated, its condition, that is to say an assertion
on the data or the state of the DB, must be evaluated. If the
condition is evaluated as “true”, then the action is
performed. An action is a sequence of SQL statements
performed on the DB tables or a "raise error" which rejects
the event that activated the trigger. If the event is rejected,
the data of the DB do not change. Triggers can access the
old and new attribute values affected by the triggering
event by means of transition variables (OLD and NEW)
[6].They are noted by X.attribute_name, with X in {OLD,
NEW}, and attribute_name is a table column.

3. Participation constraints in UML

A participation constraint (PC) frequently relates to the
coexistence of class object occurrences in one or several
associations (Fig.2). Several participation constraints are

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

164

presented in the literature, such as exclusion, inclusion,
etc... More detailed definitions of these constraint
categories are given by [3, 21]. These constraints, once
introduced into a CS, must be taken into account in order
to preserve the semantics of the real world. This must be
done at the conceptual level as well as at the relational one.

Two kinds of participation constraints are studied In
this paper: those defined on classical binary relationships
and those defined on generalization/ specialization
relationships. In other words, rules are provided to allow
designers to define and to express these constraints using a
constraint specification language. Participation constraints
basically refer to conditions of linking class objects to two
or several other class objects. The first aim of this study is
to remove ambiguities on definitions of these constraints
when defined on generalization/ specialization or binary
relationships. The second one is to underline their common
points. Finally, we show how to express them (in trigger
script SQL) and check them.

C5

Person

Professor Student

to be registered ►
ASSEDIC

C1

Organizationto work in ► C4 C3

C6

employer

assedic
C2

Fig. 2 Human resources management Schema

The set of constraints: ζ
C1: 1..*
C2: 0..1
C3: 1..*
C4: 0..1
C5: exclusion
C6: disjoint, incomplete

The conceptual schema in figure 2 describes human
resources management. Examples of both kinds of PCs are
represented in this figure. C5 is a PC defined on a binary
relationship. It is an exclusion constraint that ensures that
each person must, at least, work in an organization or be
registered in ASSEDIC1 but not both at the same time. C6
is a PC defined on generalization/ specialization
relationship. It is a disjoint and complete constraint which
guarantees that a person may be either a professor or a
student but not both. She/he may be neither. We have
shown in [4] that the CS is valid if and only if the set 　 is

1 French term : "ASSociation pour l'Emploi Dans l'Industrie et le

Commerce" means Organization for Employment in Industry
and Trade

coherent. Otherwise, the translation of the conceptual
schema to the relational one must not be done. For
instance, if C2 is equal to "1" then the constraint exclusion
has no signification.

4. Checking PCs on binary relationships

4.1 From conceptual schema to relational one

R2

B

{CP}

R1

A

C

Fig. 3 Participation constraints defined on a binary association

Translating and checking the participation constraints
strongly depend on the conceptual schema translation and
consequently on multiplicity constraints. A multiplicity
constraint relates to minimal and maximal numbers of
links that can exist between the objects of the associated
class. Many algorithms to map conceptual to relational
schemas can be found in the literature [13]. Only rules
considered to be useful for our study are presented in the
following forms:

• Rule 1: Any class is transformed into a table with a

primary key.
• Rule 2: Any binary association which does not contain a

maximum multiplicity equal to 1 is represented by a
table. Its primary key is composed by the primary keys
of the concerned classes. These primary keys constitute
foreign keys too.

• Rule 3: Any binary association with a maximum
multiplicity equal to 1 is represented in the form of a
foreign key.

Three classical types of multiplicity couples are considered
(Fig.4): 1) one-to-many: Only one multiplicity has a
maximum equal to 1 noted 1-N or N-1. 2) one-to-one:
Both multiplicity constraints have a maximum equal to 1
noted 1-1. This case is similar to the 1-N one. 3) many-to-
many: All maximum multiplicity constraints are not equal
to 1 noted N-M.
Figure 4 summarizes the Relational sub-Schemata
associated with the CS of figure 3 according to the couples
of multiplicity constraints defined on its associations. In
other words, this figure represents only the tables
containing occurrences of associations on which PCs are
defined. PKX means the Primary Key of the table X, FKX
means the Foreign Key of the table X, AttrX means the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

165

Attributes referencing the table X and AttrR means the
Attributes of association R.

Case Association Type relational Sub-Schema
CaseI N-1 & N-1 A(PKA,FKB,FKC, AttrA)

N-M & N-1 T(FKB, FKA, AttrR)
A(PKA, FKC, AttrA)

1-N & N-1 T= B(PKB, FKA, AttrB)
A(PKA, FKC, AttrA)

N-1 & 1-N A(PKA, FKB, AttrA })
T= C(PKC, FKA, AttrC)

CaseII

N-1 & N-M A(PKA, FKB, AttrA)
T(FKC, FKA, AttrR2)

N-M & N-M T1(FKB, FKA, AttrR1)
T2(FKC, FKA, AttrR2)

1-N & N-M T1= B(PKB, FKA, AttrB)
T2(FKC, FKA, AttrR2)

N-M & 1-N T1(FKB, FKA, AttrR1)
T2= C(PKC, FKA, AttrC)

CaseIII

1-N & 1-N T1= B(PKB, FKA, AttrB)
T2= C(PKC, FKA, AttrC)

 Fig.
4 Summary of the RS associated to CS according to the various

multiplicity constraints

Three different cases can be distinguished in figure.4.
Case.I) the objects of both associations appear in the table
A. Case.II) the objects of only one association appear in
the table A. The objects of the other association appear in
the table T. Case.III) no objects of either association
appear in the table A. So the objects of both associations
appear respectively in T1 and T2. More detail is given in
subsection 4.2.

4.2 Active mechanisms generation

This subsection describes how triggers are automatically
generated to check PCs defined on binary relationships.
These triggers are represented in ECA rule form.

Case I
This case represents the N-1 & N-1 association types.
Thus, associations R1 and R2 are both translated by the
migration of the primary keys of classes B and C
respectively as foreign keys (FKB and FKC) in the table A
(Fig.4). With this solution, all the objects of both
associations appear in the table A.

 Exclusion constraint
In this case (Case.I), the exclusion constraint is violated
only if an A-object participates in one association while it
already participates in the other. This can occur during an
insertion or an update operation. In order to solve the
problem, it is necessary to generate a trigger that reacts to
these events on the table A. The deletion operation has no
effect on this constraint.

event: insert or update on A
condition: new value of FKB is not null and
new value of FKC is not null
action: raise error

Example 1

Company Student

University

1

1

0..*

0..*

{exclusion}
teach at

▼

work in ►

In this example, a student either teaches at the university
or works in a company but not both at the same time. He
may not do either. To ensure this condition it is necessary
to add an exclusion constraint between the associations
"work in" and "teach at". "work in" and "teach at" are both
many-to-one associations (N-1 & N-1). The trigger
generated in this case is as follows:
Create trigger Insert_Update_Student
Before insert or update on Student
Begin

If (NEW.FK_COMPANY IS NOT NULL AND
NEW.FK_UNIVERSITY IS NOT NULL)

Then RAISE_ERROR (‘exclusion constraint
violated’);

End If;
End Insert_Update_ Student;

 Inclusion constraint
In Case.I, only the insertion and the update operations can
violate the inclusion constraint. Only one trigger needs to
be generated in order to prevent these events from
violating this constraint. The trigger rejects the event if the
new value of FKB is different from the null value and if
that of FKC is null.
event: insert or update on A
condition: new value of FKB is not null and
new value of FKC is null
action: raise error

Example 2

Parking-Space

to rent
▼

to have►

{inclusion}

Person 0..* Car
1

0..*
is in ►

1..* 1
Garage

to park ►

0..*

0..1 1

In this example, a parking-space is rented by a person to
park a car. The car cannot be parked if the parking-space is
not rented. To ensure this condition it is necessary to add
an inclusion constraint between the associations "to rent"
and "to park". This constraint is expressed by the
following trigger:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

166

Create trigger Insert_Update_Parking-Space
Before insert on Parking-Space
Begin
If NEW.FK_CAR IS NOT NULL AND FK_PERSON IS

NULL)
Then RAISE_ERROR (‘inclusion constraint

violated’);
End If;
End Insert_Update_Parking-Space;

 Simultaneity constraint
In Case.I, two solutions are possible for this constraint.
The first solution consists in saving each IDU statement
performed on the tables where the R1 and R2 objects
appear. Thus a new table will be created in which these
operations are saved. This new table will be dealt within a
procedure executed by the user in order to check whether
the simultaneity constraint is satisfied or not. Some of the
disadvantages of this solution are that it is semi automatic
and storage space consuming. The second solution
somehow lacks flexibility. It generates IDU statements that
the user must perform, following other IDU statements
(for example, if the user inserts an A-object in one of the
two tables, then he must also insert it in the other one).

In Case.I, deletion operation has no effect on this
constraint. The two events which can violate it are
insertion and update. To perform one of these two
operations, the values of the foreign keys in the table A
must both be (at the same time) either null or not null. The
trigger that must be generated to check this condition is as
follows:
event: insert or update on A
condition: new value of FKB is different
then new value of FKC and at least one of
them is null
action: raise error

 Example 3

Course

Group-Students

0..1

0..1

0..*

0..* Professor

to attend
▼

{simultaneity}

◄ to teach

It is considered in this example that a course is taught by at
most one professor and is attended by at most one group of
students. A course may be neither taught nor attended. On
the other hand, if it is attended by a group of students it
must be taught by a professor and vice versa. To ensure
this condition, a simultaneity constraint must be added
between associations "to teach" and "to attend".

Create trigger Insert_Update_Course

Before insert or update on Course
Begin
If (NEW.FK_PRO IS NULL AND NEW.FK_GROUP IS

NOT NULL) OR (NEW.FK_PROFESSOR IS NOT
NULL AND NEW.FK_GROUP IS NULL)

Then RAISE_ERROR (‘simultaneity constraint
violated’);

End If;
End Insert_Update_Course;

 Totality constraint
In Case.I, checking this constraint is quite easy. If an
insertion or update operation is performed, it is enough to
check that at least one of the two values of the foreign
keys in A is not null. If both are null, this means that the
A-object does not participate in any association and
consequently the constraint is violated. The operation of
deletion does not violate this constraint, because if it is
performed on the table A, it eliminates some A-objects as
well as their participations.
event: insert or update on A
condition: new value of FKB is null and new
value of FKC is null too
action: raise error

Case.II

In this case, one of the two associations is translated by a
foreign key (FKB or FKC) in the table A (Fig.4). The A-
object participation in one of the two associations appears
in table A. The tables taken into account in this case are
classified in Figure.4 Case.II.

 Exclusion constraint
In Case.II, three events can violate the exclusion constraint.
These events are an update on table A, an insertion or an
update on the table T. Two triggers must be generated to
prevent the violation of this constraint. The first reacts to
an update on table A. Its principle is to reject this update if
the new value of the foreign key in the table A is different
from the null value and the value of PKA already exists in
the table T. This trigger is as follows:
event: update on A
condition: new value of FKB is not null and
the set of rows that T.FKA= A.PKA is not
empty
action: raise error

The second trigger reacts to an insertion or an update on
the table T. Its principle is to reject these two events if the
value of FK, with which the new value of FKA is
associated, is different from the null value.
event: insert or update on T
condition: new value of FKA is not null the
FK value is not null where A.PKA=T.FKA
action: raise error

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

167

 Inclusion constraint
To deal with this constraint in Case.II, two different sub-
cases must be considered. Knowing that inclusion
constraint is defined in such way that:

R1⊂R2 (i.e. T⊂A (Case.II-1) or A⊂T (Case.II-2)).

The first sub-case is summarized in the N-M&N-1 and 1-
N&N-1 association types. The second one is summarized
in the N-1&1-N and N-1&N-M association types.

Sub Case.II-1
In this sub-case, a deletion operation does not violate the
inclusion constraint. An insertion or an update operation
violates this constraint only if it is applied on the table T.
To prevent this violation, a trigger is generated that rejects
the insertion or the update of an A-object in the table T if
its participation does not appear in the table A. Its
definition is as follows:
event: insert or update on T
condition: N.FKA value is not null and A.FKC
value is null where T.FKA=A.PKA
action: raise error

An update operation can also violate the inclusion
constraint if it is applied on the table A. A trigger must be
generated too to reject this operation if it cancels A-object
participation from the table A while this object participates
in table T. The trigger is as follows:
event: update on A
condition: value of FKA is not null and FKC
is null where T.FKA =A.PKA
action: raise error

Sub Case.II-2
In this sub-case, four events can violate the inclusion
constraint. The first one is an insertion operation in the
table A. The following trigger, generated to prevent this
violation, rejects this operation if the value of FKB is not
null, which means that the A-object participates in the
table A and does not participate in the table T.
event: insert on A
condition: value of FKB is not null
action: raise error

The second event that can violate the inclusion constraint
is a deletion operation on the table T. The trigger
generated here rejects this operation if it cancels the
participation of an A-object in the table T while this object
participates in the table A.
event: delete on T
condition: Old value of FKA is unique in T
and A.FKB value is not null where
T.FKA=A.PKA
action: raise error

The third event is an update operation on the table A. The
trigger generated here rejects this operation if it creates a
participation of an A-object in the table A although this
object does not participate in the table T (A⊄T).
event: update on A
condition: new value of FKB is not null and
T.FKA value is null where A.PKA =T.FKA
action: raise error

Finally, the last event that can violate this constraint is an
update operation on the table T. In this case, the trigger
generated rejects this operation if it cancels the
participation of an A-object in the table T although this A-
object participates in the table A.
event: update on T
condition: new value of FKA is null and
A.FKB value is not null where T.FKA= A.PKA
action: raise error

 Simultaneity constraint
Preserving simultaneity constraint, in Case II, is complex
because each operation has a specific effect on tables A
and T. For an insertion operation in table A, if the value of
FK is non-null, then it is necessary to insert a row in the
table T with the value of PKA in the FKA column.
Consequently, insertion in the table T does not violate the
constraint.
event: insert on A
condition: new value of FK is not null
action: insert value of PKA in T.

Deletion in the table A does not present any risk of
violation of the simultaneity constraint because if a row is
removed from the table A, then all the referenced rows are
removed too. On the other hand, deletion from the table T
can violate this constraint. If the value of FKA, in the
removed row, is not null and unique, then simultaneity
cannot be ensured.
event: delete on T
condition: old value of FKA is not null and
unique
action: raise error

An update operation on the two tables A and T has an
effect on the simultaneity constraint. Thus, to update a row
in the table A, it is necessary to deal with the old and new
values of FK (the foreign key). The value of FK
determines if A-objects participate or not in one of the two
associations. Therefore, a trigger is needed to deal with the
change of this value. It is as follows:
event: update on A
condition1: new value of FK is not null and
PKA value do not exist in T
action1: insert value of PKA in T.
condition2: old value of FK is not null and
unique and new value of FK is null

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

168

action2: delete lines that contain PKA

Updating the table T can modify the participation of an A-
object in the association transformed in T. Thus, a trigger
is needed to reject this operation if it generates the
participation of an A-object in an association while this
object participates in the other and vice versa.
event: update on T
condition1: new value of FKA is not null and
A.FK value is null where A.PKA=T.FKA
action1: raise error
condition2: old value of FKA is not null and
unique and different than new value of FKA
action2: raise error

 Totality constraint
In Case.II, an insertion operation has an effect on this
constraint only if it is applied on the table A. The totality
participation of all A-objects, either in one association or
in both associations at the same time, must be satisfied
during their insertions. This is ensured by a trigger that
inserts the A-objects in the table T if they do not appear in
the table A. This trigger is identical to one generated on
the insertion operation for the simultaneity constraint. If a
row is removed from the table A, then the totality
constraint is not violated, but if a row is removed from the
table T, then the constraint may be violated. This occurs
when the removed row represents the unique participation
of an A-object, which violates the constraint. The trigger
that prevents this violation is as follows:
event: delete on T
condition: old value of FKA is not null and
unique and value of A.FK is null where
A.PKA=T.FKA
action: raise error

An update operation on the table A can also violate the
totality constraint because the participation of an A-object
can appear in only one row in the table A, and the update
operation can cancel this participation. Thus, a trigger
becomes necessary to preserve this constraint.
event: update on A
condition: old value of FK is not null and
new value of FK is null and PKA value do not
exist in T
action: raise error

In the same way, for an update in the table T, it is
necessary to make sure that the updated row does not
represent a unique participation of an A-object. The
generated trigger rejects this operation if this occurs.
event: update on T
condition: old value of FKA is not null and
new value of FKA is null and FK value is
null where A.PKA=T.FKA
action: raise error

Case.III

In this case, none of the association will be translated by a
foreign key in the table A (i.e. the participations of A-
objects will not appear in the table A). Let us consider two
tables T1 and T2 which represent respectively the
transformation of the associations R1 and R2. The tables
taken into account in our study are classified, in the table
above, according to the association types (Fig.4 Case.III).

 Exclusion constraint
Four events can violate the exclusion constraint in Case.III,
an insertion or update of the table T1 and an insertion or
update of the table T2. Therefore, two triggers must be
generated in order to control this constraint. These two
triggers have the same principle. The one defined on the
table T1 (resp. T2) rejects the events (Insert/Update) if the
new value of FKA already exists in the table T2 (resp. T1).
event: insert or update on T1
condition: new value of FKA exist in T
action: raise error

 Inclusion constraint
Four events can violate this constraint in Case.III; an
insertion or update of the table T1 and a deletion or update
of the table T2. Therefore two triggers should be generated.
The first one deals with the new values of FKA in T1 and
the second one deals with the old values of FKA in T2.
They are defined as follow:
First trigger:
event: insert or update on T1
condition: new value of FKA do not exist in
T2
action: raise error

Second trigger:
event: delete or update on T2
condition: old value of FKA exist in T2
action: raise error

 Simultaneity constraint
If an occurrence of an A-object appears in the table T1 it
must also appear in the table T2 and conversely. Thus two
triggers should be generated to ensure this constraint
during the insertion, one on T1 and the other on T2. These
triggers have the same principle.
event: insert on T1
condition: T1.FKA value do not exist in T2
action: insert T1.FKA value in T2.

A deletion operation can violate the simultaneity constraint
if it is performed on the table T1 or on the table T2. Thus
the trigger defined on T1 (resp. T2) checks if the row to be
removed represents the single participation of an A-object,
then it removes all rows in T2 (resp. T1) that contain the
A-object.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

169

event: delete on T1
condition: old value of T1.FKA is unique in
T1
action: delete from T2 all rows that contain
T1.FKA value OR raise error

Two triggers must be defined to control the update
operation. To deal with the new value of FKA, they look
like the trigger defined on the insertion operation shown
above. To deal with the old value of FKA, they look like
the trigger defined on the deletion operation also shown
above.
event: update on T1
condition1: T1.FKA value do not exist in T2
action1: insert T1.FKA value in T2.
Condition2: old value of T1.FKA is unique in
T1
Action2: delete from T2 all rows containing
T1.FKA value OR raise error

 Totality constraint
Preserving this constraint during the insertion of the A-
objects is necessary. The trigger generated here proposes
to the user to choose one of the two tables T1 or T2 in
order to insert the A-object which he wants to insert in A.
event: insert on A
condition: true
action: insert in A.PKA in T1 or T2.

The deletion operation can violate the totality constraint. It
is necessary to generate two triggers on the two tables T1
and T2. These two triggers have the same principle. The
trigger, definite for example on T1, rejects the operation if
the row to be removed is the unique row containing the
participation of an A-object in both tables T1 and T2.
During an update operation, it is enough to check the old
value of FKA, which is equivalent to a deletion operation.
Dealing with the new value is equivalent to an insertion
operation, which does not violate the totality constraint.
event: delete or update on T1
condition: old value of T1.FKA is unique and
do not exist in T2
action: raise error

5. Checking PCs on generalization /
specialization relationships

5.1 PCs on generalization / specialization
relationships

The generalization/specialization relationships concept
was invented by Smith [25]. It can arise from

superclass/subclass hierarchies in semantic data modeling
[13]. These data structures have been widely studied and
applied in many fields of computer science. Their
popularity has grown from programming language to
databases and from analysis and design methods to user
interfaces [14]. In the field of database, it is called data
structure. Actually, it is straightforward to interpret this
data structure. For instance, it is possible to assert that a
person in figure.2 denotes a more general concept than
student or professor, and conversely, student and professor
represent specialized concepts with respect to person.

This data structure may be accompanied by
constraints which can be defined implicitly as well as
explicitly. In the first definition, every object can belong to
the generalization as well as to its specialization. Each
special object has a link within exactly one general object
but the reverse does not necessarily hold. Thus, the special
objects indirectly have features of the more general objects.
The explicit constraints are called participation constraints.
We aim, in this subsection, to show how to express and
check these constraint categories. To facilitate this task, we
represent a generalization/ specialization relationship as a
one-to-one relationship strengthened with an additional
constraint (Fig.5). This additional constraint must ensure
that each object of the specialization is related to an object
of the generalization and that an object of the
generalization may be associated to at most one object in
the specialization.

Our proposition is indeed not to translate the
Generalization/ Specialization relationship (structure)
since many solutions are proposed to do their translation.
Our principal goal is to check all categories of constraints
defined in this kind of relationships.

spec1

Generalization

Specialization1 Specialization2

0..1 spec2

Generalization

Specialization1 Specialization2

{PCs}

Additional
constraints

general1 general2 11

0..1

Fig 5 PCs on Generalization/Specialization

{PCs} is {disjoint, incomplete} or {overlapping, complete} or
{disjoint, complete}

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

170

In the relational model, generalizations and

specializations are translated into tables. The multiplicity
"one" ensures that each special object is related to one and
only one general object. Maximum multiplicity is
translated by the migrating the primary key attributes of
the generalization as foreign key into the specialization.
Minimum multiplicity is translated into a not null
constraint on that attribute. In addition, this solution allows
to connect a general object to more special objects. This
solution does not respect the definition of this data
structure. Consequently, to guarantee that a general object
is linked to at most one special object, we must define a
unique constraint on the foreign key attribute in the
specialization.

PCs defined on generalization / specialization
relationships are divided into disjoint and complete
constraints. A disjoint constraint specifies whether two
objects of different specializations may be related to the
same object of the generalization. A complete constraint
specifies whether objects of the specifications are related
to all generalization-objects (Fig.5). To check these
constraints, we translate them automatically using triggers.
These triggers are represented in ECA rule form.

5.2 A disjoint constraint

A PC is disjoint if each general object has a link to at most
one special object. In the reverse case, this constraint is
said to be overlapping. To check the disjoint constraint, we
must ensure that each general object is a member of at
most one specialization. This check must be done during
the maintenance of data. To do this, a trigger is generated,
whose events are an insertion or updating of an object in a
specialization. The action of this rule is to reject the
operation if that object already exists in the other
specialization.
event: insert or update on Specialization1
condition: new value of object to be insert
or update exists in Specialization2
action: reject operation

5.3 A complete constraint

A PC defined on a generalization / specialization
relationship is complete if each general object has a link to
at least one special object, otherwise it is said to be
incomplete. This can be ensured by adding three trigger
which state that if a general object is not related to any
object in one specialization it must be related to an object
in the other. The first trigger checks the PC during
insertion into the generalization. The second and the third
ones check the PC during deletion or updating in
specializations. They are identical.

First trigger
event: insert on Generalization
condition: none
action: insert obligatory object in
Specialization1 or Specialization2

Second trigger
event: delete or update on Specialization1
condition: old value of object to be delete
or update do not exists in Specialization2
action: reject operation

5.3 A disjoint and complete constraint

A PC defined on a generalization/specialization
relationship may be disjoint and complete at the same time.
In this case each general object must be related to at least
one special object and at most to one object in both
specializations. This case joins together the two preceding
cases, and from there it is possible to use additional
constraints to express disjoint and complete PCs. That
assertion can also be expressed using triggers as follows:
First trigger
event: insert on Generalization
condition: none
action: insert obligatory object in one in
only Specialization

Second trigger
event: delete on Specialization1
condition: none
action: delete object from generalization
 or insert it in Specialization2

Third trigger
event: update on Specialization1
condition: none
action: delete new object from
Specialization2 if it exists there or reject
operation delete old object from
Generalization or insert it in
Specialization2

6. Conclusion and perspectives

In this paper, we reported a systematic study of the
use of participation constraints for the specification of
assertions defined on the behavior of class object
participations. Sometimes, it is necessary to use these
constraints in a conceptual schema to satisfy customer
requirements. Our aim was to remove any ambiguity from
the definition of participation constraints. These kinds of
constraints, though defined on binary relationships as well
as on generalization, have the same semantics but not the
same behavior. We have translated the two categories of

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8B, August 2006

171

participation constraints using trigger-based SQL
additional. Thus, we have provided a general framework
for transforming all kinds of participation constraints.

We are completing our data modeling prototype by
integrating a great number of constraints. This prototype
first checks the global coherence of constraints defined in
the conceptual schema [4] and then translates all
constraints in a specific language such as OCL, SQL or
Others [2, 3].

References
[1] Al-Jumaily, H.T., Cuadra, D., Martinez, P. "Plugging Active

Mechanisms to Control Dy-namic Aspects Derived from the
Multiplicity Constraint in UML. The workshop of 7th
International Conference on the Unified Modeling Language,
Portugal (2004).

[2] Berrabah, D., Boufarès, F., Ducateau, C.F. Active
Mechanism for Checking Participation Constraints in UML.
International Conference on Enterprise Information Systems,
Paphos, Cyprus (2006). (To appear)

[3] Berrabah, D., Boufarès, F., Ducateau, C.F. Analysing UML
Graphic Constraint, How to cope with OCL. 3rd
International Conference on Computer Science and its
Applications, California USA (2005), p 74-82.

[4] Boufarès, F, Berrabah, D., Ducateau, C. F., Gargouri, F.: Les
conflits entre les contraintes dans les schémas conceptuels
de Bases de Données: UML – EER. Journal of Information
Sciences for Decision Making, Special Issue of the 8th
MCSEAI'04, N°19 (2005) Paper number 234.

[5] Boufarès, F. and Kraïm,N. Anew tool to analyse ER-
schemas. Second Asia-Pacific Conference on Quality
Software. Hong Kong China (2001). P 302-307.

[6] Ceri, S., Cochrane, R.J. and Widom, J. Practical Application
of Triggers and Constraints: Successes and Lingering Issues.
In Proc. of the 26th International Conference on Very Large
Data Bases, Brisbane Australia (2000), p .254-262.

[7] Ceri, S., Fraternali, P., Paraboschi, S. and Tanca, L.
Automatic Generation of Production Rules for Integrity
maintenance. ACM Transactions on Database Systems, vol.
19, Issue 3, September 94.

[8] Ceri, S. and Widom, J.: Deriving production rules for
constraint maintenance. In Proc. of the 16th International
Conference on Very Large Data Bases, Brisbane Australia
(1990), p 566-577.

[9] Cochrane, R.J., Pirahesh, H. and Mattos, N.M.: Integrating
triggers and declarative con-straints in SQL database
systems. In Proceedings of the 22nd International
Conference on Very Large Data Bases, Mumbai India
(1996), p 567-578.

[10] DB-Main, http://www.db-main.be
[11] Eisenberg, A., Melton, J., Kulkarni, K., Michels, J., Zemke,

F.: SQL: 2003 has been publis-hed. ACM SIGMOD Record,
Volume 33, Issue 1, March (2004).

[12] Fahrner, C., Marx, T. and Philippi, S. DICE: Declarative
Integrity Constraint Embedding into the Object Database
Standard ODMG-93. Data & Knowledge Engineering, vol.
23, Issue 2, p 187-223. (1997).

[13] Elmasri, R., Navathe, S.: Fundamentals of Database Systems.
4th ed., Addison-Wesley (2003).

[14] Formica, A. and Missikoff, M. Inheritance processing and
conflicts in structural generaliza-tion hierarchies. ACM
Computing Surveys (2004), p 263-290.

[15] Grefen, P.W.P.J. and Apers, P.M.G. Integrity Control in
Relational Database Systems – An Overview. Data &
Knowledge Engineering, vol. 10, p 187-223. (1993).

[16] Horowitz, B.: Intermediate states as a source of non
deterministic behavior in triggers. In 4th International
Workshop on Research Issues in Data Engineering: Active
Database Sys-tems, Houston TX February (1994), p 148-155.

[17] Laleau, A., Mammar, A.: Overview of method and its
support tool for generating B from UML notations.
Proceeding of 15th international conference on Automated
Software En-gineering, Grenoble France (2000).

[18] Ledru, Y., Dupuy, S.: Expressing dynamic properties of
static diagrams in Z. Conference of Approches Formelles
dans l'Assistance au Développement de Logiciels, Rennes
France (2003).

[19] Lenzerini , M., Nobili, P. (1990), "On the satisfiability of
dependency constraints in Entity-Relationship schemata",
Info. Syst. 90, Information Systems, volume 15, N° 4, 1990,
p 453-461.

[20] OMG, editor: UML 2.0 Superstructure Specification. OMG
(2005a). http://omg.org.

[21] Rochfeld, A., Negros, P.: Relationship of relationships and
other inter-relationship links in ER model. Data and
Knowledge Engineering 9 (1993) 205-221.

[22] Rumbaugh, J., Jacobson, I., Booch, G. UML 2.0 Guide de
Référence, Edition Campus Press (2004).

[23] Soon-Kyeong, K., Carrington, D.: A formal mapping
between UML models and Object-Z specifications.
Proceedings of the First International Conference of B and Z
Users on For-mal Specification and Development in Z and B.
Springer, LNCS 1878 (2000) 2 – 21.

[24] Rational: http://www-306.ibm.com/ software/ rational/ sw-
bycategory/ subcategory/ SW710.html

[25] Smith, J.M. et Smith, D.C.P. Database Abstractions:
Aggregation and Generalization. In: TODS (1977). Vol. 2,
Issue 2, pp. 105-133

[26] Sybase: http://www.sybase.com/products/information
management/powerdesigner.

[27] Toby, J. T.: Database Modeling & Design. 3rd ed. Morgan,
Kaufmann Series in data man-agement systems (1999).

