
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006 
 

 
 

24 

Manuscript received September 25, 2006. 
Manuscript revised September 30 , 2006. 

Effective Algorithm CFL Based on  
Steiner Tree and UFL Problem 

HONG-ZHEN ZHENG
1
, DIAN-HUI CHU

2
, DE-CHEN ZHAN

3
 

  
 

†,††Department of Computer Science & Technology, Harbin Institute of  
Technology at Weihai, , China, 264209  

†††Department of Computer Science & Technology, Harbin Institute of 
Technology, Harbin, China, 1530001, 

Summary 
In the field of approximation algorithms，a lot of earlier work 

on facility location problems and network design problems have 
sought to address these two questions independently .In this 
paper we present an integrated study of the overall Problem and  
study the problem in a integrated way that one to exploit the 
saving that may result from making both decision in a 
coordinated way to reduce the total cost of location and 
transportation. We provides approximation algorithms for some 
simple versions of the integrated problem to cover the gap. 

We present a STρ + UFLρ approximation algorithm for the 
capacitated facility location problem (CFL in short), where 

Pρ  is any approximation factor achievable for the problem P. 
We do this by carefully combining solutions to appropriately set 
up Steiner tree and the uncapacitated facility location 
problems (UFL in short) that capture two natural lower bounds 
for our problem. With the current best approximation factors, this 
is a 3.07-approximation algorithm. Again, with the current best 
results, this gap is less than 5. For the case where clients have 
arbitrary demands and the entire demand for a client must be 
served by the same facility, we provide a STρ + 
2 UFLρ approximation, which is currently at most 4.59. 
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1. Introduction 

A ubiquitous problem faced by every corporation 
which manufactures and sells products to a geographically 
spread-out market is the following: Where should the 
factories be built , and how should the finished goods be 
transported to the markets , so as to minimize costs ?  

Consider the following scenario: A multinational 
corporation wishes to enter a promising new geographic 
marked, characterized by demand at each city. It has 
identified potential locations of its manufacturing facilities, 
and the associated costs. Suppose the shipping of the good 
is to be outsourced to be a transport company. This 
transport company has only one type of truck, with a large 

capacity. For each truck, the transport company charges at 
a fixed rate per mile, and offers no discount in case the 
truck is not utilized to full capacity. The overall logistics 
problem facing the corporation is to decide on the location 
of its manufacturing facilities, and a shipping plan of the 
finished goods to each city, so that the total demand at 
each city is met and the total cost is minimized. Assume 
for the sake of simplicity that facilities have no capacity 
limitations. 

If the transport company charged in proportion to the 
amount shipped instead of the discrete number of trucks 
used, the problem becomes the uncapacitated facility 
location problem(UFL). If the facility location costs were 
not an issue，the problem become a single sink edge 
installation problem[1]. If several facilities are open, they 
can all be identified into a single sink node. We call this 
the capacitated facility location problem(CFL for short). 

 A variant of this problem is the median version. 
There are no facility location costs, but we are not allowed 
to open more than p facilities. We call this the capacitated 
p-median(CpM)problem. We note the assumption that the 
edge-lengths obey the triangle inequality is without loss of 
generality. These problems generalize known NP-hard 
problems, and hence are NP-hard. We present polynomial 
time approximation algorithms with constant 
approximation ratios for these problems.  

  The uncapacitated facility location (UFL in short) 
problem has been the subject of much recent activity. 
Charikar [2]gave the first constant factor approximation 
algorithm for the p-median problem with metric costs. 
Korupulu [3] provide a improved approximation for local 
search technique and was deep improved by Arya[4] to a 
factor of 3+є, which is the best known at present. Hassin[5] 
procide a constant factor approximation for the single sink 
single cable installation problem. We use their method as a 
subroutine. A constant factor approximation for the 
multiple cable single sink edge installation problem was 
fist provided by Guha[6]. Cable installation problems have 
also received a lot of attention in the recent.[1,5,6,7].  
 
2. CFL Problem definition  
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The capacitated-cable facility location problem(CFL) is 
defined as follows: 
 Given an undirected graph G=(V,E), there is a weight 
function on the edges, c: E R+, which satisfies the 
triangle inequality. The clients consist of a subset of nodes, 
D⊂V. The set of potential facilities, F⊂V, is also part of 
the input. Each potential facility j∈ F has a facility 
opening cost of fj and given an integer u>0, which is the 
capacity of the cable type available to us. 
  Each client has a demand of one unit, which needs to be 
serviced b routing one unit of flow from it to some open 
facility. On any dege, we are only allowed to install 
integral amounts of the cable. If we install ke copies of the 
cable on edge e, we can route uke unites of flow through it, 
and it costs ceke. Hence our total cost is the cost of all 
cables installed plus the cost of all the facilities we have 
opened. The objective of CFL is to open facilities and 
install cables connecting clients to open facilities such that 
no capacity constraint, all clients are served and the total 
cost is minimized. 
 
3. Lower bounds to CFL 
 
  We give two lemmas which provide lower bounds to an 
optimal solution of CFL 
Lemmas 1  Consider a UFL instance defined as follow: 
The set of clients and potential facilities remain the same 
as in the CFL instance, but all edges e, we set the edge cost 
to be ce/u. Then the cost of an optimal solution to this UFL 
instance is a lower bound on the optimal solution to CFL. 
Proof: Consider the optimal solution CFL. In the UFL 
instance, open all facilities which were opened by CFL. 
Every client in CFL is able to send one unit of flow to an 
open facility. Construct these flow paths: for each client, 
assign it to the facility it is assigned to in CFL. The cost of 
this assignment is at most 1/u of that of the flow path used 
by this client in the CFL solution, by triangle inequality. 
This constitutes a feasible solution to UFL, of cost no 
more than that of the CFL solution. Hence an optimal UFL 
solution has cost at most that of the optimal CFL solution. 
                                             □ 
Lemmas2: Consider the graph },{( RVG ∪=′ )EE ′∪   

where }:)},{( FiriE ∈=′  and iir fc = . Define the 

set of terminal to be }{rDR ∪= . Then the cost of a 
minimum Steiner tree in G′  is a lower bound on the 
optimal solution of CFL. 
Proof: Consider the optimal solution to CFL. The set of 
edges in the CFL solution, along with the edges ),( rj such 
that facility j is opened in the CFL solution, constitutes a 
Steiner tree in G′  of the same cost as the CFL solution.                                              
Dropping all but one copy of edges which have 

multiplicity more than 1 in the CFL solution only reduces 
the cost. Hence an optimal Steiner tree must cost no more 
than the optimal CFLsolution. 
                                              □ 
4.  Algorithm CFL 
We use above two lemmas to build our solution and use a 
flow rerouting algorithm introduced by Hassin[1] to 
efficiently construct our solution. 
 On the one hand, we merge the two solution to obtain 
a feasible solution of cost no more than the sum of these 
two approximate solution. We adapt a re-routing algorithm 
described in [1]. We fist open all facilities identified by the 
earlier two phases. If such a subtree has at most u clients, 
this subtree along with the facility it is attached to is a 
feasible solution, without adding any additional copies of 
the cable. 
On the other hand, a subtree that has more than u clients is 
not feasible right away, since more cables have to be 
installed along the tree to route all the demand in this 
overloaded subtree. This is where we use the UFL solution. 
We clump the demands in these overloaded subtrees into 
subtrees which are disjoint with respect to edge capacities 
such that each new subtree has exactly u clients. The face 
that such a clumping is possible was proved in [1]. We  
describe it in detail in Algorithm CFL as follow: 
Algorithm CFL include UFL phase, Steiner tree phase, 
Merge phase and Prune phase.  
(1)UFL phase:  

1) Convert into UFL instance by changing edge cost 
to ce/u. 

2) Solve UFL(approximately). 
3)   Let 1F  denote the facilities opened. 
4)   For a client j,let )( jφ  be its assigned  

Facility 
(2)Steiner tree phase 

1) Create a new root node r. 
2) For every Fi∈ ,add an edge ),( ri  with 

cost if  

3) Define the terminal set }{rDR ∪= . 
4) Solve(approximately) the Striner tree problem. 
5)   Let T denote this tree 
6)   Orient all edges to point towards the root  

  along T. 
7)   Let 2F  be the  set fo facilities from which  

there are edges to r in T. 
8)   Let iT  be the subtree of T rooted at i, for all  

Ti∈ . 
(3) Merge phase 

1) Open all facilities in 21 FF ∪ . 

2) For all 2Fi∈  
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3)  Let iD  be the set of clients in iT . 

4)  Install cable on all edges in iT . 

5)  While uDi >  

6)    Let V ′  be the set of nodes at which the incoming 
demand on each edge is less than u, but the total 
demand is at least u. 

7)    For all Vv ′∈  
8)     For every child w of v, let wT  be the substree  

 rooted at w. 
9)     Let ),( ww ij  be the nearest client-facility pair. 

 in wT ,that is ijFiTjij cc
www ∈∈= ,, min  

10)   Pick the cheapes uDv / such pairs. 
11)   Install one cable on each such picked pair 

  ),( ww ij . 

12)   Route all demand in wT to wi  via wj . 
13)   Route remaining demand to either some picked  

pair or to w, in such a way that all newly 
installed cables are saturated. This means that the 
total remaining demand to v is less than u. 

14)   Remove all satisfied demands from iD . 
(4) Prune phase: 

1) Remove all cables on which flow is zero 
2) Close all facilities which serve no demand. 

 We prove algorithm CFL in lemmas 3. 
Lemmas3: The solution produced by algorithm CFL is 
feasible for CFL. 
Proof: In the demand routing phase, client demands from a 
subtree that is not fully served in an iteration may be 
reassigned in a later iteration. In particular, let’s is say part 
of the subtree’s demand is routed to a picked client( 1

wj ) in 
a sibling subtree using upward flow on its parent arc. In 
the next iteration of the while loop(merge phrase ), 
suppose one of the unsatisfied clients( 2

wj ) in this subtree 
is part of a picked pair. Now, flow from sibling subtrees in 
this iteration may be routed into it using a downward flow 
on the same parent arc. However, by standard flow 
cancellation arguments, no cable is used in both an upward 
and a downward direction. This flow cancellation 
implicitly reassigns the clients from the subtree initially 
assigned to to 1

wj  to 2
wj .and intead redirects the 

appropriate demand from elsewhere headed for 2
wj  in the 

second iteration to 1
wj . 

                                              □ 
The flow cancellation only reduces flow in the upward 

direction. If any cable has an upward flow, this flow has 
value at most u-1, and this may potentially be cancelled by 

downward flow when a client in the subtree below it is 
part of a picked pair. Downward flow is assigned to any 
cable at most once, and the quantity of flow assigned is at 
most u-1. After such an assignment, all the clients in this 
subtree are deleted from further consideration.         

For each such clump, we use the UFL solution to select 
the client which is closest to an open facility in the UFL 
solution, and install one cable from this client to its nearest 
open facility. The idea is that since each client can pay a 
1/u fraction of the cable cost to the facility assigned to it 
by the UFL phase, u such clients in a clump can together 
pay for one full cable from a client to an open facility if 
this distance is the cheapest distance among these u clients. 
In order to achieve this, we need to re-route flow the 
u-1other clients to our selected client in a clump. However, 
this rerouting takes place along the original Steiner tree 
solution at on extra cost since the subtrees obtained in the 
clumping are disjoint with respect to edge capacities. We 
finally prune the solution by getting rid of unused facilities 
and cables. 

We have argued that both the underlying UFL instance 
and the associated Steiner tree problem are lower bounds 
for Algorithm CFL instance. Hence the facilities opened 
by these two phases can be paid for by these two lower 
bounds. 

The cables purchased by the Steiner tree phase can be 
paid for by the Steiner tree lower bound. Each cable has 
exactly u demand flowing through it. Each of the terminals 
which use this cable were assigned a facility whose 
distance is at least the length of the cable in the UFL phase. 
Hence we can charge the cost of this cable to the cost in 
the UFL solution. 

We use STρ and UFLρ  to denote the currently best 
known approximation ratios for the Striner tree and UFL 
problems respectively. We have the following theorem. 
Theorem: Algorithm CFL is a STρ + UFLρ  approximation 
algorithm for CFL 
Proof: This follows from lemmas 1 to 3. 
                                             □ 

The current best approximation algorithm for the 
Steiner tree problem is the one by Robins and 
Zelikovsky[8], which achieves an approximation factor of 
1.55. The algorithm of Mahdian,Ye and Zhang[9] is the 
current best approximation for UFL, with a performace 
ratio of 1.52. With these values for STρ and UFLρ ,Theorem 
Algorithm CFL give a 3.07 approximation. 

Algorithm CFL for Non-uniform demands, generalizes 
directly to the case at the clients, provide we are allowed 
to split the demand at each client to different facilities. If 
the demands are unsplittable, Hassin[1] showed how their 
(single sink) problem can be solved in the unsplittable 
demand case with a slight increase in the approximation 
ratio. Clients which have more than u demand can be sent 
directly to their nearest facilities, incurring an additional 
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factor of at most 2. To assign the remaining clients, we 
proceed as before. 
   We now demands to lie between u and 2u, and now use 
the UFL bound at most twice. Hence the approximation 
ratio for this problem is at most STρ +2 UFLρ =4.59. 
 
5.Hardness and relation to other problems  
 
If there is only a single potential facility (|F| =1) and u is 
infinity, then the problem reduces to the Steiner tree 
problem. If there is a single facility an 1<u<∞ ,CFL is the 
single-sink, single-cable edge installation problem. If u=1 
but |F|>1, CFL is the the uncapacitated facility location 
problem. All these problems have been studied in the past, 
and all three are known to be MAX-SNP-hard. Hence CFL 
is also MAX-SNP-hard, meaning that there is a constant 
c>1 such that it is impossible to approximate CFL better 
than c, unless P=NP. 
 
6. Conclusion 
 
We present a STρ + UFLρ approximation algorithm for CFL, 
where Pρ  is any approximation factor achievable for the 
problem P. We do this by carefully combining solutions to 
appropriately set up Steiner tree and UFL problems that 
capture two natural lower bounds for our problem. With 
the current best approximation factors, this is a 
3.07-approximation algorithm. Again, with the current best 
results, this gap is less than 5. For the case where clients 
have arbitrary demands and the entire demand for a client 
must be served by the same facility, we provide a 

STρ +2 UFLρ approximation, which is currently at most 
4.59. 
 This research is at an early stage of study.  There still 
remain several problems to be solved in future such as : 
(i) finding a integer programming formulation of CFL  
(ii) described above extend to providing a constant factor 

rounding algorithm for the linear relaxation fo the IP 
formulation. 
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