
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

33

* Alexander Maier was on internship at Victoria University, Australia.
Manuscript received September 5, 2006.
Manuscript revised September 25, 2006.

Speech-enabled windows application using Microsoft SAPI

Hao Shi and Alexander Maier*

Victoria University, Melbourne, Australia

Summary
PCs are no longer a playground for a few computer freaks. They
have changed from “big pocket calculators” to be used as
everyday tools with seemingly unlimited options. In modern
countries using a computer has become a basic requirement like
reading and writing. The importance of digital information has
already reached such an enormous level that many start-up
companies and even corporations provide information largely
digital. Also politicians around the world try to find their ways to
a paperless e-Government. Obviously this is a positive progress
because it means up to date information at any time and for
everybody. But is this really accessible to everybody? People
with disability such as visual impaired are often forgotten though
the number of the elderly for who it's very hard to identify the
screen text is already high and increasing continuously during
the next decades. So it would be a real relief to have the option to
use ears to listen to the contents and use voices to navigate and
control the computer systems. Even if sometime it is for normal
people, it would be more comfortable to work with speech
enabled applications. Microsoft has designed an interface called
SAPI (Speech Application Programming Interface) which
supports dynamic speech input and output, and integrated it in its
current operating system. With the API it is possible to develop
speech enabled applications without caring about the details of
synthesis and recognition. In this paper, a windows application is
presented to demonstrate the speech-enabled application using
Microsoft SAPI.

Key words:
Speech-enabled, Windows applications, Microsoft SAPI.

1. Introduction
Using VoiceXML to help visual impaired people
understanding digital contents is one of the recent
approaches [1]. But it works with websites only [2] [3]. If
offline data need to be accessible and even controllable,
SAPI will probably be a better option for Windows
operating systems.

Most of the software coded today is only accessible
through mouse and keyboard. But the expected
improvements to the SAPI version included in Windows
Vista may lead to a wave of new speech enabled
applications [4][5]. Full integration for speech synthesis
and recognition as well as support for native and managed
code could be part of the Windows operating system in the

nearer future [6]. But it is already possible to use these
speech functions right now [7].

In this paper, a Microsoft sample e-Commerce storefront
called “GrocerToGo” is converted to a speech-enabled
C# .NET Windows application. It is detailed the entire
process from the requirements, system set up and final
demonstration. The developed example demonstrated that
Microsoft SAPI (Speech Application Programming
Interface) can be used for speech synthesis and
recognition.

2. SAPI and its Applications

SAPI (Speech Application Programming Interface) was
first introduced to Windows 95. This API provides a
unified interface for dynamic speech synthesis and
recognition. Over the years new versions were developed
and now it is version 4.0 with WinXP. Unfortunately the
API wasn't really maturated and supported only C++ (later
Visual Basic and COM), so it was quite widely used.
Microsoft redesigned the version 5.0 from scratch and
changed critical parts of the interface. However the latest
stable version 5.1 is still a native code DLL, but with the
next one, which is considered to be part of Windows Vista
(a complete redesign again), A full support for
managed .NET code will be expected [7]. Right now it is
only possible to take advantage of the current SAPI
interface via C# by using COM Interop, which is .NET
technique to use native COM objects.

3. Windows Application Design

The developed Windows application is a based on the
existing e-Commerce storefront called “GrocerToGo” as
shown in Fig. 1. This is a sample eCommerce web
application distributed with Microsoft Visual Studio. So
the visual part of the front-end was given and reproduced
as similar as possible. The original web page has no
speech input and output as it was purely a sample
appclaiton on how to create an ASP.NET web application

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

34

and not designed to demonstrate any speech related
features.

The developed application is written in the .NET language
C# and uses Microsoft SQL Server. Although the
GrocerToGo website comes with a database server as data
source, the whole application has to rewritten from scratch
due to the differences between the ASP.NET
programming and the way C#.

Fig. 1 Original ASP.NET website

The interactions for the newly developed application are
illustrated in Fig. 2 where User, Client and Database
Server interact with each other. The User speaks with a
microphone to the Client. The Client recognizes the User's
command and creates a request to the Database Server.
When the result arrives the Client updates its visual
objects, generates a response text and sends it to the User
via speakers.

Fig. 2 Interaction between User, Client and Database Server

The windows application also provide the User a choice
between a beginner mode with step by step progress or an
advanced mode for quick results as sown in Fig. 3. In
addition, it is still possible to control the application by
mouse and keyboard.

Fig. 3 New speech-enabled window application

4. Windows Application Implementation

The most critical part is handling the speech functionality.
Because SAPI 5.0 doesn't support managed .NET code so
that COM Interop is used and the namespace “SpeechLib”
is included.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

35

4.1 Speech Synthesis
Speech Synthesis is a part of the speech functionality. First
a SpVoice object and a speechVoiceSpeakFlags object has
to be created once. Then SpVoice's Speak method can be
used for the desired output text and
theSpeechVoiceSpeakFlags object as parameters to
generate the speech output as listed below:

SpVoice spv = new SpVoice();
SpeechVoiceSpeakFlags svsf = new SpeechVoiceSpeakFlags();
spv.Speak("Hello!", svsf);

4.2 Speech Recognition
For Speech Recognition some initial work has to be done,
i.e. getting a recognition context, adding the event handler
and creating a grammar. It is necessary to use an event
handler as a callback function so that every time SAPI
recognizes a word from the grammar, it calls the event
handler. Of course, these words have to be added to the
grammar before SAPI can identify them. The following
are some example codes:

object PropValue = "";
SpSharedRecoContext objRecoContext = new SpeechLib.SpSharedRecoContext();
objRecoContext.Recognition +=
 new _ISpeechRecoContextEvents_RecognitionEventHandler(Reco_Event);
ISpeechRecoGrammar grammar = objRecoContext.CreateGrammar(0);

ISpeechGrammarRule milk = grammar.Rules.Add("milk",
 SpeechRuleAttributes.SRATopLevel|SpeechRuleAttributes.SRADynamic, 2);
milk.InitialState.AddWordTransition(null, "skinny", ",
 SpeechGrammarWordType.SGLexical, "skinny", 1, ref PropValue, 1.0F);
milk.InitialState.AddWordTransition(null, "pauls", " ",
 SpeechGrammarWordType.SGLexical, "pauls", 2, ref PropValue, 1.0F);
milk.InitialState.AddWordTransition(null, "farmland", " ",
 SpeechGrammarWordType.SGLexical, "farmland", 3, ref PropValue, 1.0F);
milk.InitialState.AddWordTransition(null, "pura", " ",
 SpeechGrammarWordType.SGLexical, "pura", 4, ref PropValue, 1.0F);
grammar.Rules.Commit();
grammar.CmdSetRuleState("milk", SpeechRuleState.SGDSActive);

The code segment below shows how to implement the
event handler when SAPI recognizes an expression.

private static void Reco_Event(int StreamNumber, object
StreamPosition, SpeechRecognitionType RecognitionType,
ISpeechRecoResult Result)
{
 String input = Result.PhraseInfo.GetText(0, -1, true);
 switch(input)
 {
 case "skinny":

 ...

 break;
 }
}

5. Function
The handling of this windows application should be
intuitive. As such, only sample functions are presented

here though an advanced mode has also been implemented
to offer a quick solution for people who want to use this
program frequently.

5.1 Start and Stop Control
If the demonstration application is used as a normal mode,
i.e. with mouse and keyboard but not with the voice option
as shown in Fig, 4, no speech output will be generated.
But it can be activated by clicking on “start speech” or just
saying “start” as shown in Fig. 5. Then the application can
be controlled by either mouse/keyboard or voice. Pressing
the “stop speech” button or saying “stop” disables voice
mode. This is implemented to avoid unintentionally voice
commands.

Fig. 4 Normal mode

Fig. 5 Voice-enabled mode

5.2 Beginner and Advanced Modes
The beginner and advanced modes are only effective when
speech is enabled. If the beginner mode is chosen, the
category must be selected first, then the products and the
desired quantity as listed in Table 1(a) need to be provided.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

36

But in the advanced mode, the user can provide all the
information in one single sentence as illustrated in Table
1(b).

Table 1 Beginner and advanced user interaction

(a) Beginner mode

(b) Advanced mode

5.3 Shopping and Checkout
During the shopping period the category and the desired
product are selected. Clicking or saying (beginner mode
only) “add to cart” results a prompt for the quantity.
Adding an already existing product just increases its
amount by one. It's also possible to alter the amount by
changing the number in the textbox and update the price
by clicking “Recalculate”. To delete one item simply set
the amount to “0” and update the list. The “Check Out”
command brings the grant total for the shopping as shown
in Table 1.

6. Conclusions and Future Work
This developed windows application demonstrates that it
is possible to build a speech-enabled appclaiton using the
existing Microsoft SAPI. Although it lacks sophisticated

speech error handling, for example, to cancel a started
buying process and create a dynamic grammar file.
Perhaps future versions of SAPI will solve this problem.

The development of a standard speech interface like SAPI
provides a very positive outcome for those who want to
use speech functionality with minimus technical details.
Speech output is absolutely simple to generate and even
input is manageable for software programmers who aren't
linguistic specialists. The step from version 4.0 (Windows
XP) to 5.0 (not delivered with any operating system yet) is
the most important improved made by Microsoft, but the
version 5.3 (perhaps later called 6.0) which is supposed to
be shipped with Windows Vista ought to improve further
more especially for providing basic support for managed
code. Microsoft has promised to integrate speech in its
new operating system. If it really becomes reality, it's
likely that there will be more and more speech-enabled
applications.

References
[1] Raynal, M, Serrurier, M (2002) ‘CYNTHIA: An HTML

Browser for Visually Handicapped People’, ICCHP, Vol.
2398, pp. 353.

[2] Vankayala, RR and Shi H (2006) ‘Dynamic Voice User
Interface Using VoiceXML and Active Server Pages’,
Lecture Notes in Computer Science, No. 3841, Frontiers of
WWW Research and Development, pp. 1181-1184.

[3] Mecanovic, D, and Shi, H. (2005) ‘Voice User Interface
Design for a Telephone Application Using VoiceXML’,
Lecture Notes in Computer Science, No. 3399, Web
Technologies Research and Development, pp. 1058-1061.

[4] Microsoft Speech SDK 5.1 (2001),
http://www.microsoft.com/downloads/details.aspx?FamilyI
D=5e86ec97-40a7-453f-b0ee-
6583171b4530&DisplayLang=en.

[5] C# Corner 2004, ‘Speech Recognition using C#’,
http://www.c-
sharpcorner.com/UploadFile/ssrinivas/SpeeechRecognitionu
singCSharp11222005054918AM/SpeeechRecognitionusing
CSharp.aspx?ArticleID=c984b731-4369-4dd2-b44a-
c22b5cd5f9e3

[6] EmAnt, ‘Voice Activation & Annunciation using Visual C#
2003’, http://www.emant.com/676008.page.

[7] Harrington, M, (2006) ‘Giving Computers a Voice’,
http://msdn.microsoft.com/coding4fun/inthebox/tts-
hw/default.aspx.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

37

Dr. Hao Shi obtained her BE in Electronics
Engineering from Shanghai Jiaotong
University, China in 1986. She joined the then
Department of Electrical and Electronic
Engineering, Victoria University as a Lecturer
after completion of her PhD in the area of
Computer Engineering at University of
Wollongong in 1992 and was promoted to a
Senior Lecturer in 2001. She joined School of
Computer Science and Mathematics in March
2003. She has been actively engaged in R&D
and external consultancy activities. Her
research interests include p2p Network,
Location-Based Services, Web Services,
Computer/Robotics Vision, Visual
Communications, Internet and Multimedia
Technologies.

Mr. Alexander Maier is a 2nd year Computer
Science student at University of Applied
Sciences in Landshut, Germany. He was
supervised by Dr. Hao Shi as an international
intern student at Victoria University from
February 2006 to July 2006 and successfully
completed design and implementation of a
speech-enabled application using Microsoft
SAPI.

