
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

38

Manuscript received September 5, 2006.
Manuscript revised September 25 , 2006.

Hardware Implementation and Study of Inverse Algorithm in Finite
Fields

Bao kejin,and Song yonggang

School of Computer Science and Telecommunication Engineering, JU, Zhenjiang, 212013, China

Summary
Inverse calculation in finite fields is the base to implement
Hyperelliptic Curve Cryptography (HECC) and HECC
implementation is the key to fast implement calculating inverse
in finite fields. In this paper, fast algorithm of calculating inverse
in finite fields and its method to implement with hardware in
HECC are discussed, the EEA algorithm and the MIMA
algorithm, which are currently in common use, are compared and
an improved MIMA algorithm is brought forward. In the
algorithm, 2 bits parallel scheme is used and shift register only
takes into account of two situations including 2 bits shift and 1
bit shift. The simplest (two situations) barrel shifter can be
designed when realizing this algorithm with FPGA and each of
shifts is completed in one cycle. Algorithm description carries
out function simulation and timing simulation in QuartusII
environment, which is improved in both speed and area
compared with past algorithms.
Key words:
HECC, FPGA, Inverse calculation, Fast algorithm.

1. Introduction

Hyperelliptic Curve Cryptography (HECC) is a kind of
cryptography more difficult to be resolved than Elliptic
Curve Cryptography (ECC). At present, the HECC theory
has already basically been mature and the study on HECC
at home and abroad mainly focuses on how to implement
[1][2][3]. Due to the high encryption density and large
computation complexity of HECC, HECC implementation
has important theoretical significance and higher value in
use not only to strengthen the safety of information system
but also to study higher-intensity encryption system.
Inverse calculation in finite fields is the base to implement
ECC and HECC and fast implementation of calculating
inverse in finite fields is the key to implement ECC and
HECC. Since HECC has higher encryption density than
ECC, it has a series of advantages such as smaller
bandwidth can be used and calculation can be done in
smaller field. In recent years, there have been large
amount of studies focusing on HECC implementation, but
it has brought forward much higher requirements for
calculating inverse in finite fields to implement HECC.
Furthermore, since the hardware encryption system is
required to be reconfigured, it has become one of the hot

spots of the current study to implement HECC on the base
of FPGA.

2. Calculating inverse in finite fields

There have been some dissertations [4][5][6] discussing in
detail the fast algorithm of calculating inverse in finite
fields in HECC. There are three algorithms for
implementation: the first is to use the repeated square-and-
multiply algorithm of Fermat’s theorem; the second is the
expanded Euclidean Algorithm (EEA) and the third is
Modified Almost Inverse Algorithm (MAIA). The first
algorithm has not already been adopted due to larger
calculation amount. The later two algorithms are the
algorithms in common use at present, however, it still
takes much time to implement inverse calculation with
these two algorithms, therefore, it is one key point of the
study in this paper to improve the speed of inverse
calculation.

2.1 EEA Algorithm

EEA Algorithm is to calculate the inverse in finite fields
through repeated iteration with basic ideas as follows: a
and ()f x are separately multiplied by or divided by x
repeatedly and are added together, at the same time, 1 and
0 is made same inversion. So, when a becomes 1, 1 will
become the inverse of a . EEA Algorithm is shown as
follows:
Input: (2)na G F∈

Output: 1 (2)nb a GF−= ∈

1. 1, 0, ,b c u a v f← ← ← ← ；
2. While deg() 0u ≠

2.1. deg() deg()j u v← − ；
2.2. if 0j < then

(), ()u u v j b c j← + << ← << ；
2.3. (), ()u u v j b c j← + << ← << ；
3. return b；

The hardware structure to implement EEA algorithm is
shown as in Fig.1.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

39

Fig.1 Hardware implementation structure of EEA Algorithm

This algorithm needs a shifter of j bit (0 83j≤ ≤). In this
paper, the method to control shift times of shifter via
counter is adopted. In Fig.1, deg_u and deg_v are the
modules of the highest of the times to evaluate Reg_u and
Reg_v. The difference of deg_u and deg_v is stored in
register of the counter and the shift times of Shiftreg are
controlled by counter. The implementation of register is
basically same, each of which is orginary register or shift
register. However, every register has different initial value
for resetting. The registers are all zero when Reg_u and
Reg_c reset, the value is reduction polynomial when
Reg_v resets and the value is “1” when Reg_b resets.
The deg_u and deg_v adopt same designs, whose inputs
are 83-bit data and outputs are 8-bit data (representing
deg_u) and output degu_zero indicating whether deg_u is
0, which is a combinational circuit. deg_u design needs a
conv_std_logic_vecotor() function, which converts the
integer data into std_logic_vecotor type. For…loop
statement is used in the process to count the bits of the
input data which are ‘0’ and make conversion by using the
abovementioned function with part of procedure as
follows:

a_temp<="00000000";
for j in 83 downto 0 loop

 if i(j)='1' then
 a_temp<=conv_std_logic_vecotor(j,8);
 exit;
 end if;

end loop;
a<=a_temp;

In similar manner, synthesis tool also synthesizes this
section of procedure into a combinational circuit, which in
fact is a priority encoder to encode 83-bit input into 8-bit
output.
Both the subtracter and the counter are simpler and easy to
implement, so it will not be mentioned any more here. The
controller is more complex, which has 6 inputs, 9 outputs
and total 16 pieces of signal line. Fig.2 is the module chart

of the controller. Besides the signals such as clk, reset and
start, the controller also includes degu_zero signal
indicating the highest of the times of register u, sub82_co
signal indicating the result of subtracter as negative and
the count8_finish signal indicating the self subtraction of
the counter as 0. The output includes reset_all signal
controlling the reset of all registers, mux3in83_u_sel[1..0]
signal to select multiplexer, reg83_u_oe signal for reg_u
loading, sreg83_load signal for Shiftreg loading, sub82_en
signal to enable subtracter, count8_load signal for original
data loading of the counter as well as reg83_v_oe and
reg83_b_oe signals for deg_v and deg_b loading. Due to
the simple implementation, the state table of the controller
will not be listed here.

Fig.2 Module chart of module controller of EEA calculating inverse

It can be seen that the shortcoming of this implementation
is that it will need j cycles to shift j bits each time, which
will greatly prolong the whole period of calculating
inverse. The implementation of this algorithm occupies
999 logic units, needs about 300 cycles and the frequency
can reach 100M.
If barrel shifter is adopted, the average execution cycle can
reach (83/ 2) 6 5 257× + ≈ , however, the hardware cost
will be too great to do so. For the inverse calculator
implemented in this paper, the value of the counter can be
between 0 and 82 and it is shown by experiments that 32-
bit barrel shifter has already required occupying more than
200 units, so this scheme can not be adopted in this paper
to improve the speed of calculating inverse.

2.2. MIMA Algorithm

As same as EEA Algorithm, MIMA Algorithm is also to
calculate the inverse in finite fields via repeated iteration.
What different is that MIMA Algorithm adopts the method
of little endian. Speaking only from the algorithm effiency,
two algorithms are same, because it can averagely
eliminate two terms by each iteration. However, judging
from the hardware implementation of algorithm, since
each iteration of MIMA Algorithm can only shift one bit,
the ordinary shifter can satisfy the requirement and the
counter will not be needed for control.

invController

xorArray

Shiftreg

Reg_

deg_v deg_u

sub

Reg_u

counter

Reg_
b

Reg_c

Shiftreg

xorArray

clk

Input

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

40

Inverse algorithm in MAIA is shown as follows:
Input: (2)na GF∈

Output: 1 (2)nb a GF−= ∈
1. 1, 0, ,b c u a v f← ← ← ← ；
2. While x divides u do:
2.1 /u u x← ；
2.2 if x divides b then /b b x← ；

 else () /b b f x← + ；
3. If 1u = then return(b)；
4. If deg() deg()u v< then: ,u v b c↔ ↔ ；
5. ,u u v b b c← + ← + ；
6. Goto step2；

The hardware structure for implementation of MAIA
Algorithm is shown as in Fig.3.

Fig.3 Hardware implementation structure of MIMA Algorithm

It can be seen from Fig.3 that compared with the first
algorithm, this structure integrates the shift register
shiftreg_u with register and shift register shiftreg_b with
register reg_b to compose sReg_u register and sReg_b
register. Though sReg_u is very simple, sReg_b register in
fact is very complex. It needs reduction operation
according to whether b can be exactly divided by x in
this register (adding control lines of sel[1..0] input from
sReg_u). Furthermore, in order to receive the control of
the controller, this module also has one more en signal
input terminal which controls the shift operation of
sReg_u. The key part of sReg_b is shown as follows:
case sel(0) is
 when '0' =>

reg83_temp(83 downto 0):='0' & reg83(83 downto 1);
 reg83_temp(82):=reg83_temp(82) xor selb_temp(0);

reg83_temp(6):=reg83_temp(6) xor selb_temp(0);
reg83_temp(3):=reg83_temp(3) xor selb_temp(0);
reg83_temp(1):=reg83_temp(1) xor selb_temp(0);

 when others =>
 reg83_temp(83 downto 0):=reg83(83 downto 0);

end case;

The module chart of the controller is shown as in Fig.4.
For the definition of each control signal, please refer to the
description in last section. Since the design of state
machine is more similar with the controller of the
improved algorithm to be mentioned in this paper, the
state transition table of the controller will not be listed
here temporarily.

Fig.4 Module chart of module controller of MIMA calculating inverse

Stimulation graphics file is established after compiling,
synthesis and adaptation with QuartusII. Firstly function
simulation is carried out to verify the correctness of the
design. Timing stimulation is carried out after successful
verification. Stimulation diagram is not listed due to
limited space.
Total logic elements are 650 and Total pins are 172
according to stimulation result, which shows that the
implementation of MIMA Algorithm occupies 650 logic
units. Judging from the structure, the hardware saving is
mainly two register modules fewer, and furthermore the
control circuit is also simplified a little. What the clk
adopts in stimulaiton is 100M clock, so the highest
frequency of this inverse calculator can reach 100M.
Additionally, judging from algorithm, the average
execution cycle of this inverse calculator is
(83 / 2) 6 5 257× + ≈ and the experimental result is in
accordance with this data.

3. Comparison of EEA Algorithm and MIMA
Algorithm

Each iteration of EEA Algorithm will carry out many
times of shifts, but each iteration of MIMA Algorithm will
only carry out one time of shift, then whether will the
efficiency of whole calculating inverse greatly decrease?
Why are the average execution cycles of the two
algorithms same? The two algorithms are analyzed and
compared in this paper.

invController

xorArray

Reg_v

deg_v deg_u

sub

sReg_u sReg_b Reg_c

xorArray
Input

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

41

3.1 EEA Algorithm analysis

For two polynomials:
1 2

1 2 1 0
n n n

n nu x a x a x a x a− −
− −= + + + ⋅⋅⋅ + + (1)

1 2
1 2 1 0

m m m
m mv x b x b x b x b− −

− −= + + + ⋅⋅⋅+ + (2)
If m n> , i.e. deg() deg()u v< , then

u v↔ , ()u v m n← << − ;
' 1 ' 2 ' '

1 2 1 0
m m

m mu b x b x b x b− −
− −= + + ⋅⋅ ⋅ + + (3)

1 2
1 2 1 0

n n n
n nv x a x a x a x a− −

− −= + + + ⋅⋅⋅ + + (4)
If 1 1 0, 0m m j m jb b b− − + −⋅ ⋅ ⋅ = ≠ , then if ()m j n− > , then

()u v m j n← << − − .
It can be seen that u can eliminate at least one highest
term every time, the term to eliminate 2 highest terms
every time is 1 1n ma b− −= and the term to eliminate 3
highest terms is 1 1n ma b− −= and 2 2n ma b− −= . Since

1, 2 1 2, , , {0,1}n n m ma a b b− − − − ∈ , probability 1 1
1()
2n mp a b− −= = ,

i.e. the probability to eliminate two highest terms every

time is 1
2

. And since

1 1 2 2
1 1 1(() ())
2 2 4n m n mp a b a b− − − −= ∩ = = × = , the probability

to eliminate 3 highest terms every time is 1
4

 and by

analogy. Taking 83(2)GF as example, it is assumed that
the number of the highest terms to be eliminated by each
iteration is c and probability is ()p c , its distribution rate
is shown as in Table 1:

Table 1 Probability distribution table of ()p c

c 1 2 3 4 …. 81 82 83

()p c 1 1
2

 1
4

 1
8

 …. 80

1
2

 81

1
2

 82

1
2

The mean of c is:

80 81 82

1 1 1 1 11 1 2 3 81 82 83
2 4 2 2 2

Ec= × + × + × +⋅⋅⋅+ × + × + × (5)

81 82 83

1 1 1 1 1 1 11 2 3 81 82 83
2 2 4 8 2 2 2

Ec× = × + × + × +⋅⋅⋅+ × + × + × (6)

(5)－(6) can obtain:

81 82 83

82 83

1 1 1 1 1 1 183
2 2 4 8 2 2 2

1 12 83
2 2

2

Ec× = 1+ + + + ⋅⋅⋅ + + − ×

 = − − ×

 ≈

So 4Ec ≈

Since u and v will exchange in the iteration process, i.e.
the times of u and v will decrease, the number of highest
terms to be eliminated averagely by each iteration is 1/ 2
of Ec , i.e. 2. The average times of iteration needed for
completion of inverse calculation is 83/ 2 42= times.

3.2 MAIA Algorithm analysis

For two polynomials:
1 2

1 2 1 0
n n n

n nu x a x a x a x a− −
− −= + + +⋅⋅⋅+ + (7)

1 2
1 2 1 0

m m m
m mv x b x b x b x b− −

− −= + + + ⋅⋅⋅ + + (8)
The number of the highest terms which can be eliminated
when u shifts right every time (While statement) is at
least 1 and the probability to eliminate 2 terms

simultaneously is 1
2

. But taking into account of u v↔

and u u v← + operations, the number of terms to be
eliminated every time is 2. The analysis method is as same
as EEA. However, MAIA Algorithm can only shift one bit
when shifting right every time and it needs to determine
whether the lowest order is zero for whether to continue to
shift right or not next time. If shift right can not be
implemented, it shall determine the size of deg()u and
deg()v as well as calculate u u v= + . Since the lowest
order of v will certainly be 1, the value of u u v= + can
shift right at least one bit.

3.3 Comparison of two algorithms

In each time of iteration, both EEA Algorithm and MAIA
Algorithm can at least eliminate one highest term and need
to shift many bits. Neither of them needs complex
multiplication or division, which can be easily
implemented with hardware. It can be seen from the
abovementioned analysis that 2 terms can be averagely
eliminated when shifting j bits in EEA Algorithm. Though
one term can be eliminated by every operation of shift
right in MAIA Algorithm, the probability for continuous
execution can also satisfy the probability distribution
relation of EEA. Therefore, the number of terms which
can be averagely eliminated by each iteration in two
algorithms are equal, both of which are 2.

4. Improved MIMA Algorithm

As mentioned before, hyperelliptic curve encryption
requires the sub-module to be with very fast speed and
neither of the abovementioned two algorithms can meet
this requirement. An improved scheme taken into account
in this paper is to carry out part parallel processing of the
abovementioned algorithms. Since MIMA Algorithm
adopts little endian, the method of shift times can be

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

42

1 22, 1, 2b b f f f f← >> ← >> = >> ；

decided by firstly determining the low order. For EEA
Algorithm, because it adopts big endian with unfixable
shift times, it will not be convenient for prejudgment. The
improved MIMA Algorithm adopts 2 bits-parallel sheme.
Inverse algorithm in improved MAIA field:
Output: (2)na GF∈
1. 1, 0, , ,deg_ deg(),b c u a v f v f← ← ← ← ←

2. case [1..0]u is
2.1 when “00” =>

2u u← >> ;
2

1

2 [0]
([1] [1] [1] [0] [1] [0] [1])

b b f b
f b f b b b b f

← > > + • +
• + + ；

goto 2;
2.2 when “10” =>

 1u u← >> ; 11 [0]b b f b← >> + • ;
2.3 when others =>;

 end case;
3. if 1u = then return b;
4. if deg() deg_u v< then

; ;deg_ deg_u v b c u v↔ ↔ ↔ ;

5. ; ;u u v b b c← + ← +
6.Goto step2；

The shift registers in above algorithms only need to take
into account of two situation including 2 bits shift and 1
bit shift. The simplest (two situations) barrel shifter can be
designed for implementation of this algorithm with FPGA.
Barrel shifter selects the shift bits with [1], [0]u u encoding
and all shifts are completed in one cycle. Thus, it can save
one cycle for the situation with larger probability of
occurrence that two bits are 0 simultaneously. The
hardware structure of algorithm implementation is shown
as in Fig.5.

Fig.5 Hardware implementation structure of improved MIMA Algorithm

In Fig.5, both shift register u and shift register b are more
complex than the aforementioned two structures, which is

so called “trading area for time”. The module charts of
sReg_u and sReg_b are separately shown as in Fig.6 and
Fig.7.

Fig.6 Module chart of sReg_u Fig.7 Module chart of sReg_b

In module of sReg_u, what qlsb outputs are the low two
bits of register value and what qout outputs is the value of
entire register. Compared with the abovementioned second
implementation , if the low two bits reg83 (1 down to 0)
determining register value in sReg_u is “00”, then the
register will shift right 2 bits, if it is “10”, then shift right
one bit and no shift for other situations. Therefore, the
representation of sReg_u module shall be:

case reg83(1 down to 0) is
 when "00" =>
 reg83(83 down to 0)<="00" & reg83(83 down to

2);
 when "10" =>
 reg83(83 down to 0)<='0' & reg83(83 down to 1);
 when others =>

end case;
It needs to complete the reduction process after shift for
implementation of sReg_b and the reduction is carried out
according to the lowest two bits of the register. sReg_b is
divided into three situations according to the output
sel[1..0], which is same with the situation of sReg_u
module. In fact, sel[1..0] here is the reg83(1 down to 0) of
sReg_u module. The implementation procedure of sReg_b
is shown as follows:
case sel is
when "00" =>
 reg83_temp(83 downto 0):="00" & reg83(83 downto 2);

reg83_temp(81):=reg83_temp(81) xor selb_temp(0);
reg83_temp(5):=reg83_temp(5) xor selb_temp(0);
reg83_temp(2):=reg83_temp(2) xor selb_temp(0);
reg83_temp(0):=reg83_temp(0) xor selb_temp(0);
reg83_temp(82):=reg83_temp(82) xor selb_temp(1);
reg83_temp(6):=reg83_temp(6) xor selb_temp(1);
reg83_temp(3):=reg83_temp(3) xor selb_temp(1);
reg83_temp(1):=reg83_temp(1) xor selb_temp(1);

when "10" =>

invController

xorArray

Reg_v

deg_u comparreReg

sReg_u sReg_b Reg_c

xorArray
Input

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

43

 reg83_temp(82 downto 0):='0' & reg83(82 downto 1);
 reg83_temp(82):=reg83_temp(82) xor selb_temp(0);
 reg83_temp(6):=reg83_temp(6) xor selb_temp(0);
 reg83_temp(3):=reg83_temp(3) xor selb_temp(0);
 reg83_temp(1):=reg83_temp(1) xor selb_temp(0);
when others =>
 reg83_temp(83 downto 0):=reg83(83 downto 0);
end case;

The controller totally has 6 input signals and 8 output
signals, whose module chart is basically same with the
aforementioned design. Stimulation graphics file is
established after compiling, synthesis and adaptation with
QuartusII. Firstly function simulation is carried out to
verify the correctness of the design. Timing stimulation is
carried out after successful verification. In order to save
space, the report after compiling, synthesis and adaptation
is pasted with timing simulation report together in the
paper as shown in Fig.8.

Fig.8 Timing simulation chart of inverse calculator in improved MIMA
Algorithm
It can be seen from Fig.8 that , Total logic elements are
682 and Total pins are 172 according to stimulation result,
which shows that the implementation of improved MIMA
Algorithm occupies 682 logic units. Judging from the
simulation chart, what clk adopts is 100M clock, so the
highest frequency of this inverse calculator can reach
100M.

The improved algorithm optimizes the deg module and
sub module in Fig.5, so the resource occupation does not
add so much. The improved algorithm can not enable the
speed to improve one time, because the speed
improvement also has something to do with the number
itself to calculate inverse. Under the worst situation, the
efficiency of this implementation is equal to
MIMA Algorithm. But the speed is obviously improved in
the general situation.

Taking 0xabcd667 calculating inverse (inverse is
0x1618675e10277a77b18f1) as example, the performance
comparison of inverse calculators designed separately
according to three algorithms is shown as in Table 2.

Table 2 Comparison of three algorithms to implement 83(2)GF

Algorithm Les (piece)
Time
(us)

Inverse
time (us)

Notes

1 999 13.50 2.96
Without use of
barrel shifter

2 650 3.10 2.42

3 682 2.33 1.79

5. Conclusion
HECC application needs a large amount of fast modules.
Calculating inverse in finite fields is one of very important
modules. The optimized MAIA Algorithm can effectively
take advantage of the character that two adjacent bits of
random number have larger probability to be zero and use
parallel structure to speed up the inverse calculation in
finite fields. At the same time, the optimized MAIA
Algorithm has improved the default that the past algorithm
takes into account of deg_ u and deg_ v separately, leaved
out the module to evaluate deg_ v and saved large amount
of chip resources. It can take into account to increase
parallel degree for further study. For example, the
situation of low four bits can be continuously determined.
Furthermore, for hardware implementation, it is an issue
worthy of further study how to make the flow more
reasonable and thus increase the throughput of data. In a
word, the algorithm brought forward in this paper is
improved in both speed and area compared with past
algorithms. It is believed that this kind of improved
algorithm can be applied in large amount in future HECC
implementation.

References
[1] Y.Sakai and K.Sakurai, On the practical performance of

hyperelliptic curve cryptosystems in software
implementations, IEICE Transaction
Fundamentals,vol.E83-A Apr 2000,pp.692-703

[2] N.Smart, On the practical performance of hyperelliptic
curve cryptosystems, in Eurocrypt, vol.1592 of Lecture
Notes in Computer Sceince,1999,pp.165-175

[3] T. Wollinger. Software and Hardware Implementation of
Hyperelliptic Curve Cryptosystems. PhD thesis, Department
of Electrical Engineering and Information Sciences, Ruhr-
Universitaet Bochum, Bochum, Germany, July 2004

[4] L.Song and K.Parhi, Low-energy digit-serial/parallel finite
field multipliers, Journal of VHDL Signal Processing
Systems, 1997.pp.1-17,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

44

[5] Chang Hoon Kim1, Soonhak Kwon2, Jong Jin Kim1,etc. A
New Arithmetic Unit in GF(2m) for Reconfigurable
Hardware Implementation. Springer-Verlag Berlin
Heidelberg .2003, FPL 2003, LNCS 2778, pp. 670–680

[6] JOSÉ LUIS IMAÑA. Bit-Parallel Arithmetic
Implementations over Finite Fields GF(2m) with
Reconfigurable Hardware. Acta Applicandae Mathematicae
© 2002 Kluwer Academic Publishers. 73: 337–356

Bao kejin is an Associate Professor in
the School of Computer Science and
Telecommunication Engineering,
Jiangsu University, China. He received
the M.D. from Jiangsu University in
1993. Now, he research interests include
hardware implementation of algorithm,
network security, embedded system
application, real-time control system.

