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Summary 
Inverse calculation in finite fields is the base to implement 
Hyperelliptic Curve Cryptography (HECC) and HECC 
implementation is the key to fast implement calculating inverse 
in finite fields. In this paper, fast algorithm of calculating inverse 
in finite fields and its method to implement with hardware in 
HECC are discussed, the EEA algorithm and the MIMA 
algorithm, which are currently in common use, are compared and 
an improved MIMA algorithm is brought forward. In the 
algorithm, 2 bits parallel scheme is used and shift register only 
takes into account of two situations including 2 bits shift and 1 
bit shift. The simplest (two situations) barrel shifter can be 
designed when realizing this algorithm with FPGA and each of 
shifts is completed in one cycle. Algorithm description carries 
out function simulation and timing simulation in QuartusII 
environment, which is improved in both speed and area 
compared with past algorithms. 
Key words: 
HECC, FPGA,  Inverse calculation,   Fast algorithm.  

1. Introduction 

Hyperelliptic Curve Cryptography (HECC) is a kind of 
cryptography more difficult to be resolved than Elliptic 
Curve Cryptography (ECC). At present, the HECC theory 
has already basically been mature and the study on HECC 
at home and abroad mainly focuses on how to implement 
[1][2][3]. Due to the high encryption density and large 
computation complexity of HECC, HECC implementation 
has important theoretical significance and higher value in 
use not only to strengthen the safety of information system 
but also to study higher-intensity encryption system. 
Inverse calculation in finite fields is the base to implement 
ECC and HECC and fast implementation of calculating 
inverse in finite fields is the key to implement ECC and 
HECC. Since HECC has higher encryption density than 
ECC, it has a series of advantages such as smaller 
bandwidth can be used and calculation can be done in 
smaller field. In recent years, there have been large 
amount of studies focusing on HECC implementation, but 
it has brought forward much higher requirements for 
calculating inverse in finite fields to implement HECC. 
Furthermore, since the hardware encryption system is 
required to be reconfigured, it has become one of the hot 

spots of the current study to implement HECC on the base 
of FPGA. 

2. Calculating inverse in finite fields  

There have been some dissertations [4][5][6] discussing in 
detail the fast algorithm of calculating inverse in finite 
fields in HECC. There are three algorithms for 
implementation: the first is to use the repeated square-and-
multiply algorithm of Fermat’s theorem; the second is the 
expanded Euclidean Algorithm (EEA) and the third is 
Modified Almost Inverse Algorithm (MAIA). The first 
algorithm has not already been adopted due to larger 
calculation amount. The later two algorithms are the 
algorithms in common use at present, however, it still 
takes much time to implement inverse calculation with 
these two algorithms, therefore, it is one key point of the 
study in this paper to improve the speed of inverse 
calculation. 

2.1 EEA Algorithm 

EEA Algorithm is to calculate the inverse in finite fields 
through repeated iteration with basic ideas as follows: a  
and ( )f x  are separately multiplied by or divided by x  
repeatedly and are added together, at the same time, 1 and 
0 is made same inversion. So, when a  becomes 1, 1 will 
become the inverse of a . EEA Algorithm is shown as 
follows: 
Input:  ( 2 )na G F∈  

Output: 1 (2 )nb a GF−= ∈   

1. 1, 0, ,b c u a v f← ← ← ← ； 
2.  While deg( ) 0u ≠  

2.1. deg( ) deg( )j u v← − ； 
2.2. if 0j <  then 

( ), ( )u u v j b c j← + <<   ← << ； 
2.3. ( ), ( )u u v j b c j← + <<   ← << ；  
3.    return b； 

The hardware structure to implement EEA algorithm is 
shown as in Fig.1. 
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Fig.1  Hardware implementation structure of EEA Algorithm 

This algorithm needs a shifter of j bit ( 0 83j≤ ≤ ). In this 
paper, the method to control shift times of shifter via 
counter is adopted. In Fig.1, deg_u and deg_v are the 
modules of the highest of the times to evaluate Reg_u and 
Reg_v. The difference of deg_u and deg_v is stored in 
register of the counter and the shift times of Shiftreg are 
controlled by counter. The implementation  of register is 
basically same, each of which is orginary register or shift 
register. However, every register has different initial value 
for resetting. The registers are all zero when Reg_u and 
Reg_c reset, the value is reduction polynomial when 
Reg_v resets and the value is “1” when Reg_b resets. 
The deg_u and deg_v adopt same designs, whose inputs 
are 83-bit data and outputs are 8-bit data (representing 
deg_u) and output degu_zero indicating whether deg_u is 
0, which is a combinational circuit. deg_u design needs a 
conv_std_logic_vecotor() function, which converts the 
integer data into std_logic_vecotor type. For…loop 
statement is used in the process to count the bits of the 
input data which are ‘0’ and make conversion by using the 
abovementioned function with part of procedure as 
follows:  

a_temp<="00000000"; 
for j in 83 downto 0 loop 

      if i(j)='1' then 
         a_temp<=conv_std_logic_vecotor(j,8); 
         exit; 
     end if; 

end loop; 
a<=a_temp; 

 
In similar manner, synthesis tool also synthesizes this 
section of procedure into a combinational circuit, which in 
fact is a priority encoder to encode 83-bit input into 8-bit 
output. 
Both the subtracter and the counter are simpler and easy to 
implement, so it will not be mentioned any more here. The 
controller is more complex, which has 6 inputs, 9 outputs 
and total 16 pieces of signal line. Fig.2 is the module chart 

of the controller. Besides the signals such as clk, reset and 
start, the controller also includes degu_zero signal 
indicating the highest of the times of register u, sub82_co 
signal indicating the result of subtracter as negative and 
the count8_finish signal indicating the self subtraction of 
the counter as 0. The output includes reset_all signal 
controlling the reset of all registers, mux3in83_u_sel[1..0] 
signal to select multiplexer, reg83_u_oe signal for reg_u 
loading, sreg83_load signal for Shiftreg loading, sub82_en 
signal to enable subtracter, count8_load signal for original 
data loading of the counter as well as reg83_v_oe and 
reg83_b_oe signals for deg_v and deg_b loading. Due to 
the simple implementation, the state table of the controller 
will not be listed here. 
 

 

Fig.2  Module chart of module controller of EEA calculating inverse 

It can be seen that the shortcoming of this implementation 
is that it will need j cycles to shift j bits each time, which 
will greatly prolong the whole period of calculating 
inverse. The implementation of this algorithm occupies 
999 logic units, needs about 300 cycles and the frequency 
can reach 100M. 
If barrel shifter is adopted, the average execution cycle can 
reach (83/ 2) 6 5 257× + ≈ , however, the hardware cost 
will be too great to do so. For the inverse calculator 
implemented in this paper, the value of the counter can be 
between 0 and 82 and it is shown by experiments that 32-
bit barrel shifter has already required occupying more than 
200 units, so this scheme can not be adopted in this paper 
to improve the speed of calculating inverse. 

2.2. MIMA Algorithm 

As same as EEA Algorithm, MIMA Algorithm is also to 
calculate the inverse in finite fields via repeated iteration. 
What different is that MIMA Algorithm adopts the method 
of little endian. Speaking only from the algorithm effiency, 
two algorithms are same, because it can averagely 
eliminate two terms by each iteration. However, judging 
from the hardware implementation of algorithm, since 
each iteration of MIMA Algorithm can only shift one bit, 
the ordinary shifter can satisfy the requirement and the 
counter will not be needed for control. 

invController 

xorArray 

Shiftreg 

Reg_

deg_v deg_u 

sub 

Reg_u 

counter

Reg_
b

Reg_c

Shiftreg

xorArray

clk

Input 
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Inverse algorithm in MAIA is shown as follows: 
Input: (2 )na GF∈  

Output: 1 (2 )nb a GF−= ∈  
1.  1, 0, ,b c u a v f← ← ← ← ； 
2.  While x divides u do: 
2.1  /u u x← ； 
2.2 if x divides b  then /b b x←  ； 

    else ( ) /b b f x← +  ； 
3.  If 1u = then return( b )； 
4.  If deg( ) deg( )u v<  then: ,u v b c↔  ↔ ； 
5.  ,u u v b b c← +  ← + ； 
6.  Goto step2； 

The hardware structure for implementation of MAIA 
Algorithm is shown as in Fig.3. 
 

 

Fig.3  Hardware implementation structure of MIMA Algorithm 

It can be seen from Fig.3 that compared with the first 
algorithm, this structure integrates the shift register 
shiftreg_u with register and shift register shiftreg_b with 
register reg_b to compose sReg_u register and sReg_b 
register. Though sReg_u is very simple, sReg_b register in 
fact is very complex. It needs reduction operation 
according to whether b can be exactly divided by x  in 
this register (adding control lines of sel[1..0] input from 
sReg_u). Furthermore, in order to receive the control of 
the controller, this module also has one more en signal 
input terminal which controls the shift operation of 
sReg_u. The key part of sReg_b is shown as follows: 
case sel(0) is 
  when '0' => 

reg83_temp(83 downto 0):='0' & reg83(83 downto 1); 
        reg83_temp(82):=reg83_temp(82) xor selb_temp(0); 

reg83_temp(6):=reg83_temp(6) xor selb_temp(0); 
reg83_temp(3):=reg83_temp(3) xor selb_temp(0); 
reg83_temp(1):=reg83_temp(1) xor selb_temp(0); 

  when others => 
     reg83_temp(83 downto 0):=reg83(83 downto 0); 

end case; 
 
The module chart of the controller is shown as in Fig.4. 
For the definition of each control signal, please refer to the 
description in last section. Since the design of state 
machine is more similar with the controller of the 
improved algorithm to be mentioned in this paper, the 
state transition table of the controller will not be listed 
here temporarily. 
 

 

Fig.4 Module chart of module controller of MIMA calculating inverse 

Stimulation graphics file is established after compiling, 
synthesis and adaptation with QuartusII. Firstly function 
simulation is carried out to verify the correctness of the 
design. Timing stimulation is carried out after successful 
verification. Stimulation diagram is not listed due to 
limited space. 
Total logic elements are 650 and Total pins are 172 
according to stimulation result, which shows that the 
implementation of MIMA Algorithm occupies 650 logic 
units. Judging from the structure, the hardware saving is 
mainly two register modules fewer, and furthermore the 
control circuit is also simplified a little.  What the clk 
adopts in stimulaiton is 100M clock, so the highest 
frequency of this inverse calculator can reach 100M. 
Additionally, judging from algorithm, the average 
execution cycle of this inverse calculator is 
(83 / 2) 6 5 257× + ≈  and the experimental result is in 
accordance with this data. 

3. Comparison of EEA Algorithm and MIMA 
Algorithm 

Each iteration of EEA Algorithm will carry out many 
times of shifts, but each iteration of MIMA Algorithm will 
only carry out one time of shift, then whether will the 
efficiency of whole calculating inverse greatly decrease? 
Why are the average execution cycles of the two 
algorithms same? The two algorithms are analyzed and 
compared in this paper. 

invController

xorArray 

Reg_v 

deg_v deg_u 

sub 

sReg_u sReg_b Reg_c

xorArray
Input 
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3.1 EEA Algorithm analysis 

For two polynomials: 
1 2

1 2 1 0
n n n

n nu x a x a x a x a− −
− −= + + + ⋅⋅⋅ + +          (1) 

1 2
1 2 1 0

m m m
m mv x b x b x b x b− −

− −= + + + ⋅⋅⋅+ +          (2) 
If m n> , i.e. deg( ) deg( )u v< , then  

u v↔ , ( )u v m n← << − ; 
' 1 ' 2 ' '

1 2 1 0
m m

m mu b x b x b x b− −
− −= + + ⋅⋅ ⋅ + +       (3) 

1 2
1 2 1 0

n n n
n nv x a x a x a x a− −

− −= + + + ⋅⋅⋅ + +             (4) 
If 1 1 0, 0m m j m jb b b− − + −⋅ ⋅ ⋅ =   ≠ , then if ( )m j n− > , then 

( )u v m j n← << − − . 
It can be seen that u  can eliminate at least one highest 
term every time, the term to eliminate 2 highest terms 
every time is 1 1n ma b− −=  and the term to eliminate 3 
highest terms is 1 1n ma b− −= and 2 2n ma b− −= . Since 

1, 2 1 2, , , {0,1}n n m ma a b b− − − −   ∈ , probability 1 1
1( )
2n mp a b− −= = , 

i.e. the probability to eliminate two highest terms every 

time is 1
2

. And since 

1 1 2 2
1 1 1(( ) ( ))
2 2 4n m n mp a b a b− − − −= ∩ = = × = , the probability 

to eliminate 3 highest terms every time is 1
4

 and by 

analogy. Taking 83(2 )GF  as example, it is assumed that 
the number of the highest terms to be eliminated by each 
iteration is c  and probability is ( )p c , its distribution rate 
is shown as in Table 1: 

Table 1 Probability distribution table of ( )p c  

c  1 2 3 4 …. 81 82 83 

( )p c  1 1
2

 1
4

 1
8

 …. 80

1
2

 81

1
2

 82

1
2

The mean of c  is: 

80 81 82

1 1 1 1 11 1 2 3 81 82 83
2 4 2 2 2

Ec= × + × + × +⋅⋅⋅+ × + × + ×            (5)  

81 82 83

1 1 1 1 1 1 11 2 3 81 82 83
2 2 4 8 2 2 2

Ec× =  × + × + × +⋅⋅⋅+ × + × + ×     (6) 

(5)－(6) can obtain: 

81 82 83

82 83

1 1 1 1 1 1 183
2 2 4 8 2 2 2

1 12 83
2 2

2

Ec× = 1+ + + + ⋅⋅⋅ + + − ×

            = − − ×

            ≈

      

So 4Ec ≈  

Since u  and v  will exchange in the iteration process, i.e. 
the times of u  and v  will decrease, the number of highest 
terms to be eliminated averagely by each iteration is 1/ 2  
of Ec , i.e. 2. The average times of iteration needed for 
completion of inverse calculation is 83/ 2 42=  times. 

3.2 MAIA Algorithm analysis 

For two polynomials: 
1 2

1 2 1 0
n n n

n nu x a x a x a x a− −
− −= + + +⋅⋅⋅+ +               (7) 

1 2
1 2 1 0

m m m
m mv x b x b x b x b− −

− −= + + + ⋅⋅⋅ + +           (8) 
The number of the highest terms which can be eliminated 
when u  shifts right every time (While statement) is at 
least 1 and the probability to eliminate 2 terms 

simultaneously is 1
2

. But taking into account of u v↔  

and u u v← +  operations, the number of terms to be 
eliminated every time is 2. The analysis method is as same 
as EEA. However, MAIA Algorithm can only shift one bit 
when shifting right every time and it needs to determine 
whether the lowest order is zero for whether to continue to 
shift right or not next time. If shift right can not be 
implemented, it shall determine the size of deg( )u  and 
deg( )v  as well as calculate u u v= + . Since the lowest 
order of v  will certainly be 1, the value of u u v= +  can 
shift right at least one bit. 

3.3 Comparison of two algorithms 

In each time of iteration, both EEA Algorithm and MAIA 
Algorithm can at least eliminate one highest term and need 
to shift many bits. Neither of them needs complex 
multiplication or division, which can be easily 
implemented with hardware. It can be seen from the 
abovementioned analysis that 2 terms can be averagely 
eliminated when shifting j bits in EEA Algorithm. Though 
one term can be eliminated by every operation of shift 
right in MAIA Algorithm, the probability for continuous 
execution can also satisfy the probability distribution 
relation of EEA. Therefore, the number of terms which 
can be averagely eliminated by each iteration in two 
algorithms are equal, both of which are 2. 

4. Improved MIMA Algorithm 

As mentioned before, hyperelliptic curve encryption 
requires the sub-module to be with very fast speed and 
neither of the abovementioned two algorithms can meet 
this requirement. An improved scheme taken into account 
in this paper is to carry out part parallel processing of the 
abovementioned algorithms. Since MIMA Algorithm 
adopts little endian, the method of shift times can be 
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1 22, 1, 2b b f f f f← >> ← >> = >> ；

decided by firstly determining the low order. For EEA 
Algorithm, because it adopts big endian with unfixable 
shift times, it will not be convenient for prejudgment. The 
improved MIMA Algorithm adopts 2 bits-parallel sheme.  
Inverse algorithm in improved MAIA field: 
Output: (2 )na GF∈   
1. 1, 0, , ,deg_ deg( ),b c u a v f v f← ← ← ← ←  

     
 

2. case [1..0]u  is 
2.1 when “00” => 

2u u← >> ; 
2

1

2 [ 0 ]
( [1] [1] [1] [ 0 ] [1] [ 0 ] [1] )

b b f b
f b f b b b b f

← > > + • +
• + + ；

        

goto 2;  
2.2 when “10” => 

  1u u← >> ; 11 [0]b b f b← >> + • ; 
2.3 when others =>; 

  end case;  
3. if 1u = then return b; 
4. if deg( ) deg_u v<  then 

; ;deg_ deg_u v b c u v↔ ↔ ↔ ; 

5. ; ;u u v b b c← + ← +   
6.Goto step2； 
 

The shift registers in above algorithms only need to take 
into account of two situation including 2 bits shift and 1 
bit shift. The simplest (two situations) barrel shifter can be 
designed for implementation of this algorithm with FPGA. 
Barrel shifter selects the shift bits with [1], [0]u u  encoding 
and all shifts are completed in one cycle. Thus, it can save 
one cycle for the situation with larger probability of 
occurrence that two bits are 0 simultaneously. The 
hardware structure of algorithm implementation is shown 
as in Fig.5. 

Fig.5 Hardware implementation structure of improved MIMA Algorithm 

In Fig.5, both shift register u and shift register b are more 
complex than the aforementioned two structures, which is 

so called “trading area for time”. The module charts of 
sReg_u and sReg_b are separately shown as in Fig.6 and 
Fig.7. 

 

       

Fig.6 Module chart of sReg_u       Fig.7 Module chart of sReg_b 

In module of sReg_u, what qlsb outputs are the low two 
bits of register value and what qout outputs is the value of 
entire register. Compared with the abovementioned second 
implementation , if the low two bits reg83 (1 down to 0) 
determining register value in sReg_u is “00”, then the 
register will shift right 2 bits, if it is “10”, then shift right 
one bit and no shift for other situations. Therefore, the 
representation of sReg_u module shall be: 

case reg83(1 down to 0) is 
  when "00" => 
   reg83(83 down to 0)<="00" & reg83(83 down to 

2); 
  when "10" => 
    reg83(83 down to 0)<='0' & reg83(83 down to 1); 
  when others =>  

end case; 
It needs to complete the reduction process after shift for 
implementation of sReg_b and the reduction is carried out 
according to the lowest two bits of the register. sReg_b is 
divided into three situations according to the output 
sel[1..0], which is same with the situation of sReg_u 
module. In fact, sel[1..0] here is the reg83(1 down to 0) of 
sReg_u module. The implementation procedure of sReg_b 
is shown as follows: 
case sel is 
when "00" => 
  reg83_temp(83 downto 0):="00" & reg83(83 downto 2); 

reg83_temp(81):=reg83_temp(81) xor selb_temp(0); 
reg83_temp(5):=reg83_temp(5) xor selb_temp(0); 
reg83_temp(2):=reg83_temp(2) xor selb_temp(0); 
reg83_temp(0):=reg83_temp(0) xor selb_temp(0); 
reg83_temp(82):=reg83_temp(82) xor selb_temp(1); 
reg83_temp(6):=reg83_temp(6) xor selb_temp(1); 
reg83_temp(3):=reg83_temp(3) xor selb_temp(1); 
reg83_temp(1):=reg83_temp(1) xor selb_temp(1); 

when "10" => 

invController 

xorArray 

Reg_v 

deg_u comparreReg

sReg_u sReg_b Reg_c

xorArray
Input 
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 reg83_temp(82 downto 0):='0' & reg83(82 downto 1); 
 reg83_temp(82):=reg83_temp(82) xor selb_temp(0); 
 reg83_temp(6):=reg83_temp(6) xor selb_temp(0); 
 reg83_temp(3):=reg83_temp(3) xor selb_temp(0); 
 reg83_temp(1):=reg83_temp(1) xor selb_temp(0); 
when others => 
 reg83_temp(83 downto 0):=reg83(83 downto 0); 
end case; 

The controller totally has 6 input signals and 8 output 
signals, whose module chart is basically same with the 
aforementioned design. Stimulation graphics file is 
established after compiling, synthesis and adaptation with 
QuartusII. Firstly function simulation is carried out to 
verify the correctness of the design. Timing stimulation is 
carried out after successful verification. In order to save 
space, the report after compiling, synthesis and adaptation 
is pasted with timing simulation report together in the 
paper as shown in Fig.8. 

 
Fig.8  Timing simulation chart of inverse calculator in improved MIMA 
Algorithm  
It can be seen from Fig.8 that , Total logic elements are 
682 and Total pins are 172 according to stimulation result, 
which shows that the implementation of improved MIMA 
Algorithm occupies 682 logic units. Judging from the 
simulation chart, what clk adopts is 100M clock, so the 
highest frequency of this inverse calculator can reach 
100M. 

The improved algorithm optimizes the deg module and 
sub module in Fig.5, so the resource occupation does not 
add so much. The improved algorithm can not enable the 
speed to improve one time, because the speed 
improvement also has something to do with the number 
itself to calculate inverse. Under the worst situation, the 
efficiency of this implementation is equal to 
MIMA Algorithm. But the speed is obviously improved in 
the general situation. 

Taking 0xabcd667 calculating inverse (inverse is 
0x1618675e10277a77b18f1) as example, the performance 
comparison of inverse calculators designed separately 
according to three algorithms is shown as in Table 2. 

Table 2 Comparison of three algorithms to implement 83(2 )GF  

Algorithm Les (piece)
Time 
(us)

Inverse 
time (us) 

Notes 

1 999 13.50 2.96 
Without use of 
barrel shifter 

2 650 3.10 2.42  

3 682 2.33 1.79  

 

5. Conclusion 
HECC application needs a large amount of fast modules. 
Calculating inverse in finite fields is one of very important 
modules. The optimized MAIA Algorithm can effectively 
take advantage of the character that two adjacent bits of 
random number have larger probability to be zero and use 
parallel structure to speed up the inverse calculation in 
finite fields. At the same time, the optimized MAIA 
Algorithm has improved the default that the past algorithm 
takes into account of deg_ u  and deg_ v  separately, leaved 
out the module to evaluate deg_ v  and saved large amount 
of chip resources. It can take into account to increase 
parallel degree for further study. For example, the 
situation of low four bits can be continuously determined. 
Furthermore, for hardware implementation, it is an issue 
worthy of further study how to make the flow more 
reasonable and thus increase the throughput of data. In a 
word, the algorithm brought forward in this paper is 
improved in both speed and area compared with past 
algorithms. It is believed that this kind of improved 
algorithm can be applied in large amount in future HECC 
implementation. 
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