
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

60

Manuscript received September 5, 2006.
Manuscript revised September 25, 2006.

A Scaleable Multiprocessor Architecture with Multiple
Read-Write Memory Model

Cemal Köse,† and Özcan Özyurt††,

Karadeniz Technical University, Department of Computer Engineering, 61080 Trabzon TURKEY

Summary
This paper presents a scalable multiprocessor architecture with
multiple access memories and multi-way busses. This parallel
architecture with more intelligent memory model and efficient
multi-way interconnection network organization is called as
CRrCW (Concurrent Read and restricted Concurrent Write)
scaleable multiprocessor system. The memory and network
model provides concurrent memory accesses and more memory
bandwidth for a CRrCW scaleable multiprocessor system. Thus,
the proposed multiprocessors system with the memory model and
network take advantages of both multiprocessor systems with
shared memory and distributed memory. In this paper,
conventional shared, distributed memory multiprocessor and the
CRrCW multiprocessor are examined under various conditions
and also compared with each other. A sliding caches memory
model is used to reduce the cost of the CRrCW multiprocessor
system. A cluster controller is also used to enhance the broadcast
and multicast ability of the interconnection network. Simulation
results of the sliding caches memory model show that memory
requirements of a CRrCW multiprocessor system is almost
independent of scale of the multiprocessor. In addition this,
simulation results of the interconnection network also show that
even small number of the connection per processors greatly
enhances the scalability of the multiprocessor system. Two
scientific applications, volume visualization and N-body problem,
is chosen to examine performance of the system. These
applications case studies represent a range of important behaviors
found in parallel computing. The CRrCW multiprocessor system
with special interconnection network and intelligent memory
organization provides high speed-up and efficiency over
conventional shared and the distributed memory multiprocessor.
Therefore, the CRrCW multiprocessor system is a potential
candidate for large-scale parallel computing applications.
Key words:
Multiprocessor systems, multiprocessor architectures, memory
architectures, scaleable multiprocessor, simulation of
multiprocessor systems.

Introduction

Conventional multiprocessor systems can be classified as
shared (centralized) and distributed memory
multiprocessor. A shared memory multiprocessor is known
as tightly coupled systems that whole processors on the
system share a common memory space. All data exchanges
and synchronization are done on the shared memory space.

The shared memory multiprocessor allows the processors
to communicate by reading from and writing to the
common address space, so a shared memory
multiprocessor based on buses or cross-bar switches are
convenient for programming but are not scalable due to
memory contention when processors accesses memory. A
distributed memory multiprocessor is also known as
loosely coupled systems ([1], [22], [32], [38], [40] [53]).
Each processor on this system has its own private memory.
Inter-processor communications are done by sending
messages to appropriate processor along an
interconnection network ([4], [8], [23], [25], [45]). This
increases delay and cost of the communication. Therefore,
message-passing or distributed memory multiprocessor is
scalable but more difficult to program than the shared
memory multiprocessor.

Scalable shared memory multiprocessors aim to combine
the benefits of both shared memory and distributed
memory multiprocessors, by supporting a shared address
space on top of physically distributed main memory
(virtually shared memory multiprocessors) ([1], [2], [12],
[14], [28], [36], [42]). There are several shared memory
multiprocessors but they are not scaleable and efficient
enough for large-scale applications ([4], [15], [19], [27],
[45], [56]). In this paper, proposed model of parallel
processors with a special network and memory
organization offers a solution for scalability and
programmability. Here, multiple access memory
organization is proposed that it allows concurrent reading
and restricted concurrent writing to a remote memory
module. A clustered broadcast and multicast
interconnection network is also proposed to enhance
communication across the multiprocessor system. Then, a
memory access unit employed to handle communication,
memory accesses, and maintain consistency across the
system. This reduces complexity and overhead of
processors because of the communication.

This proposed multiprocessor architecture with an
intelligent memory and a special network organization is
similar to the distributed memory multiprocessor because
each processor on the system has its own private memory.
In addition to this each local memory is also represented in

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

61

a common shared memory space. In other words, all local
memories are presented in a shared memory space that can
be directly accessed by any processor without interrupting
the local processor. Thus system with the intelligent
memory network organization allows concurrent reading
and restricted concurrent writing. Consequently, this
model takes advantages of both shared and distributed
memory multiprocessors such therefore it is a scalable
shared memory multiprocessor ([4], [9], [12], [13], [27],
[38]). On the other hand, this proposed distributed
multiprocessor model with low memory contention and
delay is more programmable than the conventional
distributed memory multiprocessors. Simulation results
also show that the CRrCW multiprocessor system is a
suitable candidate for general-purpose parallel computing
([1], [7], [11], [16], [30], [35], [39], [54]).

2. Scalable Multiprocessor Architecture

The main difference between shared and distributed
memory multiprocessor is in their organization of
interconnection methods. A connection method on a
shared memory multiprocessor system allows all
processors to access shared memory. If more than one
processor wants to access the shared memory at the same
time, an arbitration mechanism ensures one processors
access that memory portion at a time. Thus, increasing the
number of processors on a shared memory multiprocessor
creates a bottleneck of memory access. On the other hand,
each processor on a distributed memory multiprocessor
has a private memory instead of a shared memory for all
processors. If one processor wishes to access another
processor’s private memory, it can only do by sending a
message to appropriate processor through the
interconnection network. Therefore, distributed memory
multiprocessor has no memory contention problem
because each processor on the system has its own private
memory that can be accessed by only the local processor.
Here, the network and hardware organization of the
distributed memory multiprocessors have to be known by
the programmer due to the fact that these details may make
difficult programming on a distributed memory
multiprocessors. Also efficiency of a distributed memory
multiprocessors may not be very high because of limited
number of communication channels, high density of the
messages across the system and high memory latency at
remote memory accesses. However, distributed memory
multiprocessor systems are more scalable than a shared
memory multiprocessor systems but not easily
programmable.

All processors on a CRrCW multiprocessor system as
illustrated in Figure 1 have a private memory and cache for
scalability. All of these private memories and caches are

also represented on a common shared memory space so
that all processors on the system can access them. In this
case, the CRrCW multiprocessor behaves as a shared
memory multiprocessor and represents characteristics of a
shared memory multiprocessor system. So other remote
processors can access any memory module on the shared
memory space without interrupting access of the other
memory modules on a local memory module. Then, for a
processor reading from and writing to its private memory
is called as local memory access, and whereas reading
from and writing to a remote memory module is called as
remote memory access. Here, Px, Mx, Cx, SCx, and MAC
represent Processors, Memory, Cache and Memory Access
Controller respectively. This multiple access memory
architecture enhances the bandwidth between processors
and memory modules.

Fig. 1 A simple CRrCW multiprocessor model.

3. Concurrent Read and restricted
Concurrent Write Multiprocessor
Architecture

In literature, several scalable-shared memory models were
presented so that these models differ in how to handle read
or write conflict from the main memory ([1], [12], [13],
[14], [38]). Several multiprocessor systems with different
global memory access policies were implemented such as
DDM and KSR1 ([26], [51], [56]). Recently, several
research companies have announced a few high
performance parallel computers. One example of these
high performance computers is introduced by Silicon
Graphics so that it has a more loosely coupled globally
shared memory with larger average remote memory delays
[52]. Another latest system, relies on multidimensional
networks, is introduced by Pittsburgh Supercomputing
Center ([21], [46]). In general, these systems have very
complex memory and network structure ([2], [6], [20],
[29], [37], [41], [48], [49]) and data consistency protocols
of these systems are very complex and expensive. For
example, exclusive writing is very complex and expensive

Multi-way-Interconnection
k

P1 P2 Pn

m2m1 mn

Shared Memory
S

c1 c2 cnM
A
C

M
A
C

M
A
C

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

62

operation because it requires cancellations of other copies
of a data across multiprocessors. Scalability of these
systems may be questioned. Proposed CRrCW
multiprocessor model supports Concurrent Read restricted
Concurrent Write (CRrCW) ([13], [14]). In this model,
concurrent reading is allowed but restricted concurrent
writing is permitted. In other words, this model allows
restricted concurrent writing for remote processors and the
number of concurrent writes to a remote memory location
is limited by connection network and current status of the
sliding caches on the memory unit.

Fig. 2 A CRrCW multiprocessor architecture.

Each processor on CRrCW multiprocessor system as
illustrated in Figure 2 has a private cache and memory for
scalability. All these private memories are also represented
on a common shared memory space that can be accessed
by all other processors. In this case, the CRrCW
multiprocessor behaves as a shared memory
multiprocessors and represents characteristics of a shared
memory multiprocessors. A processor can access any
memory module on the shared memory space without
interrupting access of the other memory modules so each
processor can access its own private memory without any
interrupt by any other processors. Thus, any processor
through the special network can access any memory
module on the shared memory space. Here, the number of
the processors on the system does not limit this access but
the number of the buses. For a processor reading from and
writing to its private memory is called as local memory
access, and whereas reading from and writing to a remote
memory module is called as remote memory access. The
amount of remote memory accesses may affect the
efficiency of the system but the number of the local
memory accesses. Therefore, one thread may be suspended

awaiting a remote data item, the other threads may still be
able to continue. To maximize the performance of the
system multi-threading overlaps the communication and
computation. If there are sufficient threads then any
processing element should always be performing useful
computation. Hence, a large-scale this multiprocessor
system with enough number of buses and the proposed
memory organization provides more potential for parallel
processing. Here, it is suggested that memory accesses,
broadcast and multicast on the shared memory space are
also performed by hardware, so reducing the
communication overhead increases scalability and
efficiency of the CRrCW multiprocessor system
multiprocessors. Then, a CRrCW multiprocessor system
with the shared memory space and private memories of
each processor is a scalable-shared memory multiprocessor
architecture.

Architecture of the CRrCW multiprocessor system
illustrated in the Figure 2 consists of processors, memory
units, bus managers, and busses. A memory unit consists
of a multiple access Local Cache (LCx) and a private
Memory (Mx), Sliding Caches (SCx), and Memory Access
Controller (MAC). Each bus manager consists of a
Memory Access Unit (MAU), a Bus Management Unit
(BMU), and Cluster Controller (CC). Each processor on a
CRrCW multiprocessor has a private memory so each
processor can exclusively read and writes its own local
memory. Each these local memories are also represented
on the shared memory space by memory modules. These
multiple access memory modules are concurrently read by
all processors and written by the local processor and
restricted concurrently written by the remote processors.
The scaleable (CSCU) uses a released consistency model
so that date items across the system are updated by using
the consistency repair mechanism but paging tables is
updated constantly. Then, no false sharing false sharing is
assumed and implemented because the communication and
synchronisation control unit maintains the data consistency
across the parallel system. The communication and
synchronization busses are used to synchronize the
processors and help the clustering. Network Folder folds
and connects the busses with each other, and then clusteral
usage of the buses is allowed. Of course without folding a
bus multiple clusters can be created on a bus, but folding a
bus increases the potential number of cluster that could be
created on a bus. Then each bus can be broken into small
clusters and each cluster on a bus is used simultaneously.
This improves the performance of the applications with
local communication tendency. Communication and
synchronisation control unit (CSCU) co-ordinates the
communication, synchronisation and consistency across
the system.

B
M
U

BMn

N
F

Multiple Access
and Broadcast

Buses

Interrupt and
Synchronization

Buses

MU1
LC1
MAC

M1 SC1

P1

MU2
LC2 MAC

M2 SC2

P2

MUn
LCn MA

CMn SCn

Pn

BM1

M
A
U

B
M
U

M
A
U

BM2

M
A
U

B
M
U

C
C

C
C

C
C

N
F

Communication and
Synchronization Control Unit

LC1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

63

3.1 Multiple Access Memory Model for the
CRrCW Multiprocessor System

As illustrated in Figure 2 a memory model for the CRrCW
multiprocessor is not organized as a conventional memory.
The system allows two different types of memory access
operation. The first type is a locally read/write operation as
local memory access. The second type is a remote read and
restricted write operation as remote memory access. So
this memory model allows one or more processors to
access to a memory modules under some restrictions.
While a local processor accesses a local memory on its
cache and local memory without any restriction, a limited
number of remote processors also access to the memory
module on the memory unit simultaneously. Here, the
limitations depend on the number of buses and multiple
access memory modules on a memory unit. This memory
model with the network organization allows exploiting full
bandwidth of the communication network dynamically so
that this isn’t related with the communication demand or
pattern of a problem.

All processors may write its own private memory and all
memory modules on its memory unit at the same time but
it can only read from its private memory. A processor may
read from any remote memory module at a remote location
and a limited number of remote write to a remote location
is allowed. Here, two of the ways of sharing and updating
the global variables are possible. When a processor needs
a remote data, a bus between processor and remote
location is allocated for the processor. A remote memory
module at the remote location is connected to the
processor. The processors execute limited number of read
operations at the remote location. The number of read
operations is limited because of fair usage of the buses.
Second is the way of the sharing of global values is that
the producer of the global values updates all the copies of
the global variables at once via the clusteral multicast
busses. Here, multiple copies of the global shared variables
may be created on each processor. Each writing processor
broadcasts to update these global variables. On the other
hand, a process produces a result and updates its copy of
the shared data and the remote copies of the data via the
clusteral busses. Here, system software may manage
shared variables on each sharing processor. Then, when it
is needed, a processor updates a data at a remote location
while it is updating its local copy.

The number of buses and scale of the system determines
the memory requirement of the multiprocessor system.
Then, the required memory for a system with n processors
and m buses is n times m times of the local memory size if
non-restricted concurrent memory access is allowed. Here,
each local memory unit consists of m memory module so

that each memory module on the same memory unit holds
the same data. This increases the cost and complexity of
the system dramatically. In this model of parallel
computers, the memory size of the system increases with
the number of buses. For a large-scale system, a memory
unit cannot be designed as single memory module because
of the wiring complexity and memory contention. Then,
two methods may be applied to reduce the memory size of
the system. In the first method, memory modules are
divided into sub-modules and a processor accesses each
sub-module simultaneously. Each unit may be divided into
separate memory modules so this reduces memory
contention. Thus, the number of parallel accessible
memory modules may be chosen equal to number of
busses, and then each bus will have corresponding
memory module on each memory unit. This makes almost
impossible implementation of the memory models because
of wiring complexity and cost of the memory. In the
second method, a module may satisfy more than one
memory request at the same time by using sliding caches
memory model. Sliding caches memory provides a caching
technique that any cache module may correspond to any
memory module and overlap with another cache modules
according to the memory access pattern. When a sub-
memory module is contented with memory request, more
copies of the sub-memory modules may be created to
satisfy memory request simultaneously, and these copies
satisfy some of the later memory accesses. A simple
profiling technique is used to organize the sliding caches.
Then, the number of memory modules is not equal to the
number of the buses so memory requirements reduced
substantially by using the multiple access memory
modules and sliding caches.

3.1.1 A Typical Multiple Access Memory
Module for the Multiprocessor System

One or more processors may access same memory unit
simultaneously. The proposed memory module is
illustrated in Figure 3, and Lx represents multi-way latches
and decoders decode addressees on the busses. If two
processors need to access the same memory location at the
same time, one of these could be blocked. This restriction
is the most important problem of the memory organization.
Thus, there are four possibilities. Firstly, both processors
read the same memory location simultaneously. Here there
is no problem so both processors may continue reading the
memory location simultaneously. Secondly, while a local
processor is writing a memory location, another processor
is reading the same memory location. In this case, data
consistency may be disrupted because of the simultaneous
access. Thirdly, while a remote processor is writing to a
memory location, the local processor reads from the
memory location. Lastly, both remote and local processors

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

64

are writing the same memory location. When the four
cases are concerned, any remote processors should not
block the local processors while they are operating on a
remote memory. If a processor should be blocked because
of operating on the same memory location, it must be the
remote processor. Here, it is aimed that any processor fully
able to control its local memory without considering data
consistency. Data consistency is maintained by CSCU and
higher-level protocols.

Fig. 3 A typical multiple access memory module.

Here, all cases should be examined carefully because the
efficiency of a system widely depends on organization of
the memory unit. When the details of the model are
carefully examined, three critical timing problems are
observed. The first problem occurs while a local
processors writing a local memory location, another
remote processor wants to read/write from/to the same
location. In this case remote processor is blocked by the
memory busy signal. The local processor finishes the
operation and then the remote processor is released. The
second problem is that a processor is reading/writing
from/to a remote memory location then the local processor
started to write at the same memory location. The remote
processor may continue immediately after the local
processor finishes the reading/writing. The third problem
arises when a local processors starts to write to a memory
location and a remote processor starts to read/write from/to
the same memory location at the same time. The local
processor finishes its operation and the remote processor
reads/writes. Here, data dependencies are not considered
and data consistency is maintained by a higher-level
protocol ([2], [3], [5], [22], [32], [44], [51], [56]). Here,
dividing the memory access operation into time slices and
one micro level memory access operation is executed in a
memory access cycle such as address decoding, reading
from, writing to, and etc. A memory access is divided into
number of stages of memory operations as equal time
slices. If more than one processor operates on the same
memory location at the same time, remote processor may
be delayed at the most two micro cycles. Then, memory
delays may be reduced to a small fraction of the time that
is determined by period of the clock.

3.1.2 Multiple Access Sliding Caches Memory
Model

Increasing the number of processor on the multiprocessor
system increases the memory requirements of the system.
Dividing memories into small memory modules is still
expensive because large-scale multiprocessor requires
large memory sizes for scalability. Using several single
blocks overlapping caches are also not flexible and
feasible to support all memory access patterns. On the
other hand, implementation cost of the memory model is at
acceptable level when sliding caches memory model is
used and independent of scale of parallel system. As
illustrated in Figure 4.a and b this memory model may
answer to all sequential, local and random memory
accesses. Simulation results shows that sliding caches
memory model reduces the memory requirements of the
parallel system so that doubling local memory size makes
the parallel system almost independent of scale of the
system.

Fig. 4 Sliding caches for (a) a random (b) a sequential
access pattern.

A sliding caches memory unit is consists of many multiple
access sliding caches overlap with each other according to
the memory access demand. This memory model with
small cache blocks provide a caching technique that any
cache module may correspond to any memory module and
overlap with another cache modules according to the
memory access pattern. This memory model can serve to
all local and global memory accesses without increasing
the memory delay. Then, memory requirement or memory
size of a CRrCW multiprocessor system is almost
independent of the scale of system. This is one of the
important factors while designing a large-scale CRrCW
multiprocessor system.

Decoder-1
Decoder-2

L0 L1 L4 L2

Memory Busy

Address-Bus-2

Data-Bus-2
Address-Bus-1

Data-Bus-1

(a)

C-M-0 C-M-7

C-M-15

C-M-23

C-M-8

C-M-16

(b)
C-M-23

C-M-0

C-M-13

C-M-7

C-M-8

C-M-17

C-M-21

C-M-14

C-M-18

C-M-22

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

65

3.2 Bus Manager for the Multiprocessors
System

Both memory and bus organization are very important for
an efficient multiprocessor system. As illustrated in Figure
5 a bus manager consists of three units. The first unit on
the bus manager is the Memory Access Unit (MAU) that
connects buses to target multiple access memory modules.
This memory access unit decodes addresses on the bus
(DB: Decoder and Bus Directory) and connects the bus
and memory module for a remote access. The second
memory unit on the bus manager is a Bus Supplier Unit
(BSU), which supplies buses for each processor pending a
bus. The third unit is Cluster Controller (CC) for creating
clusters for multicast according to the demand of the
problem. Here, Bus Switch (BS) is used to allow multiple
segments (cluster) on a bus simultaneously. Then,
processors uses this multicast clusters to broadcast
messages to its neighboring processors.

Fig. 5 Typical bus manager architecture.

The bus manager unit supplies buses for each bus
requesting processor. When a bus supplier receives a bus
request for a processor, the bus supplier allocates a non-
occupied bus for that processor immediately. If more than
one processor are racing for a single non-busy bus, a fair
bus allocation schema is need for the best performance.
The bus management unit provides a fair allocation of
busses for simultaneous accesses. Then bus is allocated for
one of the racing processors and other processor waits for
a bus to be released. Two bus management policies may be
applied. These policies are centralized and distributed bus
management. For each requesting processor the bus
manager allocates a bus that is not in use. Then bus
director directs the bus to a memory module on the
memory unit by checking the address available on the bus.
Broadcast and multicast writes is performed on each
processors along the spanning cluster. Finally processor
bus memory connection is established. For limited period
of time, the processor or a direct memory access unit
transfers the data. Then, the bus is released for another
usage. Bus contention may occur on large-scale system
because of excessive remote memory accesses at a short
time period. When the system supplied with satisfactory

number of buses for a problem, it is expect that the bus
contention would not occur. Experiments show that the
number of buses needed is about one fifth of the number of
processors on the system for an efficient multiprocessor
system. So, the number of busses needed for a large-scale
CRrCW multiprocessor is a small percentage of the
number of processors on the system. Of course, this also
depends on the application running on the system.

Although complexity of the system mostly depends on the
number of the buses on a system, a large-scale CRrCW
multiprocessor should be supplied with satisfactory
number of buses. Here, three implementations of buses are
possible. The first model includes complete control,
address and data buses that are necessary for fast memory
access. In this case, wiring complexity may make
impossible design of the system. In the second model,
using special technologies such as fiber optic technology
and multiplexing techniques reduce numbers of bits on the
buses. Memory accesses may not be as fast as those of first
model because of the technology but wiring complexity is
reduced dramatically. The last model may use technologies
such as Local Area Networks that may be recommended
for medium and coarse grain parallelism ([7], [23], [24],
[43], [45], [55], [57]). In this study, the second type of bus
organization with clustering ability is suggested for the
multiprocessor system. Each cluster on a bus may span
several nodes related to the communication-demand of the
application. The Interrupt and synchronization busses are
used to coordinate communication and synchronization
across the system.

4. Parallel Application Case Studies

Multiprocessor systems are used for a wide range of
applications from scientific to commercial computing. In
this study, two scientific case studies are chosen from
scientific computing; one is from computer graphics, and
another is from astrophysics. These case studies are chosen
to represent a range of important behaviors found in other
parallel programs as in ([17], [22], [33], [43], [45], [47],
[53]). The first case study is from computer graphics.
Volume visualization technique traverses large three-
dimensional objects with local memory access pattern and
renders it into a two-dimensional image for display.

The second case study is chosen as another important form
of scientific computing problem. The computational
complexity is determined by large number of bodies that
interact with each other and move around in three-
dimensional space as a result of these interactions. This N-
body problem is commonly used for simulating galaxies in
astrophysics, proteins, and electromagnetic interaction.
Hierarchical N-body algorithm is also been used to solve

DB BSU

MAU
BM

BMU CC

BS

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

66

important problems in computer graphics. The hierarchical
N-body problem has more irregular and unpredictable
memory access pattern. These case studies are part of
benchmark suite that is widely used in architectural
evaluations in literature and they are used to illustrate
architectural performances in this study.

4.1 Parallel Volume Visualization

Volume visualization is the generation of a series of
images from discrete samples by moving the viewpoint
when examining three-dimensional volume data. Then,
volume visualization provides an important tool for
extracting meaningful information from three-dimensional
objects in a non-intrusive manner. Volume visualization
process requires a very large amount of computing and
memory resources, and thus even the synthesis of a simple
image may take many minutes, even hours on a sequential
computer ([17], [18], [19], [32]). Therefore, this is a good
candidate problem for benchmarking a multiprocessor
architecture. Volume visualization has also inherent
significant variations in computational complexity
associated with the tasks required to solve the problem and
very large memory requirements thus complicating its
parallel implementation.

The computational models for parallel volume rendering
may be classified as either volume partitioning or image
partitioning depending on how these tasks are carried out
in the parallel implementation. In volume partitioning, the
volume data is divided in to a number distinct or
overlapping regions and each region is assigned to a
particular processor on the system. The volume
partitioning approach performs the reconstruction and re-
sampling tasks with the volume data held at each processor.
As large volume data set is distributed amongst the
processors, each processor may only compute partial
results of the tasks using their allocated portions of the
volume date. In order to render the final image, it is
necessary to combine the partial results computed by
several processors. In image partitioning the image plane
is initially evenly partitioned amongst the processors. Each
processor is responsible for computing the pixel values for
its allocated image partition. The workload at each PE is
proportional to the number of pixel of the image plane to
be computed.

Image partitioning may require a processor to fetch data
items from other processors in order to complete its tasks.
The computational complexity of a task will vary from
pixel to pixel and thus ensures an even load balance so that
it must be possible to migrate some task from those
processors allocated complex tasks to those whose initial
allocation contained computationally easier ones. Use of

early termination may significantly alter the computational
effort required to complete task. Volume partitioning is
less able to the use of early termination and the reduction
in a solution would be less effected as the opacity of the
volume increases. Here, increased variations in
computational complexity will effect the computation to
communication ratios. Consequently the load balancing
within a multiprocessor system will become more
pronounced as the number processor increases.

4.2 Simulating the N-body Problem

The second case study is also from scientific computing
which analyzes that what happens when galaxies collide or
how a random collection of stars folds into a defined
galactic shape. This simulation would allow us to
understand the evaluation of stars in a system of galaxies
overtime. The N-body problem involves simulating the
motion of a number of bodies moving under forces exerted
on each by the others. Computing the forces among bodies
is the most expensive part of a time-step ([11], [32]). The
forces on each body are computed, and then the position,
velocity, and other attributes of each body are updated in
each time-step.

A simple method to compute forces is to calculate pair-
wise interactions amongst all bodies. This has O(n2)
computational complexity. The distribution of bodies in
three-dimensional space is highly irregular so that bodies
are denser in some regions and sparser in others. This
hierarchical approach implies that bodies in denser regions
interact more with other bodies because these bodies may
be taken as a single body at the center of denser body areas.
Thus, bodies in denser regions have more work associated
with them than bodies in sparser regions. These
hierarchical algorithms are able to reduce the complexity
to O(n log n). This makes it feasible to simulate problems
with millions of stars in a reasonable time but only using
powerful multiprocessors. A simple partitioning technique
can be used for parallelization of the N-body problem so
that each processor responsible for computing of each
portion of the problem, so each data exchanges between
processors is carried in distinct message. Thus, a large
number of messages could result. A clever divide-and-
conquers approach to the problem uses this clustering
bodies idea with the whole space in which one cube
contains bodies. Then, the recursive divide-and-conquer
algorithm is applied to each cube and sub-cubes until
every sub-cube contains one body or less.

This N-body simulation problem has far more irregular
and dynamically changing behavior than the volume
visualization problem. Unlike volume visualization, which
has more regular and predictable structure of computation

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

67

and communication, the hierarchical N-body application
presents many challenges for effective parallel computing.
The hierarchical algorithm for computing forces on each
body is an efficient method for solving the N-body
problem in O(n log n) time complexity. The problem is
executed in parallel in each time step and a global barrier
mechanism synchronizes processors at each time steps.

5. Results

An experimental cycle-by-cycle simulator is implemented
on a personal computer by using an object oriented
programming language. Experimental parameters (values)
are chosen from the references ([3], [8], [10], [11], [18],
[34], [44], [50], [57]). Two parallel application case
studies with the experimental parameters (values) run on
the simulator. First one is the volume visualization and
second is N-body problem. Programs for the case studied
are developed and applied to the simulator. The CRrCW
multiprocessor system and conventional multiprocessor are
compared with each other related to the applications. Then,
the requirements of a CRrCW multiprocessor system are
explored for various situations. Memory multiple access
model with sliding caches is tested for changing parameter
and examined for best performance. The cluster
controlling technique is also employed to enhance the
performance of the multiprocessor system. Simple multiple
access bus structure and allocation technique is applied
and tested for the scientific applications. The simulations
results show that a CRrCW multiprocessor system with
memory and bus organization, and the right number of
busses and memory modules is more scalable than a
distributed memory multiprocessor. A CRrCW
multiprocessor system with general-purpose powerful
processors exploits the local and global parallelism across
the system at medium and coarse grain levels.

Several metrics such as speed-up, efficiency and average
memory access time are used to measure and compare
performance of the systems. Following abbreviations are
used on the figures SMM, DMM, and CRrCW-M stands for
Shared Memory Multiprocessor, and Distributed Memory
Multiprocessor, and CRrCW Multiprocessor respectively.
CB, NC, VV and NB stand for Threads, Clusteral Bus, No
Cluster, Volume Visualization and N-Body respectively.

Simulation results show that a CRrCW multiprocessor
system provides the best scalability for medium and coarse
grain tasks. A CRrCW multiprocessor system with a large
number of processors is more efficient than a shared and
distributed memory multiprocessor. As it can be seen from
the Figure 6, the CRrCW multiprocessor with two threads

provides the best speed-up for larger number of processors.
Here, the dominant communication in volume
visualization is amongst the neighboring processors. The
distributed memory multiprocessor system yields speedup,
which is quite better than the shared memory
multiprocessors system. Even the shared memory

multiprocessors with private caches produce satisfactory
speedup for volume visualization.

Fig. 6 A comparisons of the multiprocessors models for volume
visualization.

Fig. 7 A comparisons of the multiprocessors models for N-body

problem.

The speedup results for the multiprocessor systems are
illustrated in the Figure 7. Here, CRrCW multiprocessor
system with two threads produces the best performance for
the N-body application. The shared and distributed
memory multiprocessor systems are not scaleable because
the communication in N-body is global and many non-
regular memory accesses are needed. Thus, the CRrCW
multiprocessor system uses the broadcast ability of the
architecture to provide the best performance.

1

10

100

1000

1 2 4 8 16 32 64 128
Number of processing elements

Sp
ee

d-
up

Linear Speed-up
NB-SMM
NB-DMM
CRrCW-M

1

10

100

1000

1 2 4 8 16 32 64 128
Number of processing elements

Sp
ee

d-
up

Linear Speed-up
VV- SMM
VV- DMM
VV-CRrCW-M

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

68

Fig. 8 The multiprocessors system with and without clustering

for varying number of busses.

Fig. 9 A comparisons applications on the system with varying
number of threads.

Figure 8 shows that how the number of buses on a CRrCW
multiprocessor system affects the efficiency of the system
when chosen applications run on the simulator. The
relation between number of buses and number of
processors on the system are shown in the figure for 1, 2, 4,
8, 16, 32, and 64 buses. The numbers of buses needed for
an efficient parallel system largely depends on the scale of
the system and applications. If an application runs on the
parallel system that requires less remote memory accesses,
the system with a small number of buses provides a linear
speed-up for the application. If the relationship between
the number of processors and the number of buses on the
system are considered, a large-scale parallel system with
enough number of buses provides high scalability. The
CRrCW multiprocessor system with 16 processors, two
threads and 3 buses provide over 90% efficiency.

Here, the Network Folder is used to create a ring of busses
in order to enhance the clustering and multicast ability of

the network. The use of the interrupt and synchronization
buses coordinates synchronization and communication
between processors. Here, the volume visualization
exploits the clusteral usage of the busses because
communication in parallel volume visualization tends
neighboring processors ([17], [18], [31], [42], [54]). Thus,
more local communication implies that more clusters can
be formed on a bus and used simultaneously. On the other
hand, the clustering technique does not help to improve the
performance of the N-body application. Even, small
performance degradation can be observed. Because, the
clusteral busses technique uses extra bits to determine
length of the cluster originating from the central processor
at the cluster center. Therefore, this extra information
affects the performance of the network when network
suffering from high level of the communication demand.

Fig. 10 Changing number of memory modules.

Fig. 11 Changing size of each sequential access.

Results shown on the Figure 9 are obtained for the
multiprocessor system with one to four threads. Even two
threads may improve the performance of the system
dramatically. More than four threads do not provide
further improvement over the performance. This is
depended on the scale and communications activities of
the system and application run on the system. The memory
model with sliding caches is also simulated on the personal

70

80

90

100

110

2 4 8 16 32 64 128
Number of processing elements

Ef
fic

ie
nc

y

Full Efficiency
VV-1Th
VV-2Th
VV-4Th
NB-1Th
NB-2Th
NB-4Th

0

20

40

60

80

100

120

1 4 8 16 32 64

Number of Busses

Ef
fic

ie
nc

y

%100 Efficiency
VV-NC
VV-CB
NB-NC
NB-CB

2
3
4
5
6
7
8
9

10
11
12
13
14

25 50 100 250 500 1000
Number of memory modules

A
va

ra
ge

 m
em

or
y

de
la

y

Memory Size 1-Random
Memory Size 2-Random
Memory Size 3-Random
Memory Size 1-Sequential
Memory Size 2-Sequential
Memory Size 3-Sequential

2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 4 8 16 32 64 128
Length of sequential accesses

A
va

ra
ge

 m
em

or
y

de
la

y
Memory Size 1-Sequential
Memory Size 2-Sequential
Memory Size 3-Sequential
Memory Delay

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

69

computer. The benefits of the sliding caches memory
model can be seen in Figure 10 and 11. The average
memory access times obtained using various number of
memory modules is shown in Figure 10. For lower number
of memory modules more cache modules are needed to
reduce average memory delay. As can be seen in the figure,
when a large number of memory modules are used, the
need of the sliding caches is decreased dramatically.
Figure 11 illustrates the effect of increasing length of
sequential memory accesses. The length of sequential
fetches has a little effect on average memory delay so that
doubling number of cache modules is enough for the best
performance. These last two graphs show that sliding
cache memory provides the best performance for the
CRrCW multiprocessors. Finally it can be said that
memory size and cost of the CRrCW multiprocessor
system are independent of scale of the parallel computers.

5. Conclusion and future work

In this paper a CRrCW multiprocessor system have been
proposed, examined and compared with other
multiprocessor models. This multiprocessors system with
the intelligent and multiple access memory organization,
and network organization provides better performance
than all other multiprocessor systems. This memory
organization for the CRrCW multiprocessor system adapts
itself according to the demand of the application and uses
concurrent read and restricted write for the best
performance. The dynamic network organization also
allows exploiting full bandwidth of the network without
regarding the communication demand pattern of the
application. The clusteral busses enhance the performance
of the system. On the other hand, all processors on the
system share a common memory space so programming on
the system is easier than those of on a distributed memory
multiprocessor systems. An efficient CRrCW
multiprocessor system can be designed by using general-
purpose powerful processors. This makes this system
scalable parallel computers architecture. Hence, large-scale
parallel computers with general-purpose processors may
provide wide range of multi-user and multi-processing
ability for many parallel-computing applications. As a
final word, simulation results show that CRrCW
multiprocessor architecture is potential candidate for
general-purpose parallel processing.

In this study, a CRrCW multiprocessor system have been
proposed, examined and compared with other
multiprocessor models. There are several future works that
has to be done. One of these works is that the performance
of the CRrCW multiprocessor system may be examined on
other scientific applications such as ray tracing. A real
implementation of the multiple access memory models

with sliding caches would be considered as an important
future work. For a typical parallel computing applications
bus access algorithms should be tested for the best
performance. New bus topologies and technologies may
also be examined for the best performance. The
performance of the clusteral bus controlling technique may
be explored for large range of scientific applications.

Acknowledgments

I would like to thank the Karadeniz Technical University,
in Trabzon, Turkey for supporting this research.

References
[1] A. Basu, A classification of parallel processing systems,

International Conference on Computer Design, 21-32, 1984.
[2] Adve S. V., designing memory consistency models for

shared memory multiprocessors, Ph.D. diss., Department of
Computer Science, University of Wisconsin-Madison,
Technical Report, 1993.

[3] Adve S. V. and Gharachorloo K. Shared Memory
Consistency Model. IEEE Computer 29(12):66-76.

[4] A. G. Chalmers and J. Tidmus, Practical parallel processing:
an introduction to problem solving in Parallel, (International
Thomson Computer Press, 1996).

[5] A. G. Chalmers and D. J. Paddon, Communication efficient
MIMD configurations, In 4th SIAM Conference on Parallel
Processing For Scientific Computing, Chicago, 1989.

[6] A. L. Decegam. The Technology of parallel processing:
Parallel Processing Architecture and VLSI Design. Prentice
Hall International Inc, 1989.

[7] Alexey Lastovetsky, Adaptive parallel computing on
heterogeneous networks with mpC, Parallel Computing,
Volume 28, Issue 10, Pages 1369-1407, 2002.

[8] Andrea Clematis and Angelo Corana, Modeling
performance of heterogeneous parallel computing systems,
Parallel Computing, Volume 25, Issue 9, Pages 1131-1145,
1999.

[9] Anton H. J. Koning, Karel J. Zuiderveld and Max A.
Viergever, Volume visualization on shared memory
architectures, Parallel Computing, Volume 23, Issue 7,
Pages 915-925, 1997.

[10] Archibald J. and. Barer J. L. Cache coherence protocols:
Evaluations Using a Multiprocessor simulation model. ACM
Transaction on Computer System 4(+):273-298, 1986.

[11] Barry Wilkinson and Michael Allen, Parallel Programming:
Techniques and Applications using networked workstations
and parallel computers, Prentice Hall, 1999.

[12] Bisiani R. and Ravishankar M. PLUS: A distributed shared-
memory system. Proceeding 17th International Symposium
on Computer Architecture pp.115-124. 1990.

[13] Cemal Köse, A scaleable semi-shared memory
multiprocessors architecture with sliding caches, Proceeding
of the IASTED International Conference; Parallel and
Distributed Computing and Networks, Insbruck-Austria. Pp:
415-420, 2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

70

[14] Cemal Köse, A semi-shared Memory architecture for
scaleable multiprocessor, International Journal on Signal
Processing, ICSP 2003.

[15] Cemal Köse, Multi-threaded parallel ray tracing for fast and
realistic rendering, High performance computing and data
processing symposium 2002, pp:1-8, Gebze, 2002.

[16] Cemal Köse, Multi-threading for efficient parallel volume
visualization, The Chambers of Electrical-Electronic and
Computer Engineers. 8. National Congress. 2001.

[17] Cemal Köse and Alan Chalmers, Clusteral models for
efficient parallel volume visualization, Parallel and
Distributed Computing Practices, Vol 3, Number 3, NOVA
Publisher, 2000.

[18] Cemal Köse, Parallel volume visualization, (Ph.D. thesis,
University of Bristol, Department of Computer Science,
1997.

[19] Cemal Köse and Alan Chalmers, Profiling for efficient
parallel volume visualization, Parallel Computing special
issues on applications parallel graphics and visualization,
ELSEVIER, 1997.

[20] Cemal Köse and A. G. Chalmers, Memory Management for
parallel volume rendering, 19th World Occam and
Transputer User Group Meting, P. 113-126, March 1996.

[21] Cray XT3 System Overview, CRAYDOC : S-2423-13,
Pittsburgh Supercomputing Center, 2005.

[22] David E. Culler, Jaswinder Pal Singh and Anoop Gupta,
Parallel Computer Architecture; A hardware/software
approach, Morgan Kaufmann Publisher, Inc., 1999.

[23] E. Barton, J Cownie, and et al., Message passing on Meiko
CS-2, Parallel computing, I20, 497-507, 1994.

[24] E. Gallizzi, A deadlock-free communication system for a
Transputer network, 4th North American Transputer Users
Group, p. 11-18, 1990.

[25] E. Barton, J Cownie, and et al., Message passing on Meiko
CS-2. Parallel computing, 20(4):497-507. 1994.

[26] Hagersten E., Landin A., and Haridi S, DDM Cache Only
memory architecture, IEEE Computer 25(9):44-55, 1992.

[27] Hey A. J. G. The genesis distributed memory benchmarks.
Parallel Computing 17:1111-1130., 1991.

[28] Jorge Buenabad-Chavez, Virtual memory on data diffusion
architectures, Ph.D. thesis, University of Bristol,
Department of Computer Science, 1998.

[29] Jorge Buenabad-Chávez, Henk L. Muller, Paul W. A.
Stallard and David H. D. Warren, Virtual memory on data
diffusion architectures, Parallel Computing, Volume 29,
Issue 8, Pages 1021-1052, 2003.

[30] J. Challinger, Parallel volume rendering on a shared-
memory multiprocessors, Computer and Information
Science, 1991.

[31] John D. Watts, Parallel algorithms for coupled-cluster
methods, Parallel Computing, Volume 26, Issues 7-8, Pages
857-867, 2000.

[32] John Hennessy and David Patterson, Computer
Architecture: a quantitative approach, Morgan Kaufman
Publishers Inc., 1990.

[33] Jörg Wensch and Ben Sommeijer, Parallel simulation of
axon growth in the nervous system, Parallel Computing,
Volume 30, Issue 2, Pages 163-186, 2004.

[34] Karl Solchenbach, Grid applications on distributed memory
architectures: Implementation and evaluation, Parallel
Computing, Volume 7, Issue 3, Pages 341-356, 1988.

[35] K. Batcher, Design of a massively parallel processors, IEEE
Transactions on Computers, I29: 836-840, 1980.

[36] K. Donovan, Performance of shared memory in a parallel
computer, IEEE Transactions on Parallel and Distributed
Systems, I2(2), 253-256, 1991.

[37] Leonadis I Kontothanassis and Michael L Scott, Memory
Model, Department of Computer Science, University of
Rochester, 1994.

[38] Lipton R. and Sandberg J. PRAM: Scaleable shared
memory. Technical Report. Computer Science Department,
Princeton University. 1988.

[39] Michael Florian and Michel Gendreau, Applications of
parallel computing in transportation, Parallel Computing,
Volume 27, Issue 12, Pages 1521-1522, 2001.

[40] Michael J. Quinn, Parallel Computing; theory and practice,
McGrawHill, Inc., 1994.

[41] M. J. Flynn. Some Computer Organization and their
Effectiveness. IEEE Transactions on Computer Graphics,
21(9):948-960, 1972.

[42] Mohammed Atiquzzaman, Pradip K. Srimani, Parallel
computing on clusters of workstations, Parallel Computing,
Volume 26, Issues 2-3, Pages 175-177, 2000.

[43] O. A. McBrayn, An overview of message passing
environments, Parallel Computing, 20:418-444. 1994.

[44] Paul W. A. Stallard, Henk L. Muller, and David H. D.
Warren. Performance Evaluation of Parallel Programs on the
Data Diffusion Machines. In Performance Evaluation of
Parallel Systems, PEPS '93, pages 94-101, UK, 1993.

[45] P. W. Liu, and et al., Distributed computing: new power for
scientific visualizations, IEEE Computer Graphics and
Application, 16(3), 42-51, 1996.

[46] Pittsburgh Supercomputing Center,
http://www.psc.edu/general/hardware.html, 2005.

[47] R. B. Mueller-Thuns, D.G. Saab, R.F Damiano and J. A.
Abraham, Benchmarking parallel processing platforms: an
applications perspective, IEEE Transactions on Parallel and
Distributed Systems, I4(8), 42-51, 1993.

[48] Rhys Francis and Ian Mathieson, Synchronized execution
on shared memory multiprocessors, Parallel Computing,
Volume 8, Issues 1-3, Pages 165-175, 1988.

[49] S. A. Green and D. Paddon, A non-shared Memory
multiprocessor architecture for large database problems,
Proceedings of the IFIPS WG 10.3 working Conference on
Parallel processing, Pissa. 1988.

[50] S. Bandini, G. Mauri and R. Serra, Cellular automata: From
a theoretical parallel computational model to its application
to complex systems, Parallel Computing, Volume 27, Issue
5, Pages 539-553, 2001.

[51] Technical Summary (KSR, KSR1), Kendall Square
Research Corporation, 1992.

[52] SGI (Silicon Graphics, Inc),
http://www.sgi.com/products/servers/altix/memory_perform
ance.html, 2005.

[53] Thomas Branul. Parallel programming an introduction,
Prentice Hall International, 1993.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

71

[54] Thomas W. Crockett, An introduction to parallel rendering,
Parallel Computing, Volume 23, Issue 7, Pages 819-844,
1997.

[55] V. Chaudhary and J. K. Aggarwal, A generalized scheme
for mapping parallel algorithms, IEEE Transactions on
Parallel and Distributed Systems, I4(3), 328-346, 1993.

[56] Umakishore Ramachandran, Gautam Shah, S. Ravikumar
and Jeyakumar Muthukumarasamy, Scalability study of the
KSR-1, Parallel Computing, Volume 22, Issue 5, Pages 739-
759, 1996.

[57] U. Neumann, Communication cost for parallel volume
rendering algorithms, IEEE Computer Graphics and
Applications, I2, 49-58, 1994.

Cemal Köse was born in Trabzon, Turkey. He received the B.Sc.
and M.Sc. degrees in Electrical and Electronics Engineering from
Karadeniz Technical University (KTU) in 1986 and 1990,
respectively. He received the Ph.D. degree from The University
of Bristol in 1997 in computer science. Currently, he is an
Assistant Professor in the Department of Computer Engineering
at KTU. His major research interests are in parallel computers,
pattern recognition and natural language processing.

Özcan Özyurt was born in Trabzon, Turkey. He received the
B.Sc. and M.Sc. degrees in Department of Computer Engineering
from Karadeniz Technical University (KTU) in 2001 and 2006,
respectively. He is currently Ph.D. student at the same
department. He is also a lecturer in Beşikdüzü Vocational High
School at KTU. His major research interests are in parallel
computers and natural language processing.

