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Summary 
This paper presents a scalable multiprocessor architecture with 
multiple access memories and multi-way busses. This parallel 
architecture with more intelligent memory model and efficient 
multi-way interconnection network organization is called as 
CRrCW (Concurrent Read and restricted Concurrent Write) 
scaleable multiprocessor system. The memory and network 
model provides concurrent memory accesses and more memory 
bandwidth for a CRrCW scaleable multiprocessor system. Thus, 
the proposed multiprocessors system with the memory model and 
network take advantages of both multiprocessor systems with 
shared memory and distributed memory. In this paper, 
conventional shared, distributed memory multiprocessor and the 
CRrCW multiprocessor are examined under various conditions 
and also compared with each other. A sliding caches memory 
model is used to reduce the cost of the CRrCW multiprocessor 
system. A cluster controller is also used to enhance the broadcast 
and multicast ability of the interconnection network. Simulation 
results of the sliding caches memory model show that memory 
requirements of a CRrCW multiprocessor system is almost 
independent of scale of the multiprocessor. In addition this, 
simulation results of the interconnection network also show that 
even small number of the connection per processors greatly 
enhances the scalability of the multiprocessor system. Two 
scientific applications, volume visualization and N-body problem, 
is chosen to examine performance of the system. These 
applications case studies represent a range of important behaviors 
found in parallel computing. The CRrCW multiprocessor system 
with special interconnection network and intelligent memory 
organization provides high speed-up and efficiency over 
conventional shared and the distributed memory multiprocessor. 
Therefore, the CRrCW multiprocessor system is a potential 
candidate for large-scale parallel computing applications. 
Key words: 
Multiprocessor systems, multiprocessor architectures, memory 
architectures, scaleable multiprocessor, simulation of 
multiprocessor systems. 

Introduction 

Conventional multiprocessor systems can be classified as 
shared (centralized) and distributed memory 
multiprocessor. A shared memory multiprocessor is known 
as tightly coupled systems that whole processors on the 
system share a common memory space. All data exchanges 
and synchronization are done on the shared memory space. 

The shared memory multiprocessor allows the processors 
to communicate by reading from and writing to the 
common address space, so a shared memory 
multiprocessor based on buses or cross-bar switches are 
convenient for programming but are not scalable due to 
memory contention when processors accesses memory. A 
distributed memory multiprocessor is also known as 
loosely coupled systems ([1], [22], [32], [38], [40] [53]). 
Each processor on this system has its own private memory. 
Inter-processor communications are done by sending 
messages to appropriate processor along an 
interconnection network ([4], [8], [23], [25], [45]). This 
increases delay and cost of the communication. Therefore, 
message-passing or distributed memory multiprocessor is 
scalable but more difficult to program than the shared 
memory multiprocessor.  
 
Scalable shared memory multiprocessors aim to combine 
the benefits of both shared memory and distributed 
memory multiprocessors, by supporting a shared address 
space on top of physically distributed main memory 
(virtually shared memory multiprocessors) ([1], [2], [12], 
[14], [28], [36], [42]). There are several shared memory 
multiprocessors but they are not scaleable and efficient 
enough for large-scale applications ([4], [15], [19], [27], 
[45], [56]). In this paper, proposed model of parallel 
processors with a special network and memory 
organization offers a solution for scalability and 
programmability. Here, multiple access memory 
organization is proposed that it allows concurrent reading 
and restricted concurrent writing to a remote memory 
module. A clustered broadcast and multicast 
interconnection network is also proposed to enhance 
communication across the multiprocessor system. Then, a 
memory access unit employed to handle communication, 
memory accesses, and maintain consistency across the 
system. This reduces complexity and overhead of 
processors because of the communication. 
 
This proposed multiprocessor architecture with an 
intelligent memory and a special network organization is 
similar to the distributed memory multiprocessor because 
each processor on the system has its own private memory. 
In addition to this each local memory is also represented in 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006 
 

 

61

a common shared memory space.  In other words, all local 
memories are presented in a shared memory space that can 
be directly accessed by any processor without interrupting 
the local processor. Thus system with the intelligent 
memory network organization allows concurrent reading 
and restricted concurrent writing. Consequently, this 
model takes advantages of both shared and distributed 
memory multiprocessors such therefore it is a scalable 
shared memory multiprocessor ([4], [9], [12], [13], [27], 
[38]). On the other hand, this proposed distributed 
multiprocessor model with low memory contention and 
delay is more programmable than the conventional 
distributed memory multiprocessors. Simulation results 
also show that the CRrCW multiprocessor system is a 
suitable candidate for general-purpose parallel computing 
([1], [7], [11], [16], [30], [35], [39], [54]). 

2. Scalable Multiprocessor Architecture 

The main difference between shared and distributed 
memory multiprocessor is in their organization of 
interconnection methods. A connection method on a 
shared memory multiprocessor system allows all 
processors to access shared memory. If more than one 
processor wants to access the shared memory at the same 
time, an arbitration mechanism ensures one processors 
access that memory portion at a time. Thus, increasing the 
number of processors on a shared memory multiprocessor 
creates a bottleneck of memory access. On the other hand, 
each processor on a distributed memory multiprocessor 
has a private memory instead of a shared memory for all 
processors. If one processor wishes to access another 
processor’s private memory, it can only do by sending a 
message to appropriate processor through the 
interconnection network. Therefore, distributed memory 
multiprocessor has no memory contention problem 
because each processor on the system has its own private 
memory that can be accessed by only the local processor. 
Here, the network and hardware organization of the 
distributed memory multiprocessors have to be known by 
the programmer due to the fact that these details may make 
difficult programming on a distributed memory 
multiprocessors. Also efficiency of a distributed memory 
multiprocessors may not be very high because of limited 
number of communication channels, high density of the 
messages across the system and high memory latency at 
remote memory accesses. However, distributed memory 
multiprocessor systems are more scalable than a shared 
memory multiprocessor systems but not easily 
programmable. 
 
All processors on a CRrCW multiprocessor system as 
illustrated in Figure 1 have a private memory and cache for 
scalability. All of these private memories and caches are 

also represented on a common shared memory space so 
that all processors on the system can access them. In this 
case, the CRrCW multiprocessor behaves as a shared 
memory multiprocessor and represents characteristics of a 
shared memory multiprocessor system. So other remote 
processors can access any memory module on the shared 
memory space without interrupting access of the other 
memory modules on a local memory module. Then, for a 
processor reading from and writing to its private memory 
is called as local memory access, and whereas reading 
from and writing to a remote memory module is called as 
remote memory access. Here, Px, Mx, Cx, SCx, and MAC 
represent Processors, Memory, Cache and Memory Access 
Controller respectively. This multiple access memory 
architecture enhances the bandwidth between processors 
and memory modules. 

Fig. 1 A simple CRrCW multiprocessor model. 
 
3. Concurrent Read and restricted 
Concurrent Write Multiprocessor 
Architecture  
 
In literature, several scalable-shared memory models were 
presented so that these models differ in how to handle read 
or write conflict from the main memory ([1], [12], [13], 
[14], [38]). Several multiprocessor systems with different 
global memory access policies were implemented such as 
DDM and KSR1 ([26], [51], [56]). Recently, several 
research companies have announced a few high 
performance parallel computers. One example of these 
high performance computers is introduced by Silicon 
Graphics so that it has a more loosely coupled globally 
shared memory with larger average remote memory delays 
[52]. Another latest system, relies on multidimensional 
networks, is introduced by Pittsburgh Supercomputing 
Center ([21], [46]). In general, these systems have very 
complex memory and network structure ([2], [6], [20], 
[29], [37], [41], [48], [49]) and data consistency protocols 
of these systems are very complex and expensive. For 
example, exclusive writing is very complex and expensive 
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operation because it requires cancellations of other copies 
of a data across multiprocessors. Scalability of these 
systems may be questioned. Proposed CRrCW 
multiprocessor model supports Concurrent Read restricted 
Concurrent Write (CRrCW) ([13], [14]).  In this model, 
concurrent reading is allowed but restricted concurrent 
writing is permitted. In other words, this model allows 
restricted concurrent writing for remote processors and the 
number of concurrent writes to a remote memory location 
is limited by connection network and current status of the 
sliding caches on the memory unit.  

 
Fig. 2 A CRrCW multiprocessor architecture. 

 
Each processor on CRrCW multiprocessor system as 
illustrated in Figure 2 has a private cache and memory for 
scalability. All these private memories are also represented 
on a common shared memory space that can be accessed 
by all other processors. In this case, the CRrCW 
multiprocessor behaves as a shared memory 
multiprocessors and represents characteristics of a shared 
memory multiprocessors. A processor can access any 
memory module on the shared memory space without 
interrupting access of the other memory modules so each 
processor can access its own private memory without any 
interrupt by any other processors.  Thus, any processor 
through the special network can access any memory 
module on the shared memory space. Here, the number of 
the processors on the system does not limit this access but 
the number of the buses. For a processor reading from and 
writing to its private memory is called as local memory 
access, and whereas reading from and writing to a remote 
memory module is called as remote memory access. The 
amount of remote memory accesses may affect the 
efficiency of the system but the number of the local 
memory accesses. Therefore, one thread may be suspended 

awaiting a remote data item, the other threads may still be 
able to continue. To maximize the performance of the 
system multi-threading overlaps the communication and 
computation. If there are sufficient threads then any 
processing element should always be performing useful 
computation.  Hence, a large-scale this multiprocessor 
system with enough number of buses and the proposed 
memory organization provides more potential for parallel 
processing. Here, it is suggested that memory accesses, 
broadcast and multicast on the shared memory space are 
also performed by hardware, so reducing the 
communication overhead increases scalability and 
efficiency of the CRrCW multiprocessor system 
multiprocessors. Then, a CRrCW multiprocessor system 
with the shared memory space and private memories of 
each processor is a scalable-shared memory multiprocessor 
architecture.  
 
Architecture of the CRrCW multiprocessor system 
illustrated in the Figure 2 consists of processors, memory 
units, bus managers, and busses. A memory unit consists 
of a multiple access Local Cache (LCx) and a private 
Memory (Mx), Sliding Caches (SCx), and Memory Access 
Controller (MAC). Each bus manager consists of a 
Memory Access Unit (MAU), a Bus Management Unit 
(BMU), and Cluster Controller (CC). Each processor on a 
CRrCW multiprocessor has a private memory so each 
processor can exclusively read and writes its own local 
memory. Each these local memories are also represented 
on the shared memory space by memory modules. These 
multiple access memory modules are concurrently read by 
all processors and written by the local processor and 
restricted concurrently written by the remote processors. 
The scaleable (CSCU) uses a released consistency model 
so that date items across the system are updated by using 
the consistency repair mechanism but paging tables is 
updated constantly. Then, no false sharing false sharing is 
assumed and implemented because the communication and 
synchronisation control unit maintains the data consistency 
across the parallel system. The communication and 
synchronization busses are used to synchronize the 
processors and help the clustering. Network Folder folds 
and connects the busses with each other, and then clusteral 
usage of the buses is allowed.  Of course without folding a 
bus multiple clusters can be created on a bus, but folding a 
bus increases the potential number of cluster that could be 
created on a bus. Then each bus can be broken into small 
clusters and each cluster on a bus is used simultaneously. 
This improves the performance of the applications with 
local communication tendency. Communication and 
synchronisation control unit (CSCU) co-ordinates the 
communication, synchronisation and consistency across 
the system. 
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3.1 Multiple Access Memory Model for the 
CRrCW Multiprocessor System 
 
As illustrated in Figure 2 a memory model for the CRrCW 
multiprocessor is not organized as a conventional memory. 
The system allows two different types of memory access 
operation. The first type is a locally read/write operation as 
local memory access. The second type is a remote read and 
restricted write operation as remote memory access. So 
this memory model allows one or more processors to 
access to a memory modules under some restrictions. 
While a local processor accesses a local memory on its 
cache and local memory without any restriction, a limited 
number of remote processors also access to the memory 
module on the memory unit simultaneously. Here, the 
limitations depend on the number of buses and multiple 
access memory modules on a memory unit. This memory 
model with the network organization allows exploiting full 
bandwidth of the communication network dynamically so 
that this isn’t related with the communication demand or 
pattern of a problem. 
 
All processors may write its own private memory and all 
memory modules on its memory unit at the same time but 
it can only read from its private memory.  A processor may 
read from any remote memory module at a remote location 
and a limited number of remote write to a remote location 
is allowed. Here, two of the ways of sharing and updating 
the global variables are possible. When a processor needs 
a remote data, a bus between processor and remote 
location is allocated for the processor. A remote memory 
module at the remote location is connected to the 
processor. The processors execute limited number of read 
operations at the remote location. The number of read 
operations is limited because of fair usage of the buses.  
Second is the way of the sharing of global values is that 
the producer of the global values updates all the copies of 
the global variables at once via the clusteral multicast 
busses. Here, multiple copies of the global shared variables 
may be created on each processor. Each writing processor 
broadcasts to update these global variables. On the other 
hand, a process produces a result and updates its copy of 
the shared data and the remote copies of the data via the 
clusteral busses. Here, system software may manage 
shared variables on each sharing processor. Then, when it 
is needed, a processor updates a data at a remote location 
while it is updating its local copy. 
 
The number of buses and scale of the system determines 
the memory requirement of the multiprocessor system. 
Then, the required memory for a system with n processors 
and m buses is n times m times of the local memory size if 
non-restricted concurrent memory access is allowed. Here, 
each local memory unit consists of m memory module so 

that each memory module on the same memory unit holds 
the same data. This increases the cost and complexity of 
the system dramatically. In this model of parallel 
computers, the memory size of the system increases with 
the number of buses. For a large-scale system, a memory 
unit cannot be designed as single memory module because 
of the wiring complexity and memory contention. Then, 
two methods may be applied to reduce the memory size of 
the system. In the first method, memory modules are 
divided into sub-modules and a processor accesses each 
sub-module simultaneously. Each unit may be divided into 
separate memory modules so this reduces memory 
contention. Thus, the number of parallel accessible 
memory modules may be chosen equal to number of 
busses, and then each bus will have corresponding 
memory module on each memory unit. This makes almost 
impossible implementation of the memory models because 
of wiring complexity and cost of the memory. In the 
second method, a module may satisfy more than one 
memory request at the same time by using sliding caches 
memory model. Sliding caches memory provides a caching 
technique that any cache module may correspond to any 
memory module and overlap with another cache modules 
according to the memory access pattern. When a sub-
memory module is contented with memory request, more 
copies of the sub-memory modules may be created to 
satisfy memory request simultaneously, and these copies 
satisfy some of the later memory accesses. A simple 
profiling technique is used to organize the sliding caches. 
Then, the number of memory modules is not equal to the 
number of the buses so memory requirements reduced 
substantially by using the multiple access memory 
modules and sliding caches. 
 
3.1.1 A Typical Multiple Access Memory 
Module for the Multiprocessor System 
 
One or more processors may access same memory unit 
simultaneously. The proposed memory module is 
illustrated in Figure 3, and Lx represents multi-way latches 
and decoders decode addressees on the busses. If two 
processors need to access the same memory location at the 
same time, one of these could be blocked. This restriction 
is the most important problem of the memory organization. 
Thus, there are four possibilities. Firstly, both processors 
read the same memory location simultaneously. Here there 
is no problem so both processors may continue reading the 
memory location simultaneously.  Secondly, while a local 
processor is writing a memory location, another processor 
is reading the same memory location.  In this case, data 
consistency may be disrupted because of the simultaneous 
access. Thirdly, while a remote processor is writing to a 
memory location, the local processor reads from the 
memory location. Lastly, both remote and local processors 
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are writing the same memory location. When the four 
cases are concerned, any remote processors should not 
block the local processors while they are operating on a 
remote memory. If a processor should be blocked because 
of operating on the same memory location, it must be the 
remote processor. Here, it is aimed that any processor fully 
able to control its local memory without considering data 
consistency. Data consistency is maintained by CSCU and 
higher-level protocols. 

Fig. 3 A typical multiple access memory module. 
 
Here, all cases should be examined carefully because the 
efficiency of a system widely depends on organization of 
the memory unit. When the details of the model are 
carefully examined, three critical timing problems are 
observed. The first problem occurs while a local 
processors writing a local memory location, another 
remote processor wants to read/write from/to the same 
location. In this case remote processor is blocked by the 
memory busy signal. The local processor finishes the 
operation and then the remote processor is released. The 
second problem is that a processor is reading/writing 
from/to a remote memory location then the local processor 
started to write at the same memory location. The remote 
processor may continue immediately after the local 
processor finishes the reading/writing. The third problem 
arises when a local processors starts to write to a memory 
location and a remote processor starts to read/write from/to 
the same memory location at the same time. The local 
processor finishes its operation and the remote processor 
reads/writes. Here, data dependencies are not considered 
and data consistency is maintained by a higher-level 
protocol ([2], [3], [5], [22], [32], [44], [51], [56]). Here, 
dividing the memory access operation into time slices and 
one micro level memory access operation is executed in a 
memory access cycle such as address decoding, reading 
from, writing to, and etc. A memory access is divided into 
number of stages of memory operations as equal time 
slices. If more than one processor operates on the same 
memory location at the same time, remote processor may 
be delayed at the most two micro cycles. Then, memory 
delays may be reduced to a small fraction of the time that 
is determined by period of the clock. 
 

3.1.2 Multiple Access Sliding Caches Memory 
Model  
 
Increasing the number of processor on the multiprocessor 
system increases the memory requirements of the system. 
Dividing memories into small memory modules is still 
expensive because large-scale multiprocessor requires 
large memory sizes for scalability. Using several single 
blocks overlapping caches are also not flexible and 
feasible to support all memory access patterns. On the 
other hand, implementation cost of the memory model is at 
acceptable level when sliding caches memory model is 
used and independent of scale of parallel system. As 
illustrated in Figure 4.a and b this memory model may 
answer to all sequential, local and random memory 
accesses. Simulation results shows that sliding caches 
memory model reduces the memory requirements of the 
parallel system so that doubling local memory size makes 
the parallel system almost independent of scale of the 
system.  

Fig. 4 Sliding caches for (a) a random (b) a sequential 
access pattern. 

 
A sliding caches memory unit is consists of many multiple 
access sliding caches overlap with each other according to 
the memory access demand. This memory model with 
small cache blocks provide a caching technique that any 
cache module may correspond to any memory module and 
overlap with another cache modules according to the 
memory access pattern. This memory model can serve to 
all local and global memory accesses without increasing 
the memory delay. Then, memory requirement or memory 
size of a CRrCW multiprocessor system is almost 
independent of the scale of system. This is one of the 
important factors while designing a large-scale CRrCW 
multiprocessor system. 
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3.2 Bus Manager for the Multiprocessors 
System 

Both memory and bus organization are very important for 
an efficient multiprocessor system. As illustrated in Figure 
5 a bus manager consists of three units. The first unit on 
the bus manager is the Memory Access Unit (MAU) that 
connects buses to target multiple access memory modules. 
This memory access unit decodes addresses on the bus 
(DB: Decoder and Bus Directory) and connects the bus 
and memory module for a remote access. The second 
memory unit on the bus manager is a Bus Supplier Unit 
(BSU), which supplies buses for each processor pending a 
bus. The third unit is Cluster Controller (CC) for creating 
clusters for multicast according to the demand of the 
problem. Here, Bus Switch (BS) is used to allow multiple 
segments (cluster) on a bus simultaneously. Then, 
processors uses this multicast clusters to broadcast 
messages to its neighboring processors.  

Fig. 5 Typical bus manager architecture.  
 
The bus manager unit supplies buses for each bus 
requesting processor. When a bus supplier receives a bus 
request for a processor, the bus supplier allocates a non-
occupied bus for that processor immediately. If more than 
one processor are racing for a single non-busy bus, a fair 
bus allocation schema is need for the best performance. 
The bus management unit provides a fair allocation of 
busses for simultaneous accesses. Then bus is allocated for 
one of the racing processors and other processor waits for 
a bus to be released. Two bus management policies may be 
applied. These policies are centralized and distributed bus 
management. For each requesting processor the bus 
manager allocates a bus that is not in use. Then bus 
director directs the bus to a memory module on the 
memory unit by checking the address available on the bus. 
Broadcast and multicast writes is performed on each 
processors along the spanning cluster. Finally processor 
bus memory connection is established. For limited period 
of time, the processor or a direct memory access unit 
transfers the data. Then, the bus is released for another 
usage. Bus contention may occur on large-scale system 
because of excessive remote memory accesses at a short 
time period. When the system supplied with satisfactory 

number of buses for a problem, it is expect that the bus 
contention would not occur. Experiments show that the 
number of buses needed is about one fifth of the number of 
processors on the system for an efficient multiprocessor 
system. So, the number of busses needed for a large-scale 
CRrCW multiprocessor is a small percentage of the 
number of processors on the system. Of course, this also 
depends on the application running on the system. 
 
Although complexity of the system mostly depends on the 
number of the buses on a system, a large-scale CRrCW 
multiprocessor should be supplied with satisfactory 
number of buses. Here, three implementations of buses are 
possible. The first model includes complete control, 
address and data buses that are necessary for fast memory 
access. In this case, wiring complexity may make 
impossible design of the system. In the second model, 
using special technologies such as fiber optic technology 
and multiplexing techniques reduce numbers of bits on the 
buses. Memory accesses may not be as fast as those of first 
model because of the technology but wiring complexity is 
reduced dramatically. The last model may use technologies 
such as Local Area Networks that may be recommended 
for medium and coarse grain parallelism ([7], [23], [24], 
[43], [45], [55], [57]).  In this study, the second type of bus 
organization with clustering ability is suggested for the 
multiprocessor system. Each cluster on a bus may span 
several nodes related to the communication-demand of the 
application. The Interrupt and synchronization busses are 
used to coordinate communication and synchronization 
across the system. 

4. Parallel Application Case Studies 

Multiprocessor systems are used for a wide range of 
applications from scientific to commercial computing.  In 
this study, two scientific case studies are chosen from 
scientific computing; one is from computer graphics, and 
another is from astrophysics. These case studies are chosen 
to represent a range of important behaviors found in other 
parallel programs as in ([17], [22], [33], [43], [45], [47], 
[53]). The first case study is from computer graphics. 
Volume visualization technique traverses large three-
dimensional objects with local memory access pattern and 
renders it into a two-dimensional image for display. 
 
The second case study is chosen as another important form 
of scientific computing problem. The computational 
complexity is determined by large number of bodies that 
interact with each other and move around in three-
dimensional space as a result of these interactions. This N-
body problem is commonly used for simulating galaxies in 
astrophysics, proteins, and electromagnetic interaction. 
Hierarchical N-body algorithm is also been used to solve 
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important problems in computer graphics. The hierarchical 
N-body problem has more irregular and unpredictable 
memory access pattern. These case studies are part of 
benchmark suite that is widely used in architectural 
evaluations in literature and they are used to illustrate 
architectural performances in this study. 

4.1 Parallel Volume Visualization 

Volume visualization is the generation of a series of 
images from discrete samples by moving the viewpoint 
when examining three-dimensional volume data. Then, 
volume visualization provides an important tool for 
extracting meaningful information from three-dimensional 
objects in a non-intrusive manner. Volume visualization 
process requires a very large amount of computing and 
memory resources, and thus even the synthesis of a simple 
image may take many minutes, even hours on a sequential 
computer ([17], [18], [19], [32]). Therefore, this is a good 
candidate problem for benchmarking a multiprocessor 
architecture. Volume visualization has also inherent 
significant variations in computational complexity 
associated with the tasks required to solve the problem and 
very large memory requirements thus complicating its 
parallel implementation. 
 
The computational models for parallel volume rendering 
may be classified as either volume partitioning or image 
partitioning depending on how these tasks are carried out 
in the parallel implementation. In volume partitioning, the 
volume data is divided in to a number distinct or 
overlapping regions and each region is assigned to a 
particular processor on the system. The volume 
partitioning approach performs the reconstruction and re-
sampling tasks with the volume data held at each processor. 
As large volume data set is distributed amongst the 
processors, each processor may only compute partial 
results of the tasks using their allocated portions of the 
volume date. In order to render the final image, it is 
necessary to combine the partial results computed by 
several processors. In image partitioning the image plane 
is initially evenly partitioned amongst the processors. Each 
processor is responsible for computing the pixel values for 
its allocated image partition. The workload at each PE is 
proportional to the number of pixel of the image plane to 
be computed. 
 
Image partitioning may require a processor to fetch data 
items from other processors in order to complete its tasks. 
The computational complexity of a task will vary from 
pixel to pixel and thus ensures an even load balance so that 
it must be possible to migrate some task from those 
processors allocated complex tasks to those whose initial 
allocation contained computationally easier ones. Use of 

early termination may significantly alter the computational 
effort required to complete task. Volume partitioning is 
less able to the use of early termination and the reduction 
in a solution would be less effected as the opacity of the 
volume increases. Here, increased variations in 
computational complexity will effect the computation to 
communication ratios. Consequently the load balancing 
within a multiprocessor system will become more 
pronounced as the number processor increases. 

4.2 Simulating the N-body Problem 

The second case study is also from scientific computing 
which analyzes that what happens when galaxies collide or 
how a random collection of stars folds into a defined 
galactic shape. This simulation would allow us to 
understand the evaluation of stars in a system of galaxies 
overtime. The N-body problem involves simulating the 
motion of a number of bodies moving under forces exerted 
on each by the others. Computing the forces among bodies 
is the most expensive part of a time-step ([11], [32]). The 
forces on each body are computed, and then the position, 
velocity, and other attributes of each body are updated in 
each time-step. 
 
A simple method to compute forces is to calculate pair-
wise interactions amongst all bodies. This has O(n2) 
computational complexity. The distribution of bodies in 
three-dimensional space is highly irregular so that bodies 
are denser in some regions and sparser in others.  This 
hierarchical approach implies that bodies in denser regions 
interact more with other bodies because these bodies may 
be taken as a single body at the center of denser body areas. 
Thus, bodies in denser regions have more work associated 
with them than bodies in sparser regions. These 
hierarchical algorithms are able to reduce the complexity 
to O(n log n). This makes it feasible to simulate problems 
with millions of stars in a reasonable time but only using 
powerful multiprocessors. A simple partitioning technique 
can be used for parallelization of the N-body problem so 
that each processor responsible for computing of each 
portion of the problem, so each data exchanges between 
processors is carried in distinct message. Thus, a large 
number of messages could result. A clever divide-and-
conquers approach to the problem uses this clustering 
bodies idea with the whole space in which one cube 
contains bodies. Then, the recursive divide-and-conquer 
algorithm is applied to each cube and sub-cubes until 
every sub-cube contains one body or less. 
 
This N-body simulation problem has far more irregular 
and dynamically changing behavior than the volume 
visualization problem. Unlike volume visualization, which 
has more regular and predictable structure of computation 
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and communication, the hierarchical N-body application 
presents many challenges for effective parallel computing. 
The hierarchical algorithm for computing forces on each 
body is an efficient method for solving the N-body 
problem in O(n log n) time complexity. The problem is 
executed in parallel in each time step and a global barrier 
mechanism synchronizes processors at each time steps. 

5. Results 

An experimental cycle-by-cycle simulator is implemented 
on a personal computer by using an object oriented 
programming language. Experimental parameters (values) 
are chosen from the references ([3], [8], [10], [11], [18], 
[34], [44], [50], [57]). Two parallel application case 
studies with the experimental parameters (values) run on 
the simulator.  First one is the volume visualization and 
second is N-body problem. Programs for the case studied 
are developed and applied to the simulator. The CRrCW 
multiprocessor system and conventional multiprocessor are 
compared with each other related to the applications. Then, 
the requirements of a CRrCW multiprocessor system are 
explored for various situations. Memory multiple access 
model with sliding caches is tested for changing parameter 
and examined for best performance. The cluster 
controlling technique is also employed to enhance the 
performance of the multiprocessor system. Simple multiple 
access bus structure and allocation technique is applied 
and tested for the scientific applications. The simulations 
results show that a CRrCW multiprocessor system with 
memory and bus organization, and the right number of 
busses and memory modules is more scalable than a 
distributed memory multiprocessor. A CRrCW 
multiprocessor system with general-purpose powerful 
processors exploits the local and global parallelism across 
the system at medium and coarse grain levels. 
 
Several metrics such as speed-up, efficiency and average 
memory access time are used to measure and compare 
performance of the systems. Following abbreviations are 
used on the figures SMM, DMM, and CRrCW-M stands for 
Shared Memory Multiprocessor, and Distributed Memory 
Multiprocessor, and CRrCW Multiprocessor respectively. 
CB, NC, VV and NB stand for Threads, Clusteral Bus, No 
Cluster, Volume Visualization and N-Body respectively. 
 
Simulation results show that a CRrCW multiprocessor 
system provides the best scalability for medium and coarse 
grain tasks. A CRrCW multiprocessor system with a large 
number of processors is more efficient than a shared and 
distributed memory multiprocessor. As it can be seen from 
the Figure 6, the CRrCW multiprocessor with two threads 

provides the best speed-up for larger number of processors. 
Here, the dominant communication in volume 
visualization is amongst the neighboring processors. The 
distributed memory multiprocessor system yields speedup, 
which is quite better than the shared memory 
multiprocessors system. Even the shared memory 

multiprocessors with private caches produce satisfactory 
speedup for volume visualization. 

 

Fig. 6 A comparisons of the multiprocessors models for volume 
visualization. 

  
Fig. 7 A comparisons of the multiprocessors models for N-body 

problem. 
 

The speedup results for the multiprocessor systems are 
illustrated in the Figure 7. Here, CRrCW multiprocessor 
system with two threads produces the best performance for 
the N-body application. The shared and distributed 
memory multiprocessor systems are not scaleable because 
the communication in N-body is global and many non-
regular memory accesses are needed. Thus, the CRrCW 
multiprocessor system uses the broadcast ability of the 
architecture to provide the best performance. 
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Fig. 8 The multiprocessors system with and without clustering 

for varying number of busses. 
 

Fig. 9 A comparisons applications on the system with varying 
number of threads. 

 
Figure 8 shows that how the number of buses on a CRrCW 
multiprocessor system affects the efficiency of the system 
when chosen applications run on the simulator. The 
relation between number of buses and number of 
processors on the system are shown in the figure for 1, 2, 4, 
8, 16, 32, and 64 buses. The numbers of buses needed for 
an efficient parallel system largely depends on the scale of 
the system and applications. If an application runs on the 
parallel system that requires less remote memory accesses, 
the system with a small number of buses provides a linear 
speed-up for the application. If the relationship between 
the number of processors and the number of buses on the 
system are considered, a large-scale parallel system with 
enough number of buses provides high scalability. The 
CRrCW multiprocessor system with 16 processors, two 
threads and 3 buses provide over 90% efficiency. 
 
Here, the Network Folder is used to create a ring of busses 
in order to enhance the clustering and multicast ability of 

the network. The use of the interrupt and synchronization 
buses coordinates synchronization and communication 
between processors. Here, the volume visualization 
exploits the clusteral usage of the busses because 
communication in parallel volume visualization tends 
neighboring processors ([17], [18], [31], [42], [54]). Thus, 
more local communication implies that more clusters can 
be formed on a bus and used simultaneously. On the other 
hand, the clustering technique does not help to improve the 
performance of the N-body application. Even, small 
performance degradation can be observed. Because, the 
clusteral busses technique uses extra bits to determine 
length of the cluster originating from the central processor 
at the cluster center.  Therefore, this extra information 
affects the performance of the network when network 
suffering from high level of the communication demand. 

Fig. 10 Changing number of memory modules. 

Fig. 11 Changing size of each sequential access. 
 

Results shown on the Figure 9 are obtained for the 
multiprocessor system with one to four threads. Even two 
threads may improve the performance of the system 
dramatically. More than four threads do not provide 
further improvement over the performance. This is 
depended on the scale and communications activities of 
the system and application run on the system. The memory 
model with sliding caches is also simulated on the personal 
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computer. The benefits of the sliding caches memory 
model can be seen in Figure 10 and 11. The average 
memory access times obtained using various number of 
memory modules is shown in Figure 10. For lower number 
of memory modules more cache modules are needed to 
reduce average memory delay. As can be seen in the figure, 
when a large number of memory modules are used, the 
need of the sliding caches is decreased dramatically. 
Figure 11 illustrates the effect of increasing length of 
sequential memory accesses. The length of sequential 
fetches has a little effect on average memory delay so that 
doubling number of cache modules is enough for the best 
performance. These last two graphs show that sliding 
cache memory provides the best performance for the 
CRrCW multiprocessors. Finally it can be said that 
memory size and cost of the CRrCW multiprocessor 
system are independent of scale of the parallel computers. 

5. Conclusion and future work 

In this paper a CRrCW multiprocessor system have been 
proposed, examined and compared with other 
multiprocessor models. This multiprocessors system with 
the intelligent and multiple access memory organization, 
and network organization provides better performance 
than all other multiprocessor systems.  This memory 
organization for the CRrCW multiprocessor system adapts 
itself according to the demand of the application and uses 
concurrent read and restricted write for the best 
performance. The dynamic network organization also 
allows exploiting full bandwidth of the network without 
regarding the communication demand pattern of the 
application. The clusteral busses enhance the performance 
of the system. On the other hand, all processors on the 
system share a common memory space so programming on 
the system is easier than those of on a distributed memory 
multiprocessor systems. An efficient CRrCW 
multiprocessor system can be designed by using general-
purpose powerful processors. This makes this system 
scalable parallel computers architecture. Hence, large-scale 
parallel computers with general-purpose processors may 
provide wide range of multi-user and multi-processing 
ability for many parallel-computing applications. As a 
final word, simulation results show that CRrCW 
multiprocessor architecture is potential candidate for 
general-purpose parallel processing. 
 
In this study, a CRrCW multiprocessor system have been 
proposed, examined and compared with other 
multiprocessor models. There are several future works that 
has to be done. One of these works is that the performance 
of the CRrCW multiprocessor system may be examined on 
other scientific applications such as ray tracing. A real 
implementation of the multiple access memory models 

with sliding caches would be considered as an important 
future work. For a typical parallel computing applications 
bus access algorithms should be tested for the best 
performance. New bus topologies and technologies may 
also be examined for the best performance. The 
performance of the clusteral bus controlling technique may 
be explored for large range of scientific applications.  
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