
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

84

Manuscript received September 5, 2006.
Manuscript revised September 25, 2006.

A Clustering-based Scheme for Labeling XML Trees

Sadegh Soltan,† and Masoud Rahgozar††,

University of Tehran

Summary
Tree labeling plays a key role in XML query processing. In this
paper, we propose a new labeling scheme, called Clustering-
based Labeling. Unlike all previous labeling methods, In this
labeling scheme elements are separated into various groups, and
a label is assigned to a group of elements instead of one element.
Based on Clustering-based Labeling we design a new relational
schema, similar to OrdPath scheme, for storing XML documents
in relational database. Grouping Sibling nodes into one record
reduces number of relational records needed for XML document
storage.
Our experimental results shows that our storing scheme
significantly is better than tree well-known relational XML
storing methods in terms of number of stored records, document
reconstruction time and query processing performance.
Key words:
XML, Tree Labeling, Query Optimization.

Introduction

With the increasing popularity of XML, the need for
efficient storage and retrieval of XML documents becomes
more and more important. Using relational databases to
manage XML data is an attractive option[6],[7],[9].
Mapping data from XML tree structure into relational
tables and finding relation between different elements, to
answer queries, are the core tasks for these types of
databases. Every XML document can be represented by a
rooted, labeled tree[2]. There is one node in XML tree for
each document's element, attribute and value. Relation
between nodes is presented by tree edges. In a relational
database after the storage of an XML document, relation
between elements is reserved by node labels. Labels show
the exact position of each element in the XML tree
(document). Every query processing algorithm deeply
depends on the way in which XML tree is labeled Many
XML tree labeling scheme have been proposed
[14],[15][16],[18],[9]. Some methods use simple ways for
obtaining relation between elements. For example in [8]
Parent-child relation is found by 2-tuple label (ChildId
,ParentId) or in [7], each label consists of a 2-tuple (start,
end). Start and End show the occurrence position of each
element in XML document. Recent approaches are
focused on labeling to help processing of XML queries.
For example in [18], each element label

provides the path from the root to that element. There is
one common aspect for all previous labeling methods. In
all previous methods labels are assigned to all elements. It
means there is one label for each element. Assigning a
separate label for each element and storing each element in
separate record slows down the process of finding
elements relations.
In this paper, we propose a new clustering-based scheme
for XML tree Labeling. In this scheme, in contrast with
other methods, a group of element is labeled instead of a
single element. Putting all sibling elements into one group,
and assigning labels to each group is the base idea of
clustering-based labeling. This method of labeling
improves the process of finding element relations.
To show the effect of our method in XML document
storage and XML query processing, we design a new
relational schema similar to OrdPath Schema. Then we
compare our scheme to three famous relational-based
XML storage method: XRel, XParent and OrdPath. This
comparison is performed in the term of number of stored
records, document reconstruction time and query
processing performance. Clustering-based approach saves
more storage space and performs much better in parent –
child and structural queries compare to other schemes.
Organization The rest of the paper proceeds as follows:
First we discuss preliminaries in section 2. The
Clustering-based labeling scheme is presented in section
3. We discuss about implementation and experimental
results in section 4 and conclude this paper in section 5.

1. Preliminaries

1.1 XML Tree Model and Dewey Labeling

Every XML document can be modeled as a rooted, labeled
Tree. Fig. 1 presents a simple XML tree with Dewey
labeling. Dewey labeling is proposed in [17] for labeling
XML trees. In this method, each node label is a
combination of its parent label and an integer number. If u
is the x-th child of s in XML tree then label of u, label(u),
is concatenation of label of s and x which is presented as
label(s).x. For example if element label for u is 2.5.3 then
its 5th child label will be 2.5.3.5. The advantage of this

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

85

method is that for any element label, we can easily extract
node labels of its ancestors. For instance if an element
label is 5.2.3.1 then its parent label is 5.2.3, its first
ancestor label is 5.2 and so on.

Fig. 1 XML tree with Dewey Labels

1.2 XML Storage in Relational Databases

Storing XML documents in relational databases is one of
most common methods for XML storage. Many relational
schemas have been proposed but most of them are not
efficient enough to process XML Queries [6], [7], [12].
XRel, XParent and OrdPath are recent methods which
have good performance in relational XML storage an
retrieval. In this section we briefly describe Relational
schema and labeling scheme for each of these methods.

1.2.1 XRel

In This method [7], four tables are used for storing XML
documents. XRel relational schemas is presented in Fig. 2

Path (PathID, PathExp)
Element (DocId, PathID, Start, End, Index, Reindex)
Text (DocId, PathID, Start, End, Value)
Attribute (DocId, PathID, Start, End, Value)

Fig. 2 XRel relational schema

Elements, attributes and text data are stored in Element,
Attribute and Text table. All document paths (path means
the sequence of elements from root to any element) are
stored in Path table. Table 1 shows different paths
extracted from XML tree of Fig. 1.

Table 1 : Path table for XML tree Fig. 1
Paths
Bib
Bib/book
Bib/book/author
Bib/book/title
Bib/book/chapter

The idea of saving all XML paths in one table is first
proposed in this paper for better process of XML queries.

Relations between nodes are extracted from Start and End
fields.

1.2.2 XParent

Like XRel, this method also uses four tables [8]. Parent
relational schema is showed in Fig. 3.

LabelPath (ID, Len, Path)
DataPath (Pid, Cid)
Element (PathID, Did, Ordinal)
Data (PathID, Did, Ordinal, Value)

Fig. 3 XParent relational schema

Schema is very similar to XRel but relation between XML
objects is derived from distinct table, called DataPath. In
DataPath table all relations saved as (Pid, Cid), which are
stands for ParentId and ChildId.

1.2.3 OrdPath

In OrdPath method [9] XML data are stored in two tables.
Fig. 4 shows the OrdPath relation schema .In OrdPath
paper, new XML tree labeling scheme have been proposed
by the authors. The labeling method is insert-friendly
version of Dewey tree labeling. Dewey Labeling suffered
from Problem of dynamic updating. After inserting a new
node into the XML tree labeled by Dewey, many nodes
should be relabeled.

Node (OrdPathCode, Tag, NodeType, Value, PthID)
Path (PthID, PathExp)

Fig. 4 OrdPath relational schema

In OrdPath method this problem is solved by reserving
even numbers for future insertion. Fig. 5 shows an XML
tree with OrdPath labels. Only odd numbers are used for
labeling original tree. After inserting new node an even
number will be used as an intermediate node and the new
node will be the child of intermediate node.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

86

Fig. 5 XML tree with OrdPath Labels

2. Clustering-based Labeling

In all previous labeling methods a unique code is assigned
to each element. Using one code per element causes some
problems in large XML documents. Two main problems
are: 1 number of storage records becomes very large. 2 to
find a node related to some other node many node labels
should be scanned.
We proposed a new labeling method to overcome these
problems. In clustering-based method every sibling node
is clustered into a group and the label is assigned to that
group. Each group label is consisted of its parent group
label and a number called rank. Rank shows the position
of parent node in parent group. With this method of
labeling, we can put many elements together in one unit of
storage. Finding relation between siblings become faster,
compare to other methods. Fig. 6 presents this labeling
method. An XML tree is labeled with clustering-based
method as follows:

1. Root label is null.
2. All child of root node get labeled with number one

("1").
3. for any other node, x, if x is the Rth element in the

group with the label "L" then, all of the child of x are
clustered into one group and will Labeled "L.R".

For example suppose group with label "1.2.1" in fig. This
group is child of "author" element because prefix
label("1.2") shows that parent of this group is in the group
with "1.2" label and postfix label "1" shows that parent of
this group is the first element in parent group . The
"author" is the first element in "1.2" group so its parent of
"1.2.1" group.

Fig. 6 An XML tree with clustering-based labels

3. Clustered Relational XML Storage and
Retrieval

3.1 Clustered Storage

In this section we propose relational schema for storing
XML documents in relational database with the use of
clustering labeling. Schema is similar to the OrdPath
schema but sibling elements are clustered into one record.
XRel relational schemas is presented in Fig. 7.

Node (Cb, Tags, NodeType, Value, PthID)
Path (PthID, PathExp)

Fig. 7 Clustered relational schema

Cb denotes clustering-based label. Like OrdPath, path
from root to any element is stored in path table except that
for clustered elements, PthID is pointed to one upper level
path. Table 2 presents the node and path relational table in
after storing XML tree of Fig. 6 .

Table 2: Node table for clustered storing method
Cb Tags NodeType Value PthID

Null #,bib Element - 1
1 #,book#,

book
Element - 1

1.1 #,author#,
author#, title
#$XML
database#,
chapter

Element - 2

1.2 #,author#,
title#,
chapter

Element - 2

1.1.1 #,Name#,
family

Element - 3

1.2.1 #,Name#,
family

Element - 3

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

87

Table 3 : Path table for clustered storing method
PthID PathExp

1 #/bib
2 #/bib#/book
3 #/bib#/book#/author
4 #/bib#/book#/title
5 #/bib#/book#/chapter
6 #/bib#/book#/author#/name
7 #/bib#/book#/author#/family

Text values are stored beside their parent elements. For
example, in record with "1.1" label, text value "XML
database "is stored beside "title" element and it's separated
by "#$". Elements are separated by "#,".The reason that
we don’t choose only "," or "$" for element separation is
the problem which may be accrued during string matching.
Suppose we want to find all groups which have both
"author" and "chapter" elements. If we don’t use the "#"
for separation And performing Sql operator
"like %/chapter%author" on the tags field then incorrectly,
groups with the "chapters" or the "authors" tags will be
also returned as a query result. By using the "#," for
separation and performing "like %#,chapter#%,author#",
this problem will be eliminated.

3.2 Query Processing

Simple queries with "/" or "//" can be easily answered by
searching the path and the node table and then performing
some string matching on the PathExp field. Queries with
predicates which the node relations are parent-child
relation also can be answered easily by performing string
matching on the tags field. Processing Queries with
predicates and ancestor-descendent relations is like the
methods discussed in section 1.2. Here Queries should be
divided to the small, distinct, path expressions. After
finding answers for each path expression, a join is
executed on the candidate answers to find the final answer.
In chapter 4 we will show that our method act much better
compared to other methods on parent-child and structural
queries.

4 Experimental Results

We have implemented clustered Storage method, and
performed a series of performance experiments in order to
check the effectiveness of the method. In this section, we
report the outlines of the implementation and the
experimental results.
We used PC with (Pentium 4 3.0 GHz Dual Core Cpu,1
GB memory and 80GB SATA 7200 RPM disk) running
Windows XP+ Service Pack 2 and Microsoft SQL Server
2000 (Personal Edition). We used sun JDK 1.4.2 and SAX

parser for loading XML documents into relational tables.
Data set is SigMod XML document (467Kb ,year:2001) .
We compare our method to XRel, XParent and OrdPath
methods with three aspects of : number of stored records,
document reconstruction time and query processing
performance.

4.1 Number of Stored Records

Table 4, shows the number of stored records in each four
relational storage methods. Grouping sibling elements, into
one record effectively decreases number of records for
clustered method.

Table 4: Comparison of records number in four methods
Schema Table

Name
Num of
Record

s
LabelPath 12
DataPath 15,262
Element 15,263

XParent

Data 12,113
Path 12

Element 11,526
Text 11,526

XRel

Attribute 3,737
NodeTable 15,263 OrdPath
PathTable 12
NodeTable 6880 Clustered
PathTable 12

4.2 Document Reconstruction Time

Document reconstruction time, is the time needed for
building the original XML document from data, stored in
the relational tables. Fig. 8 shows the elapsed time for
reconstruction SigMod XML document in each method.

0

2

4

6

8

10

12

14

16

XRel XParent OrdPath Clustered

E
la

ps
ed

 T
im

e
(m

in
)

Fig. 8 Elapsed time for document reconstruction

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

88

 In document reconstruction we need to scan whole
database and step by step building XML document. With
clustered storage we access the child of a node by only
one record access. So compared to other methods in each
step bigger part of XML tree can be built in our method.
This reduces the time needed for document reconstruction.

4.3 Query Processing Performance

To evaluate query processing performance, we measure
logical read for six types of queries. Table 5 shows the
queries which are used for performance evaluation.

Table 5 Queries for evaluation of query processing performance
 Query Specifi

cation
Q1 /sigmodRecord/issue Simple

path
Q2 /sigmodRecord/issue/articles/article/authors/aut

hor
Long

simple
path

Q3 //article/title One
"//"

Q4 //articles//author Two
"//"

Q5 /sigmodRecord/issue/articles/article[title=’Datab
ase Directions III Workshop Review.’]/authors

Predica
te

Q6 /sigmodRecord/issue/articles/article[//author=’
Michael Stonebraker’]/title

Predica
te

with
"//"

To answer Q1 and Q2 we first find path ids for
"/sigmodRecord/issue" and
"/sigmodRecord/issue/articles/article/authors/author" in
the Path table . Next we find records in the Node table
which has path ids equal to path ids found in Path table.
Answering to Q3 and Q4 is similar to Q1 and Q2 in spite
of we should use Sql "like" operator instead of "="
operator(for example like '% #/article#%/author' for Q4).
Answering to Q5 and Q6 is more complicated. Fig. 9
shows the tree representation of Q5 and Q6 queries.

Fig. 9 Tree representation of Q5 and Q6

In Q5 we ought to find the authors names for the article
which is titled "Database Directions III Workshop
Review" . To answer this query in our method, first we

find all the element groups in Node table which their path
is "/SigmodRecord/issue/articles/article". After that we
should check if "title" element with text value, " Database
Directions III Workshop Review " and "author" element
exist in founded groups or not. We check this by
performing Sql command:
"Like %,title#$Database Directions III Workshop
Review %,author" on tags field.
In other three methods, records with :
"/SigmodRecord/issue/articles/article/title",
"/SigmodRecord/issue/articles/article/author" and
"/SigmodRecord/issue/articles/article/" paths
are extracted. Then we join these records to answer the
query.

In Q6 we should find title of the article which its author is
"Michael Stonebraker". Answering Q6 in XRel, XParent a
OrdPath and our method is similar to Q5 except that
relation between the article and the author is ancestor-
descendent relation and we should use like operator for
this path.
Fig. 10, Fig. 11, Fig. 12 shows the logical read comparison
in four discussed methods.

1

10

100

1000

XRel XParent OrdPath Clustered

Q1

Q2

Fig. 10 Logical read for Q1 and Q2

1

10

100

1000

XRel XParent OrdPath Clustered

Q3

Q4

Fig. 11 Logical read for Q3 and Q4

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

89

1

10

100

1000

10000

100000

XRel XParent OrdPath Clustered

Q5

Q6

Fig. 12 Logical read for Q5 and Q6

Due to the easy access to sibling elements in clustered
storage, queries: Q1 through Q5 were executed with fewer
logical read. Besides, storage of the text values in the same
record of their parents significantly decrease the number
of logical read for accessing text data.
However, as the relationships between the elements in Q6
are ancestor-descendent, the execution of this query had
more logical read compare to other methods.

5 Conclusion and Future Work

XML tree labeling is a key issue for XML query
processing. In this paper we proposed a novel clustering-
based XML tree labeling. This labeling method enabled us
to cluster sibling elements into one group and store them
in one relational record. To evaluate performance of our
work we conducted some experiences in a sample data
collection. Results showed that numbers of relational
records were notably reduced in clustered storage compare
to other schemas. Document reconstruction is much faster
than other approaches. We also showed that this method
of storage reduces the number of logical reads needed for
query processing in parent-child and structural queries.
Our schema storage was similar to OrdPath method
schema. We plan to design new schema which fits to our
labeling scheme. Compression of the clustered elements
and reserving extra space for dynamic updates are among
our future work.

Acknowledgments

This work is supported by grants from TAKFA (National
Information and Communication Technology Agenda;
High Council of Informatics; Iran).

References
[1] François Yergeau, Tim Bray, Jean Paoli, C. M. Sperberg-

McQueen, Eve Maler. “Extensible Markup Language
(XML) 1.0,” (3rd edition) W3C Recommendation 4
February 2004.

[2] Document Object Model (DOM) Events Specification,
Version 1.0 W3C Recommendation 13 November, 2000

[3] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, Norman Walsh. “XQuery 1.0 and XPath 2.0 Data
Model”, W3C Working Draft, last release 23 July 2004

[4] Jayavel Shanmugasundaram, H. Gang, Kristin Tufte, Chun
Zhang, David DeWitt, Jeffrey F. Naughton, “Relational
Databases for Querying XML Documents: Limitations and
Opportunities,” Proc. Of 25th Intl. Conf. on Very Large
Data Bases (VLDB), Edinburgh, Scotland, UK, pp. 302-314,
September 1999.

[5] P. Bohannon, J. Freire, P. Roy, J. Simeon, “From XML
schema to relations: a cost-based approach to XML
storage,” Proc.18th ICDE 2002, San Jose, California, USA,
pp. 64 -75, March 2002.

[6] D. Florescu and D. Kossman. Storing and Querying XML
Data using an RDBMS. DataEngineering Bulletin, 22(3),
1999.

[7] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki
Shimura, Shunsuke Uemura: XRel: a path-based approach
to storage and retrieval of XML documents using relational
databases. ACM Trans. Internet Techn. 1(1): 110-141
(2001)

[8] Haifeng Jiang, Hongjun Lu, Wei Wang, Jeffrey Xu Yu:
XParent: An Efficient RDBMS-Based XML Database
System. ICDE 2002: 335-336

[9] O’Neil, E.; O’Neil, P.; Pal, S.; Cseri, I.; Schaller, G.;
Westbury, N.: ORDPATHs: Insert-Friendly XML Node
Labels. ACM SIGMOD Industrial Track, 2004

[10] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, and J. Naughton. Relational Databases for
Querying XML Documents: Limitations and Opportunities.
In VLDB, 1999.

[11] Cohen, E.; Kaplan, H.; Milo, T.: Labeling Dynamic XML
Trees. In Proc. of PODS 2002

[12] Supporting Efficient Streaming and Insertion of XML Data
in RDBMS, Timo Böhme, Erhard Rahm

[13] Q. Li & B. Moon, “Indexing and Querying XML Data for
Regular Path Expressions”, Proceeding of 27th VLDB
Conference, 2001, pp. 361-370.

[14] E. Cohen, H. Kaplan, T. Milo, “Labeling Dynamic XML
Trees”, Proceedings of the 21st ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems,
1992, pp. 272-281.

[15] J. Lu & T.W. Ling, “Labeling and Querying Dynamic XML
Trees”, APWeb, LNCS 3007, 2004, pp. 180-189.

[16] X. Wu, M.L. Lee, W. Hsu, “A Prime Number Labeling
Scheme for Dynamic Ordered XML Trees”, Proceedings of
the 20th Int Conference on Data Engineering, 2004.

[17] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasun- daram,
E. J. Shekita, and C. Zhang:. Storing and querying ordered
XML using a relational database system. In Proc. of
SIGMOD, pages 204{215, 2002.

[18] From Region Encoding To Extended Dewey: On Efficient..
- Lu, Ling, Chan, Chen (2005)

