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Summary 
We call grid n-ogon each n-vertex orthogonal simple polygon, 
with no collinear edges, that may be placed in a )2/()2/( nn ×  
unit square grid. In this paper we consider the Minimum Vertex 
Guard problem for this class of orthogonal polygons. As a step 
for the resolution of this general problem, we are going to study 
it for an interesting subclass of grid n-ogons: the SPIRAL grid n-
ogons, which are the grid n-ogons whose boundary can be 
divided into a reflex chain and a convex chain. 
Key words: 
Computational Geometry, Art Gallery Problem and 
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1. Introduction 

Visibility problems have been studied extensively in 
the Computational Geometry literature, and the so-called 
Art Gallery Problems ([10,14]) form an important 
subcategory within this field. Legend has it that during a 
conference in 1973, Victor Klee started the study by 
posing the following problem, which today is known as 
the original art gallery problem: How many guards are 
needed to see every point in the interior of an art gallery? 
In the abstract version of this problem, the input is a 
simple polygon in the plane, representing the floor plan of 
the art gallery, and the visibility is, of course, limited to 
the interior of the polygon. In 1975, Chvátal [2] proved 
that ⎣ ⎦3/n  guards are occasionally necessary and always 
sufficient to cover a simple polygon of n vertices. Two 
natural outgrowths of the proof of the Chvátal Art Gallery 
Theorem were to see how the ideas in the proof could be 
extended to get more general results, and to see how the 
number of guards needed might change when working 
with polygons with special characteristics. Orthogonal 
polygons, that is, simple polygons whose edges are either 
horizontal or vertical, are an important subclass of 
polygons. Interesting results on this class of simple 
polygons include the Orthogonal Art Gallery Theorem, 
proved by Kahn et al [4], in 1983. It states that ⎣ ⎦4/n  
guards are occasionally necessary and always sufficient to 
cover an orthogonal polygon of n vertices (n-ogon, for 

short). Efficient algorithms were developed to cover both 
arbitrary and orthogonal simple polygons with ⎣ ⎦3/n  and 

⎣ ⎦4/n  guards, respectively. In contrast, the MINIMUM 

VERTEX GUARD (MVG) problem, that is the problem of 
finding the minimum number of guards placed on vertices 
(vertex guards) needed to cover a given simple polygon, is 
much harder. This is a NP-hard problem both for arbitrary 
and orthogonal simple polygons [5,12]. Spiral polygons 
(simple polygons whose boundary can be divided into a 
reflex chain and a convex chain) are a subclass of 
polygons that have been usefully distinguished in the 
literature. These polygons can be recognized in linear time 
and they have arisen in “practice”. For instance, Feng and 
Pavlidis studied decomposition of polygons into spiral 
pieces for its application to character recognition [3,11]. 
Besides, spiral polygons form the first level of a hierarchy 
that contains all simple polygons, the so called k-spiral 
polygons; that are the polygons having k reflex chains. 

Our contribution: In this paper we address the MVG 
problem for an interesting subclass of orthogonal polygons, 
the SPIRAL grid n-ogons. The paper is structured as 
follows: in the next section we will define the grid n-
ogons, state useful results related to them and formalize 
the problem. In section 3 we will define and present some 
properties of the SPIRAL grid n-ogons, a subclass of THIN 
grid n-ogons, and in section 4 we will study the MVG 
problem for it. Finally, in section 5 we will draw 
conclusion and further work. 

2. Preliminaries 

For convenience, we will assume that the vertices of 
a polygon P are given in counterclockwise (CCW) order. 
A vertex of a polygon P is called convex if the interior 
angle between its two incident edges is at most π , 
otherwise is called reflex. We use r to represent the 
number of reflex vertices of P. It has been shown by 
O'Rourke (see [10]) that 42 += rn , for every n-ogon. A 
rectilinear cut (r-cut) of an n-ogon P is obtained by 
extending each edge incident to a reflex vertex of P 
towards the interior of P until it hits P's boundary. By 
drawing all r-cuts, we partition P into rectangles (called r-
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pieces). This partition is denoted by )(P∏  and the 
number of its pieces by |)(| P∏ . A n-ogon that may be 
placed in a square grid and that does not have collinear 
edges is called grid n-ogon. We assume that the grid is 
defined by the horizontal lines 2/,,1 nyy == K  and the 
vertical lines 2/,,1 nxx == K  and that its northwest 
corner is )1,1( . A correct and complete method to generate 
grid n-ogons, well described in [13] and briefly explained 
here, is the INFLATE-PASTE. Let ),( iii yxv = , for 

ni ,,1K=  be the vertices of a grid n-ogon P. INFLATE 
takes P and a pair of integers ),( qp  with [ ]2/,0, nqp ∈ , 

and yields a new n-ogon P~  with vertices )~,~(~
iii yxv =  

given by ii xx =~  if pxi ≤  and 1~ += ii xx  if pxi >  , and 

ii yy =~  if qyi ≤  and 1~ += ii yy  if qyi > , for 
ni ,,0 K= . To transform P by INFLATE-PASTE, we first 

imagine it merged in a )2/()2/( nn × square grid, with top, 
bottom, leftmost, and rightmost grid free lines. The 
northwest corner of this extended grid is the point )0,0( . 
Let )( iH ve  be the horizontal edge of P to which iv  
belongs. 
 
Definition 1. Given a grid n-ogon merged into a 

)2/()2/( nn ×  square grid and a convex vertex iv  of P, 
the free staircase neighborhood of iv , denoted by 
FSN( iv ), is the largest staircase polygon in this grid that 
has iv  as vertex, that does not intersect the interior of P 
and whose base contains )( iH ve  (see fig. 1). 
 

 

Fig. 1  A grid n-ogon merged into a  square grid and the free staircase 
neighborhood for each of its convex vertices. 

Now, we first take a convex vertex iv  of P, select a 
cell C in FSN( iv ), with center c and northwest corner , 
and apply INFLATE to P using ),( qp . Its center is mapped 
to )1,1(~ ++= qpc , which will now be a convex vertex of 
the new polygon. PASTE glues the rectangle defined by iv~  

and c~  to P~ , increasing the number of vertices by two. 
Fig. 2 illustrates this transformation. 

 

10 10 10 10

 

Fig. 2  The four grid 14-ogon that we may construct if we apply  
INFLATE-PASTE to the given 12-ogon, to extend the vertical edge that 

ends in vertex 10. 

Grid n-ogons that are symmetrically equivalent are 
grouped in the same class [1]. A grid n-ogon Q is called 
FAT iff )()( PQ ∏≥∏ , for all grid n-ogons P; and is called 
THIN iff )()( PQ ∏≤∏ , for all grid n-ogons P. Let P be a 
grid n-ogon with r reflex vertices. In [1] it is proved that, 

if P is FAT then 
4

463)(
2 ++

=∏
rrP , for r even and 

4
)1(3)(

2+
=∏

rP , for r odd; if P is THIN then 

12)( +=∏ rP . There is a single FAT grid n-ogon; 
however, THIN grid n-ogons are not unique (see fig. 3 (a)). 
We already proved that, if P is a THIN grid n-ogon, 6≥n , 
then every grid (n-2)-ogon that yields it, by INFLATE-
PASTE, is also THIN. Moreover, denoting by DG( )(P∏ ) 
the dual graph of )(P∏ , we showed that DG( )(P∏ ) is a 
path graph, i.e., a tree with two nodes of vertex degree 1, 
called leaves, and the other nodes of vertex degree 2 (see 
fig.3(b)). We also showed that, the unique convex vertices 
of a THIN grid (n-2)-ogon that could be used to yield a 
THIN grid n-ogon are those which belong to the r-pieces 
associated to the leaves of DG( )(P∏ ), which are in 
number of 4 (see fig. 3(c)). 

 

(a) (c)

v1 v
16

(b)  

Fig. 3  (a) Three different THIN grid 10-ogons; (b) Two THIN grid 10-
ogons and respective dual graphs; (c) The only convex vertices that could 

yield THIN grid 14-ogons are 1143 ,, vvv  and 12v . 

The area of a grid n-ogon P, )(PA , is the number of 
grid cells in its interior. In [1] it is proved that for all grid 
n-ogon P, with 8≥n , 3)(12 2 +≤≤+ rPAr . A grid n-
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ogon P is a MAX-AREA grid n-ogon iff 3)( 2 += rPA  and 
it is a MIN-AREA grid n-ogon iff 12)( += rPA . There are 
MAX-AREA grid n-ogons for all n, but they are not unique. 
However, there is a single MIN-AREA grid n-ogon and its 
form is illustrated in fig. 4. Regarding Min-Area grid n-
ogons, it is obvious that they are THIN grid n-ogons, 
because 12)( +=∏ rP  holds only for THIN grid n-ogons. 
However, this condition is not sufficient for a THIN grid n-
ogon to be a MIN-AREA grid n-ogon. 

 

 

Fig. 4  The Min-Area for 12,10,8,6=n  

Our main goal is to study the MVG problem for grid 
n-ogons . Since THIN and FAT grid n-ogons are the classes 
for which the number of r-pieces is minimum and 
maximum, we think that they can be representative of 
extreme behavior, so we started with them. For FAT grid 
n-ogons we already solved the problem [7]. Unfortunately, 
THIN grid n-ogons are not so easy to cover, in spite of 
their having much fewer r-pieces than FAT grid n-ogons. 
Besides, they are not unique and it seems that the number 
of THIN grid n-ogons grows exponentially with n. Thus we 
are trying to identify subclasses of THIN grid n-ogons with 
the aim of simplifying the problem’s study. In this section, 
we already characterized the MIN-AREA grid n-ogon 
subclass. In [8], we proved that ⎡ ⎤6/n  vertex guards are 
always necessary to cover a MIN-AREA grid n-ogon, and 
we also established a possible positioning for those guards. 
In this paper we will characterize another subclass: the 
SPIRAL grid n-ogons and study the MVG problem for them. 
From the k-spiral viewpoint, given a THIN grid n-ogon 
with r reflex vertices, it can have at least 1 reflex chain 
and at most r reflex chains. We already know that there is 
a THIN grid n-ogon with r reflex chains (each consisting of 
one reflex vertex), the MIN-AREA grid n-ogon, and for this 
the MVG problem is already solved. Now we will show 
that there are THIN grid n-ogons with 1 reflex chain, which 
we will call SPIRAL grid n-ogons, and we will study the 
problem concerning them. 

3. SPIRAL grid n-ogons 

In this section, we will define the SPIRAL grid n-ogon 
subclass, we will prove that for all 6≥n  there is, at least, 
a SPIRAL grid n-ogon, and, finally, we will show that a 
SPIRAL grid n-ogon is a THIN grid n-ogon. 
 

Definition 2. A grid n-ogon is called SPIRAL grid n-ogon 
if its boundary can be divided into a reflex chain and a 
convex chain. 
 

A polygonal chain is called reflex if its vertices are all 
reflex (all except the vertices at the end of the chain) with 
respect to the interior of the polygon; and is called convex 
if its vertices are all convex with respect to the interior of 
the polygon. Note that, a SPIRAL grid n-ogon P can be 
expressed as an ordered sequence of vertices 

rnr cccuuu −,,,,,,, 2121 KK  where the s'iu  are reflex and 
the s'ic  are convex. Thus, the reflex chain is the 
polygonal chain 11 ,,,, cuuc rrn K−  and the convex chain is 
the polygonal chain rnccc −,,, 21 K . We will denote by 

rr eeee ,,,, 110 −K  the edges of the reflex chain, where: 

10 uce rn−≡ ; 1+≡ iii uue , 11 −≤≤ ri ; and 1cue rr ≡ . 
 

Proposition 1. There is, at least, a SPIRAL grid n-ogon 

with 
3

4−
=

nr  reflex vertices, for all 1≥r . 

 
This proposition establishes that there are SPIRAL grid 

n-ogons, for all 6≥n ; however, they are not unique, as 
we may see in fig. 5. Now we will prove that a SPIRAL 
grid n-ogon is a THIN grid n-ogon. To show this result, we 
will first establish lemma 1. 

 

 

Fig. 5  Three different SPIRAL grid n-ogons with 12=n  (reflex chain in 
bold) 

Lemma 1. Only SPIRAL grid n-ogons can yield, by 
INFLATE-PASTE, SPIRAL grid (n+2)-ogons. 
 
Proof. Let P be a grid n-ogon and nvvv ,,, 21 K  its vertices. 
Take a convex vertex ),( iii yxv =  of P and apply 
INFLATE-PASTE, this would yield a grid (n+2)-ogon Q. 
Suppose that 1)( +≡ iiiH vvve , there are two possibilities 
for 1+iv : it can be a reflex or a convex vertex. If 1+iv  is a 
reflex vertex, then the form of the rectangle glued by 
PASTE to yield Q is illustrated in fig. 6 (Case 1); otherwise 
we will have one of the two forms illustrated in fig. 6 
(Case 2.1 and Case 2.2). 
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Fig. 6  Rectangles that might be glued by PASTE to yield Q 

In Case 1, it's easy to verify that Q is a SPIRAL grid 
(n+2)-ogon only if P is a SPIRAL grid n-ogon. In Case 2.1, 
Q is never a SPIRAL grid (n+2)-ogon, independently of P 
being a SPIRAL grid n-ogon or not, since a reflex vertex is 
inserted between two convex ones. In Case 2.2, to be able 
to draw conclusions about Q, we have to split in two 
cases: Case 2.2.1, when 2+iv  is convex, and Case 2.2.1, 
when 2+iv  is reflex (see fig 6). Such as in Case 2.1, in 
Case 2.2.1, Q is never a SPIRAL grid (n+2)-ogon. In Case 
2.2.2, it's easy to verify that Q is a SPIRAL grid (n+2)-ogon 
only if P is a SPIRAL grid n-ogon. Thus, if 1)( +≡ iiiH vvve  
and P is not a SPIRAL grid n-ogon then Q is never a 
SPIRAL grid (n+2)-ogon in any case. If 1)( +≡ iiiH vvve  
and P is a SPIRAL grid n-ogon then Q is a SPIRAL grid 
(n+2)-ogon in cases 1 and 2.2.2 and it is not a SPIRAL 
(n+2)-ogon in cases 2.1 and 2.2.1. 

Suppose, now, that iiiH vvve 1)( −≡ , in analogous 
way, we can prove that Q is a SPIRAL grid (n+2)-ogon 
only if P is a SPIRAL grid n-ogon and:  

i) 1−iv  is a reflex vertex and we select any cell C in 
FSN( iv ) (see fig. 7(a)); or  

ii) ),( 111 −−− = iii yxv  is convex, 2−iv  is reflex and we 
select a cell C in FSN( iv ) such that its center 

),( yx ccc =  verifies |||| 1 iiix xxxc −>− −  (see fig. 
7(b)). 

(a)

c~

vi
~ vi-1

~

c~

vi
~

vi-1
~

vi-2
~

(b)  

Fig. 7  Rectangles glued to P 

Consequently, only SPIRAL grid n-ogons can yield 
SPIRALS grid (n+2)-ogons, by INFLATE-PASTE. 

q.e.d. 
 

Proposition 2. Every SPIRAL grid n-ogon, with 1≥r  
reflex vertices, is a THIN grid n-ogon. 
 
Proof. The proposition is true for 1=r , because there is 
only one grid n-ogon with 1=r  and it is SPIRAL and THIN. 
Let 1≥r , we will prove that the proposition is true for 

1+r , assuming that it is true for r. Let Q be a SPIRAL grid 
n-ogon with 1+r  reflex vertices. We already know, by 
lemma 1, that Q can have been generated only from one 
SPIRAL grid n-ogon P with r reflex vertices. Moreover, the 
convex vertex iv  taken to yield Q has to be such that: 

− if 1)( +≡ iiiH vvve , then: a) 1+iv  is reflex or b) 1+iv  is 
convex and 2+iv  is reflex; 

− if iiiH vvve 1)( −≡ , then c) 1−iv  is reflex or d) 1−iv  is 
convex and 2−iv  is reflex. 

Since P is a SPIRAL it comes: in Case a) rni cv −= , in 
Case b) 1−−= rni cv , in Case c) 1cvi =  and in Case d) 

2cvi = . Furthermore, by induction hypothesis, P is a 
THIN grid n-ogon then DG( )(P∏ ) is a path graph, so it 
has two leaves. Each leaf has three adjacent vertices of P: 
one reflex vertex preceded or followed by two convex 
vertices. Thus, we can conclude that 21 ,, ccur  and 

11 ,, ucc rnrn −−−  belong to the leaves, since they are the 
only vertices of P in the above stated condition. Therefore, 
the four cases a), b), c), and d) are illustrated in fig. 8. 

 

u1

cn-r-1
cn-r c1c2

urc1

c2

urcn-r
u1

cn-r-1  

Fig. 8  From left to right: Case a), Case b), Case c) and Case d). 

In lemma 1 we also proved that the rectangle glued to 
P, by PASTE, to yield Q is of the four forms illustrated in 
fig. 9. 
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Fig. 9  Rectangles glued, by PASTE, to yield Q. 
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In any case, P is THIN grid n-ogon then 
12|)(| +=∏ rP . And we can easily check that only two r-

pieces are added to yield Q, thus 1)1(2|)(| ++=∏ rQ . 
Therefore, Q is a THIN grid n-ogon. 

q.e.d. 

4. Guarding SPIRAL grid n-ogons 

Nilsson and Wood proved that a collection of guards 
(mobile or stationary) see a spiral polygon iff they see all 
edges of the reflex chain [9]. It is easy to prove that this 
result remains true if guards are replaced by vertex guards 
in spiral n-ogons. Then we have the following lemma: 
 
Lemma 2. A collection of vertex guards covers a spiral n-
ogon iff they see all the edges of the reflex chain. 
 

Let P be a spiral polygon having n vertices, k of 
which are reflex, and having its vertices labeled according 
to our previously described conventions for SPIRAL grid n-
ogons. Nilsson and Wood also established that for a guard 
to be able to see an edge of the reflex chain ie , 

},,0{ ki K∈ , it has to be placed in a particular convex 
region, iCR , defined in the following way: 

1. if 0=i  ( ki = ), ie  is extended through 1u  ( ku ) until 
it intersects the convex chain. In this case, iCR  is the 

region bounded by 1xc rn−  ( kk ux ), 1x  ( kx ) is the 
intersection point with the convex chain, and the 
subchain of the boundary of P from 1x  ( ku ) to rnc −  
( kx ) in CCW order (see fig. 10(a)). 

2. if ki ,0≠ , ie  is extended through iu  and 1+iu  until it 
intersects the convex chain. In this case, iCR  is the 

region bounded by ii xx' , ix'  and ix  are the 
intersection points with the convex chain, and the 
subchain of the boundary of P from ix  to ix'  in CCW 
order (see fig. 10(b)). 

iu

+1i
u

cm

cl

xi

x’i

(b)(a)

u1

c
2

cn-k-2

cn-k-1
c

3

uk

cn-k

x
1

xk c
1

 

Fig. 10  (a) 0CR , kCR ; (b) iCR , with ki ,0≠ . 

They also provided an algorithm to find the minimum 
number of stationary guards necessary to guard a spiral 
polygon. Their algorithm computes an optimum guard 
cover in a spiral polygon, however it does not give an 
explicit number of guards and it deals with guards and not 
vertex guards, which is a different problem. Based on their 
algorithm, particularizing for spiral n-ogon and adapting 
for vertex guards, we will prove that ⎣ ⎦ 12/ +r  vertex 
guards are necessary to cover any spiral n-ogon with r 
reflex vertices. 

Let P be a spiral n-ogon with r reflex vertices, we 
want to determine the minimum number of vertex guards 
that is needed to guard P. By lemma 2, it is only necessary 
to consider the visibility of the edges of the reflex chain. 
Moreover, being ie  an edge of the reflex chain we already 
know that for a guard to be able to see ie  it has to be 
placed in iCR , as we are dealing with vertex guards, we 
can conclude that for a vertex guard to be able to see ie  it 
has to be placed in a vertex of P that belongs to iCR . In 
the case of spiral n-ogons, these convex regions have a 
particular shape, they are rectangles [6] (see fig. 11). 

 

( )a (b) (c)

cj

e
i+1

ei

ei-1

cj+1

CRi

CR0

cn-r

cn-r-1 cn-r-2

er -1

er
CRr

c
1c

2

c3

e0

e1

 

Fig. 11  (a) iCR , }1,,1{ −∈ ri K ; (b) 0CR ;.(c) rCR  

 
Lemma 3. Let P be a spiral n-ogon with r reflex vertices. 
A vertex guard that sees the edge ie , with ri <<0 , can 
also see 1−ie  or 1+ie , but not both. 
 
Proof. For a vertex guard to be able to see 1+≡ iii uue  
( ri <<0 ) it has to be placed in a vertex of P that belongs 
to iCR . As we saw before, being P a spiral n-ogon, the 
only vertices of P that belong to iCR  are: iu , 1+iu , jc  or 

ijc +  (see fig. 11(a)). Thus the guard has to be placed in 
one of those vertices. If we choose iu  or 1+jc , the vertex 
guard also sees 1−ie , but it does not see 1+ie . If we select 

1+iu  or jc , he also sees 1+ie , but it does not see 1−ie . 
q.e.d. 

 
In the previous lemma we proved that a vertex guard 

that sees an edge of the reflex chain, different from the 
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first one and from the last one, only manages to see one of 
its adjacent edges. Let's see what happens with a vertex 
guard that sees the first or the last edge of the reflex chain:  

i) for a vertex guard to be able to see 0e  it has to be 
placed in 2−−rnc , 1−−rnc , rnc −  or 1u  (see fig. 11(b)). 
From these positions we can choose one that also sees 

1e , which is 2−−rnc  or 1u ;  

ii) for a vertex guard to be able to see re  it has to be 
placed in ru , 1c , 2c  or 3c  (see fig. 11(c)). From 
these positions we can choose one that also sees 1−re , 
which is 3c  or ru . 

Therefore, from i), ii) and lemma 3 we can conclude 
that a vertex guard sees at most two edges of the reflex 
chain. 

 
Proposition 3. ⎣ ⎦ 12/ +r  vertex guards are necessary to 
cover any spiral n-ogon with r reflex vertices. 
 
Proof. Let P be a spiral n-ogon with r reflex vertices, its 
reflex chain has 1+r  edges: reee ,,, 10 K . Two cases can 
happen: r is odd or r is even. If r is odd, place guards at 

the following vertices: ku 21+ , with 
2

1,,1,0 −
=

rk K  (see 

fig. 12). 
 

u4
u1

u6

u1

u8

u1

 

Fig. 12  Spiral n-ogons with r  odd. 

These guards see all the edges of the reflex chain. In fact, 
ku 21+ is the reflex vertex common to edges ke2  and ke 21+ , 

thus these edges are seen by the vertex guard placed at 
ku 21+ . Consequently, these guards cover P since they see 

all the edges of the reflex chain, and by lemma 2 this is 

enough. Thus, 
2

1+r vertex guards cover P. Suppose, now, 

that there is a set of vertex guards S, with 1
2

1|| −
+

≤
rS , 

that cover P. We know that each vertex guard sees at most 
2 edges of the reflex chain, thus at most 1||2 −≤× rS  
edges are seen by those vertex guards. As the reflex chain 
has 1+r  edges, at least two edges of the reflex chain are 
not seen, as a consequence P is not covered by the vertex 
guards in S. 

If r is even, place guards at the following vertices: 

ku 21+ , with 1
2

,,1,0 −=
rk K , and 1c  (see fig. 13). 

 
u0u1c1

c1
c

1

u1

 

Fig. 13  Spiral n-ogons with r  even. 

These guards see all the edges of the reflex chain. In fact, 
as in the previous case, the edges ke2  and ke 21+ , with 

1
2

,,1,0 −=
rk K  are seen by the guard placed at ku 21+ . 

And the edge re  is seen by the guard placed at 1c , since 

1c  is an endpoint of re . Therefore, as in the previous case, 

these guards cover P. Thus, 1
2
+

r  vertex guards cover P. 

Suppose, now, that there is a set of vertex guards S, with 

2
|| rS ≤ , that cover P. We know that each vertex guard 

sees at most 2 edges of the reflex chain, thus at most 
rS ≤× ||2  edges are seen by those vertex guards. As the 

reflex chain has 1+r  edges, at least one edge of the reflex 
chain is not seen, as a consequence P is not covered by the 
vertex guards in S. In any case, r odd or r even, ⎣ ⎦ 12/ +r   
vertex guards are necessary to cover P. 

q.e.d. 
 
Corollary 1. ⎣ ⎦4/n  vertex guards are necessary to cover 
any SPIRAL grid n-ogon.  

 
This corollary is a consequence of the previous 

proposition, since a SPIRAL grid n-ogon is a spiral n-ogon 
and ⎣ ⎦ ⎣ ⎦ 12/4/ += rn . As we already know, by the 
Orthogonal Art Gallery Theorem, that ⎣ ⎦4/n  vertex 
guards are sufficient to cover any grid n-ogon we can 
conclude that SPIRAL grid n-ogons gives us the worst 
scenario within the THIN grid n-ogons. 

5. Conclusions and Further Work 

We defined a particular type of polygons - grid n-ogons - 
and presented some results related to them. Of the 
problems related to the grid n-ogons, the MVG is the one 
that motivates us more. We proved that ⎣ ⎦4/n vertex 
guards are necessary to guard any SPIRAL grid n-ogon 
with r reflex vertices. Moreover, we established a possible 
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positioning for those guards. We are investigating now 
how the ideas of this work may be further exploited to 
obtain better approximate solutions to MVG problem for 
orthogonal polygons merged in a grid. The next step will 
be to identify more subclasses of THIN grid n-ogons with 
the aim of simplifying our next objective: to study the 
MVG problem for the THIN grid n-ogons. 
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