
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

109

DDMG : A Data Dissemination Mechanism for Grid

Environments

Hyung Jinn Kim

University of Science and Technology, Republic of Korea

Jongsuk Ruth Lee

Korea Institute of Science and Technology Information, Republic of Korea

Abstract
Until these days, the data dissemination transfer was not a
fundamental feature in Grid environments. However, as the use
of data-intensive applications become quantitatively and scalably
increasing among Grid communities, the requirement of an
effective data dissemination transfer becomes prominent. In a
restricted environment like LAN or special purpose network
environment the multicast transfer technology was typically used
for such data transfer case. However, the limited data transfer
performance of the multicast transfer, and the obligation of a
special hardware setting makes it difficult to implement in a
common Grid environments. Therefore, in this paper we propose
DDMG(Data Dissemination Mechanism for Grid), an effective
data dissemination mechanism for Grid environments. DDMG
consists of an optimized P2P(Peer-to-Peer) transfer mechanism
and Globus XIO library to improve the performance in data
dissemination and to support heterogeneous protocols of the Grid
environments. We will also evaluate the performance of DDMG
by comparing with a typical unicast transfer.

Keywords:
Grid, Data Dissemination, P2P(Peer-to-Peer), Globus
XIO(Globus eXtended Input/Output)

1. Introduction

 The major Grid applications like high energy physics,
biology and meteorology are known as data intensive
applications[1,2,3,4]. For example, high energy physics
produces several petabytes of data and the meteorology
produces several hundred of gigabytes of data. In such
applications, transferring large scale of bulk data to local
sites or other remote resources for processing is
fundamental. So-called data Grid provides essential
infrastructure for such application[5].

Data Grid is a technology which unifies the diverse and
geologically dispersed storages by offering to users a
common interface. Specially, data Grid aimed to offer a
practical and efficient data related service in WAN(Wide

Area Network) environment. To transfer a large scale of
bulk data efficiently and reliably in a Grid environment,
common protocols like HTTP(Hyper-Text Transfer
Protocol) and FTP(File Transfer Protocol) are not
appropriate. Therefore, Grid researchers have tried to
investigate a new protocol suitable for Grid[6].

GridFTP(Grid File Transfer Protocol) is developed by
ANL(Argone National Laboratory) for data transfer in
Grid environments[7]. It is an extension of standard FTP
protocol, and supports parallel data transfer, TCP
buffer/window size auto balancing, striped mode transfer,
and many other abilities to make data transfer more
efficient in Grid environments. Beside of these data
transfer ability, it also supports Kerberos[8] – a popular
security mechanism – and GSI(Grid Security
Infrastructure)[9] – the major security mechanism of a
common Grid environment. Major Grid projects like
EGEE(Enabling Grid for E-Science)[10] or Teragrid[11]
project use GridFTP as a major data transfer protocol.

However, GridFTP does not cover all features needed for
transferring a bulk data in Grid environments. Table 1
shows the major features of GridFTP. As shown in the
table, GridFTP provides diverse features for the
singlepoint-to-singlepoint and the multipoint-to-
singlepoint data transfer, but does not provide any features
for the singlepoint-to-multipoint transfer. The
requirements for the singlepoint-to-multipoint transfer in
Grid environments are rising. For example, high energy
physics produces several petabytes of data each year and
that data is needed to be replicated throughout the
world[2]. And another example is TeraGyroid project[12].
It also needs to transfer throughout the world a bulk of
data which generated by a large scale simulation machine.
Up to now these projects have used GridFTP based on the
high performance network for transferring data to the
remote site. However, as the scale of the projects is getting
larger, the requirement for an efficient data transfer
mechanism is raising. Therefore, we have proposed a data

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

110

transfer mechanism called DDMG(Data Dissemination
Mechanism for Grid environment) which can enhance the
efficiency and the performance of data transfer in Grid
environments.

Table 1 : Features of GridFTP
Type of Data

Transfer
Diagram of

Data Transfer Features of GridFTP

Singlepoint
To

Singlepoint

- Parallel data transfer
- Automatic

negotiation of TCP
buffer/window sizes

- Partial file transfer
- Third-party control

of data transfer

Multipoint
To

Singlepoint

- Striped data transfer

Singlepoint
To

Multipoint

- No existing feature

The rest of this paper is organized as fellows. In section 2,
we will give an overview of some related researches done
for efficient data dissemination, and an overview of a
framework library for supporting multi protocol which is
widely used in Grid environments. In section 3, we
introduce the design and the implementation of DDMG. In
section 4, we evaluate the performance of DDMB in LAN
and WAN environments. Finally, we close this paper with
conclusion and an outlook of future works in section 5.

2. Related Works

In this section, we introduce some multicasting
technologies for Grid, and give an overview of the
advantages and disadvantages of these technologies. We
also introduce a P2P(Peer-to-Peer) data sharing
mechanism which the usage have radically grown in the
past few years. We finish this section by introducing a
framework library named Globus XIO[13] which eases the
support of multiple protocols.

2.1 Data Dissemination Mechanisms

2.1.1 Multicast Transfer Mechanism

Multicast transfer was usually used to disseminate data in
LAN(Local Area Network) environment. It was attracted
by the ability to decrease the network transfer load. Many
researchers working on the multicast transfer have
developed many multicast transfer protocols. However,
most of internet router do not support the multicast
transfer to avoid its abuse, and only a few protocols were
developed for considering Grid environments.

TCP-XM(TCP eXtended to support Multicast)[14] is a
multicast protocol developed for Grid environments. TCP-
XM automatically detects the ability of multicast transfer
on the underlying network, and it transparently uses
multicast when available. TCP-XM is a modified TCP
protocol which ensures the reliable data transfer and it's
implementation was based on lwTCP(lightweight TCP/IP
stack)[15] which can be implementable in diverse
platforms without any kernel modifications. TCP-XM
protocol like other multicast transfer protocol can decrease
the traffic load of data transfer. However, the performance
is not as good as a normal TCP transfer.

Other multicast protocols such as MDP(Multicast
Dissemination Protocol)[16], NORM(Nack-Oriented
Reliable Multicast)[17] and LGMP(Local Group-based
Multicast Protocol)[18] were not developed in
consideration of Grid environments. However, these
protocols have a potential features usable in Grid. MDP is
a framework protocol to support a reliable multicasting. It
employs NACKs(Negative Acknowledgements) for
discovering the data loss in data transfer. NORM is
developed to enable the efficient data transfer across the
heterogeneous IP networks and protocols. NORM also
uses the NACKs mechanism for the reliable data transfer
and was standardized by the reliable multicast transport
protocol working group of IETF. LGMP is a reliable
multicast protocol based on the idea defined by the local
group concept. LGMP forms dynamically one or more
sub-groups of nodes, and specifies a group controller node
in each sub-group to manage the loss data discovery and
various feedback processings.

All of these protocols are developed with the availability
of open source implementation and the support of several
platforms. They also provide a solution for the reliability
and scalability of the transfer. And the implementations of
these protocols are sufficiently matured to use in the real
world[19]. However, the performance of these protocols is
not as good as a normal TCP transfer, and they cannot be

Client

Server Server Server

Client

Server

Server

Client

Server Server

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

111

implemented in WAN environment without any multicast
support of the router.

2.1.2 P2P(Peer-to-Peer) as a Data Sharing Mechanism

Nowadays P2P technology is widely used for sharing files
via the internet to eliminate bottlenecks and to decrease
the download times[20,21]. A general unicast transfer that
consists of a server/client concept has a disadvantage that
all the transfer services are centralized to the server.
Therefore, an IO bottleneck occurs at the server side when
the number of client grows. It causes the decrement of the
transfer performance. Many multicast transfer
technologies are developed to solve this bottleneck
problem. However, most of the multicast transfer
implementation has the performance limitation compared
with a normal unicast transfer and the multicast transfer
has a difficulty in applying to the common internet
environment, because most of internet routers do not
support the multicast transfer.

The P2P data sharing technology extends the server/client
concept by adding to the client the ability of a server
function. Therefore, when the client receives a part of a
complete data, it can also redistribute to other clients.
Therefore, the network load can be scattered and in the
client’s view the transfer occurred by several other client
can have the same effect of a parallel transfer. The P2P
data sharing mechanism can provide all of these effects
without any hardware settings.

2.2 Globus XIO (Globus eXtended Input/Output)

Globus XIO[13] is a framework protocol library which
provides a common interface for several heterogeneous
protocols. It provides a simple and extensible I/O API and
was developed for the following two main purposes.

• Providing a common interface to all transfer protocols

for the Grid environments
• Minimizing the development time for creating or

designing an interface for a new protocol

Up to now, to develop an application which supports
multiple transfer protocols, we must use several protocol
APIs which generally are different each other. Developing
with these several protocol APIs lead a messy code and a
long development time. And after the deployment of this
application, extending new protocol could be also a lot of
work. However, Globus XIO provides a common interface
for protocols which can minimize the complexity of the
development with different protocol API and can provide
a convenience when extending different protocols. The

common interface provided by Globus XIO can also
decrease the development time for creating or designing
an interface of a new protocol and help to concentrate on
the core protocol development.

Figure 1 shows the structure of Globus XIO. In this figure
'User API' describe the user interface which has
OCRW(open/close/read/write) function, and 'Framework'
describes the core library of Globus XIO. 'Driver Stack' is
the stack where different driver could be registered and the
'Driver' represents the module which has the core
functionality of each protocol. The 'Driver' can be
classified into 'transfer driver' and 'transform driver'. The
'transfer driver' is a driver which is concerned about data
transfer and the 'transform driver' is a driver which is
concerned about data processing. For example, TCP driver
is a transfer driver which has the functionality of
transferring data through TCP protocols, and GSI driver is
a transform driver which has the functionality of
encrypting data. In driver stack, just one transfer driver
must exist and one or more transform driver may exist.

Figure 1. The Structure of Globus XIO

3. Design and Implementation of DDMG

The DDMG(Data Dissemination Mechanism for Grid)
proposed in this paper aims to enhance the data
dissemination performance in term of the transfer speed.
For this purpose an optimized P2P data sharing
mechanism is adopted, to induce the performance boost by
an efficient use of network usage. The transfer of a bulk
data in DDMG is managed by the client and transferred
from a client to one or more servers uni-directionally. And
all the data transfer is wrapped by Globus XIO to ease the
support of multiple protocols.

User API

Driver Stack

Fram
ew

ork

Transform Driver

Transform Driver

Transfer Driver

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

112

3.1 Data Transfer Mechanism of DDMG

A general P2P data sharing mechanism is developed to
share data among the undefined amounts of peers within
the undefined period of times. Each peer has to schedule
each data transfer which causes a transfer overlap among
peers and decreases the data transfer efficiency. Surplus
exchange of information (i.e. data stats, peer information,
etc) are also inevitable and can potentially increase the
network loads. Therefore, some optimizations are needed
to the P2P data sharing mechanism for an efficient data
transfer.

The DDMG aims to increase the data transfer efficiency
by defining the receiving nodes before the data transfer
occurs. Advanced defining the receiving nodes helps to
optimize the data dissemination, dismiss unnecessary
features like a peer discovery mechanism, and minimize
the informational message exchange between nodes.

Figure 2 shows the data transfer mechanism of DDMG.
The sender gets from the user the filename of data to be
sent, the addresses of receivers and the protocol name to
be used to transfer data to each receivers. Then it sends the
filename and the number of receiver information to each
receiver. From this received information, each receiver
initializes sockets that will be used to receive data from
other receivers and send the initialized sockets information
to the sender. At the same time, the sender divides the data
into the number of receivers. After receiving all the socket
information from each receiver, the sender retransmits the
information of the divided data and the information of
initiated socket to each receiver. From that information,
each receiver initiates the connection to each other and
sends the ready message to the sender. After receiving the
ready message from all the receivers, the sender sends
each part of data to each receiver. And each receiver relay
the transmitted data to other receivers. When the data
transfer is completed, each receiver sends to the sender a
‘transfer completed’ message. After receiving all ‘transfer
completed’ message from each receiver, the sender alarms
to the user the transfer completion and finishes the transfer
process (see appendix A for more detailed process).

Figure 2. Diagram of Data Flow in DDMG

3.2 Implementation of DDMG

The DDMG was implemented in a Linux environment
with standard C language and used Globus XIO library
from Globus Toolkit version 4.0.2. The Transfer
architecture of this implementation consists of a control
channel and a transfer channel. The control channel is
used for exchanging information needed for the data
transfer and the transfer channel is used to transfer the
bulk data. These channels are wrapped with the Globus
XIO framework, for helping to change protocol easily.
While a new protocol is added in the system, an
appropriate setting of this protocol can be dynamically
added to the plug-in directory. Figure 3 shows the
architecture of DDMG implementation.

Server 3

④ send socket address
and

protocol information

① send the filename and
 the number of server

Client Server 1 Server 2

③ receive initialized
socket information

② split the data ② initialize sockets ② initialize sockets ② initialize sockets

⑤ initialize
connection

⑥ receive “ready”
message

⑦ send data part (3-1)

⑦ send data part (3-2)

⑦ send data part (3-3)

Retransfer
data part(3-1)

Retransfer
data part(3-2)

Retransfer
data part(3-3)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

113

Figure 3. The Architecture of DDMG

4. Performance Evaluation of DDMG

We have evaluated the performance of DDMG in LAN
and WAN environments. For the evaluation in LAN
environment, we have used 1Gbps network backbone, and
for WAN environment we have used four sites located at
Seoul, Daejeon, Kwangju, and Pohang which are
connected with KREONET(Korea Research Environment
Open Network)[22] which is the Korean Scientific
Network Backbone. The evaluation aims to compare the
data transfer time of DDMG with a general unicast
transfer in respect of the number of receivers.

In LAN environment, we have evaluated the performance
in two cases. The first case is comparing the performance
when the sender and the receiver nodes are in a high
performance network (1Gbps) environment. And the
second case is comparing the performance when the
sender and the receiver nodes are in a medium
performance network (100Mbps) environment which is
more common in the real world. For the evaluation in
WAN environments, we have also tested in two cases. The
first is comparing the performance when the sender is
directly connected to the network backbone. And the
second case is to comparing when the sender is not
directly connected to the network backbone.

We have used TCP protocols for each evaluation. To
compare with DDMG we have coded locally a unicast

transfer implementation. The unicast implementation
consists of simple send() and receive() functions of the
Globus XIO library for eliminating the performance
difference by implementing the different APIs. Each
experimental result is obtained by averaging the result of
each test which repeated 10 times.

4.1 Performance Evaluation in LAN Environment

To evaluate the performance in LAN environment we
organized a testbed like the Figure 4. The operation
system of each node is RedHat Linux 9 and an E-IDE
interface hard drive with 7200rpm rotational speed is used.
For the high performance network evaluation (see ⓐ of
Figure 4) we organized twenty receiver nodes and one
sender node with 1Gbps NIC(Network Interface Card)
installed each. And for the medium performance network
evaluation (see ⓑ of Figure 4), we organized eight
receiver nodes and one sender node with 100Mbps NIC
installed each. The test purpose is to measure the transfer
time for sending one giga bytes of bulk data in respect of
the number of receiver nodes.

Figure 5 shows the difference of the transfer time between
DDMG implementation and a general unicast transfer
implementation in the high performance network. As
shown in the figure, the transfer time of a general unicast
transfer grows up proportionally in respect of the number
of receiver nodes. However, the transfer time of DDMG
keeps a steady result regardless of the number of receiver
nodes. It also shows that the performance of a unicast
transfer is better than DDMG when the number of receiver
nodes is less than 5 nodes. The poor performance with
DDMG is caused by the IO bottleneck when accessing the
disk with DDMG mechanism (see appendix B).

Figure 6 shows the difference of the transfer time between
DDMG implementation and a general unicast transfer
implementation in medium performance network.
Similarly to the previous evaluation, the transfer time of
the unicast transfer grows up proportionally but the
growth rate is steeper. However, the transfer time of
DDMG grows up too but the growth rate is very low
compared to the unicast transfer.

Client

Globus XIO

 Control

Channel
Transfer
Channel

Server

Globus XIO

Control
Channel

Transfer
Channel

Data

Client’s Plug-in Directory

Driver Module
 -TCP
 -UDP
 -MODE E

…

Server’s Plug-in Directory

Driver Module
 -TCP
 -UDP
 -MODE E

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

114

Figure 4. Testbed for the Evaluation in LAN Environment

Figure 5. Transfer Time in the High Performance LAN Environment

Figure 6. Transfer Time in the Medium Performance LAN Environment

4.2 Performance Evaluation in WAN Environment

We organized a testbed like the Figure 7 to evaluate the
performance in WAN environment. The operation system
of each node is RedHat Linux 9, and an E-IDE interface
hard drive with 7200rpm rotational speed is used. Except
the DJC2 node which is not connected directly in the
WAN backbone, all other nodes have 1Gbps NIC installed.
However, the DJC2 node has 100Mbps NIC installed. We
used SLC, KJC, and PHC nodes for receivers, DJC1 for
directly connected sender node, and DJC2 for indirectly
connected sender node. We have evaluated by adding one
node in each site respectively, and measured the transfer
time for sending one giga bytes of bulk data.

Figure 8 shows the difference of the transfer time between
DDMG and the unicast transfer when the sender node is
connected to the WAN backbone directly. As shown in the
figure, the transfer time of the unicast transfer and DDMG
are very similar to those of the high performance network
evaluation in LAN environment. The transfer time of
unicast transfer grow up proportionally and those of
DDMG keep a steady rate regardless of the number of
receiver nodes.

Figure 9 shows the difference of the transfer time between
DDMG, and the unicast transfer when the sender node is
not connected to the WAN backbone directly. As shown
in the figure, the transfer time of unicast transfer grows up
with a steep growth rate. However, the transfer time of
DDMG keeps a steady rate regardless of the number of
receiver nodes.

Network Switch

Network Switch

Network Switch

LC1

LC2

CN1 (client node)

LC3

Network Switch

CN2 (client node)

ⓐ High Performance(1Gbps) Network Testbed

ⓑ Medium Performance(100Mbps) Network Testbed

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8
Number of Nodes

Tr
an

sf
er

 T
im

e(
se

c)

unicas
DDMG

0
100
200
300
400
500
600
700
800

2 4 6 8 10 12 14 16 18 20
Number of Nodes

Tr
an

sf
er

 T
im

e(
se

c)

unicas
DDMG

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

115

Figure 7. Testbed for the Evaluation in WAN Environment

Figure 8. Transfer Time when the Sender is Connected to the Backbone
Directly

Figure 9. Transfer Time when the Sender is Not Connected to the
Backbone Directly

To conclude of all these evaluation done in LAN and
WAN environments, the transfer performance (in respect
of transfer speed) of the unicast implementation is better
then DDMG when network bandwidth is sufficiently large
and the number of receivers are very small. However,
when the network bandwidth is limited or large number of
receivers participates in the data transfer DDMG shows a
better transfer performance compared with unicast transfer,
and the performance difference between DDMG and
unicast transfer grows up proportionally in respect of the
number of receiver nodes.

5. Conclusion and Future Works

Nowadays the requirement of data dissemination in Grid
environments is growing. For the data dissemination, the
multicasting technology is widely used in LAN or special
purposed network environments. However, the transfer
performance is not as good as a unicast transfer and
without a special hardware setting it is difficult to apply it
in WAN environment. Therefore, applying a multicast
technology in Grid environment was very limited. In this
paper, we have proposed a data dissemination mechanism
named DDMG which used an optimized P2P data sharing
mechanism to enhance the efficiency in data transfer and
Globus XIO library for supporting multiple protocols.

We have evaluated the performance of DDMG
implementation by comparing with a general unicast
transfer implementation in LAN and WAN environments.
The result shows that the transfer time of unicast transfer
grows up proportionally in respect of the number of
receivers. And it also showed that the performance of
unicast transfer is better then DDMG when the network
bandwidth is sufficiently large and the number of receivers
are small. However, when the network bandwidth is
limited or the number of receivers is not small, the DDMG
implementation shows a better performance than those of
unicast implementation and the performance difference
among DDMG and unicast transfer grows up
proportionally in respect of the number of receivers.

Even though DDMG shows a good performance, it needs
some additional features for using in the real world. The
DDMG splits the data at the same size according to the
number of the receiving nodes. Therefore, the data transfer
can be severely depended by a receiving node that has a
radically small network bandwidth compared with other
receiving nodes. To overcome this problem, a dynamic
data transfer balance mechanism which manages
automatically the data transfer rate of the receiving nodes
is needed. Another feature needed for a functional use is a

Network Switch

SLC (Seoul)

KJC (Kwangju)

PHC (Pohang)

Network Switch

Network Switch

DJC2 (Daejeon / Client)

Backbone(10G)

Backbone(5G)

N
etw

ork
S

w
itch

100Mbp

DJC1 (Daejeon / Client)

N
et

w
or

k
S

w
itc

h

Backbone(5G)

0

5

10

15

20

25

30

3 6 9 12 15
Number of Nodes

Tr
an

sf
er

 T
im

e(
se

c)

unicas
DDMG

0
20

40

60

80

100

120

140

160

180

3 6 9 12 15
Number of Nodes

Tr
an

sf
er

 T
im

e
(s

ec
)

unicas

DDMG

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

116

fault tolerant mechanism. This feature can prevent the
transfer fault caused by a connection losts of a receiving
node. After all these features are implemented, the DDMG
can be widely used in many Grid applications which need
data replications like the areas of high energy physics,
meteorology researches and so on.

Acknowledgments

We would like to thanks to the members of Grid
Computing Research Team of KISTI(Korea Institute of
Science and Technology Information) who offered the
accounts of all the testbed for testing the DDMG and for
the detailed and insightful comments.
This work was supported by the research grant of
supercomputing center, Korea Institute of Science and
Technology Information.

References
[1] The Grid Physics Networks (GriPhyN) project,

http://www.griphyn.org
[2] The Large Haron Collider (LHC) Project,

http://lhc.web.cern.ch/lhc
[3] The Particle Physics Data Grid Project,

http://www.cacr.caltech/edu/ppdg
[4] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I.

Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke, "Data Management and Transfer in High-
Performance Computational Grid Environments," Parallel
Computing, Vol. 28, Issue 5, pp. 749-771, 2002.

[5] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S.
Tuecke, "The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets," Journal of Network and Computer Application,
Vol. 23, no. 3, pp. 187-200, 2000.

[6] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,"
International Journal of Supercomputer Applications, Vol.
15, no. 3, 2001.

[7] W. Allcock, J. Bseter, J. Bresnahan, S. Meder, P. Plaszczak,
and S. Tuecke, "GridFTP: Protocol Extensions to FTP for
the Grid," GFD-R.020, January 2004.

[8] B. C. Neuman, Theodore Ts'o, "Kerberos: An
Authentication Service for Computer Networks," IEEE
Communications, Vol, 32, Issue 9, pp. 33-38. September
1994.

[9] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K
Czajkowski, J. Gawor, C. Kesselman, S. Meder, L.
Pearlman, and S. Tuecke, "Security for Grid Services," High
Performance Distributed Computing Proceedings, pp. 48-57,
June 2003.

[10] EGEE project, http://eu-egee.org
[11] TeraGrid project, http://teragrid.org
[12] S. Pickels et al, "The TeraGyroid Project," Proceedings of

the 10th Globual Grid Forum(GGF10) : Workshop on Case
Studies on Grid applications, March 2004.

[13] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, "The
Globus eXtensible Input/Output System (XIO): A Protocol
Independent IO System for the Grid," 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS'05) - Workshop 4, pp. 179, 2005.

[14] K. Jeacle and J. Crowcroft, "Reliable High-speed Grid Data
Delivery using IP Multicast," Proceedings of All Hands
Meeting, 2003.

[15] A. Dunkels, "Minimal TCP/IP Implementaition with Proxy
Support," Technical Report SICS-T-2001/20-SE, Swedish
Institute of Computer Science, Feburary 2001.

[16] J. P. Macker, "The Multicast Dissemination Protocol (MDP)
Toolkit," Proceedings of IEEE MILCOM, Vol. 1, pp. 626-
630, 1999.

[17] B. Adamson, C. Bormann, M. Handley, and J. Macker,
"NACK-Oriented Reliable Multicast Protocol (NORM),"
RMT Working Group Internet Draft, January 2004.

[18] M. Hofmann, "Scalable Multicast Communication in Wide
Area Networks," PhD Thesis, University of Karlsruhe,
Germany, 1998.

[19] M. P. Barcellos, M. Nekovee, M. Daw, J. Brooke, and S.
Olafsson, "Reliable Multicast for the Grid: A Comparison of
Protocol Implementations," e-Science All-Hands Meeting,
Nottingham, UK, September, 2004.

[20] D. Plonka. "Napster Traffic Measurement,"
http:://net.doit.wisc.edu/data/Napster, March 2000.

[21] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H.
M. Levy, "An Analysis of Internet Content Delivery
Systems," Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI
2002), pp. 315-328, December 2002.

[22] http://kreonet.re.kr

Hyung Jinn Kim received the BSc
degrees in Mechanical Engineering from
Hankuk Aviation University in 2004. From
2005, he attends the University of Science
and Technology majoring Grid computing
to acquire his MSc degree. His research
interest are Grid computing especially in
data management and data transfer,
Operating System Architecture and
Extreme Programming.

Jongsuk Ruth Lee is a senior researcher
in Grid Technology Research Department,
Supercomputing Center, Korea Institute of
Science and Technology
Information(KISTI), South Korea and also
a assistant professor in
Grid/Supercomputing Department,
University of Science and Technology of
Korea. She received a PhD in Computer

Science from the University of Canterbury, New Zealand. Her
research interests are Grid computing, Grid middleware,
parallel/distributed computing, and parallel/distributed
simulation

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

117

Appendix A
The pseudocode of the server and client

implementation of DDMG

Table A-1. Pseudocode of the Client Implementation of DDMG

Get the information below from the user;
- data filename;
- addresses of the servers (receiving nodes);
- protocol names of each server (receiving nodes);

For(each server) {
Send the information below to the server;

- data filename;
- number of server;

}

Divide the data into the number of server;

Calculate the memory address of each data part from the
divided data;

For(each server) {
Receive the initialized socket address from the server;
}

For(each server) {
Send the below information to server;
 - initialized socket information of each server;
 - protocol information of each server;
 - memory address of sending data part;
}

For(each server) {
Receive the “ready” message from each server;
Start sending the appropriate data part to the server;

}

Table A-2. Pseudocode of the Server Implementation of DDMG

Receive the below information from the client;
- data filename;
- number of server;

For(number of server) {
Initialize socket connections;
}

Send to the client the initialized socket information;

Receive the information below from the client;
- initialized socket information of each server;
- protocol information of each server;

 - memory address of receiving data part;

File initialization for receiving process;

For(each other servers) {
Connect to the server;
Send the memory address of the receiving data part;
}

For(each initialized socket) {
Receive the memory address of the receiving data part

from other servers;
Get ready to receive data part;
}

Send the “ready” message to the client;

Receive data part from the client;

For(each of other servers) {
Retransfer the received data from the client to other

servers;
}

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

118

Appendix B
The evaluation of the performance degradation by the

disk IO bottleneck in DDMG mechanism

This evaluation aims to explain the disk IO bottleneck occured in
the DDMG transfer. We organized a testbed consisted of three
nodes like Figure B-1. The operating system of each node is
RedHat Linux 9, use an E-IDE hard drive with 7200rpm
rotational speed (see Table B-1) and 1Gbps NIC is installed to
each node. These three nodes are connected to each other with
1Gbps network switch.

Figure B-1. Testbed for the Evaluation of the Disk IO Bottleneck

Table B-1. The Performance of the Hard Drive of Each Node
Source Transfer Rate (MB/s)

Timing cached reads 673
Timing buffered disk reads 53

The evaluation consists of comparing the transfer time of each
cases below.
- CASE A : split the data in two part(ⓐ,ⓑ), and send the same
splited data part(ⓐ) to each server.
 - CASE B : split the data in two part(ⓐ,ⓑ), and send each
splited data part(ⓐ,ⓑ) to each server.
Through this evaluation we measured the performance
degradation occurred when reading the different part of data
simultaneously.

Table B-2 shows the result of this evaluation. As shown in this
table, the transfer time of the CASE A is about 3.5 times faster
than the transfer time of the CASE B.

Table B-2. Transfer Time for Transferring 500Mbytes of Bulk Data
Case Transfer Time (second)

CASE A 24.2
CASE B 85.3

Therefore, when the network bandwidth is sufficiently large, the
unicast transfer has a better performance than DDMG transfer
(which is an extended mechanism of CASE B) because of the
disk IO bottleneck.

 ⓐ
ⓑ

Data (1Gbyte)

Server A Server B

Network

Client CASE A

Read()

Process
A

Read()

Process
B

CASE B

Read()

Process
A

Read()

Process
B

