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Summary 
This paper presents a scheme of analyzing lung texture to solve 
the problem of identifying undefined patterns and distinguishing 
the complex background of superimposed structures in chest 
radiographs. The method detects and quantifies the interstitial 
abnormalities in a chest radiograph using the contents based 
image retrieval (CBIR) scheme. This technique is based on the 
image feature vector obtained from quasi-Gabor filters and a 3D 
structure classification scheme. The quasi-Gabor filters are 
capable of maintaining low computational cost while keeping the 
important information of the power spectrum of 2D-DFFT, such 
as band-pass frequency and direction of texture. The 3D 
classifier is able to capture not only local texture but also global 
distribution of lung texture and it overcomes the existing 
problems of a general block operation such as sliding block 
operation. Our method is a generic one in the sense that it could 
be applied to analyze the texture of any other images including 
natural scenery and various medical images such as CT or MRI 
images. 
Key words: 
Chest radiograph, texture, score block operation. 

1. Introduction 

The importance of recognizing patterns of diffuse 
pulmonary lung disease on the chest radiograph cannot be 
over emphasized. Many qualified radiologists could miss 
the abnormal patterns since the patterns deviate only 
slightly from the normal patterns. Computer aided 
diagnosis (CAD) can provide a second opinion and 
increase the success rate in reading and interpreting chest 
radiographs. The radiologist usually looks at a specific 
feature rather than a general feature but CAD could 
suggest many features to look at. The radiologist 
sometimes finds a new abnormal feature and can have help 
from CAD which is able to look at the past database to 
automatically check the new abnormality.   
To interpret lung patterns, the radiologists often employ 
local properties like perceived intensity, uniformity, 
roughness, regularity, directionality, coarseness, 
smoothness and granulation [12]. For detection and 
characterization of these properties in radiological images, 
it is very important to categorize the abnormalities [2, 3, 4]. 
For radiology, the quantification of the image features of 

normal and/or abnormal lung patterns is certainly more 
complicated. Indeed, the patterns in the abnormalities are 
ill-defined, complex, and their variations are complicated 
[47]. Especially as they are often superimposed with other 
structures such as rib cages and vessels. 
A number of CAD researchers have proposed the lung 
texture analysis of radiographs [13, 14, 1, 8, 9, 31, 30, 10, 
16, 24, 32, 33, 34]. Revesz [40] and Stark [42] 
investigated the feasibility of classification of the lung 
texture based on an optical Fourier transform power 
spectrum. Tully [44], Kruger [29] and Turner [45] used 
co-occurrence matrices to classify the regions of interest 
(ROIs). Jagoe and Patton [17] explored the use of features 
based on the magnitude and direction of the gradient in 
several studies [17, 18, 19]. Katsuragawa [20, 21, 22] used 
the root-mean-square variation and the first moment of the 
power spectrum as physical measures to detect and 
characterize interstitial abnormalities. Kido et al [25] 
computed geometric features, similar to the method later 
described in Katsuragawa [23] and [26, 27] Kido. 
There are problems with the above mentioned methods. 
All these methods are designed for the special 
characteristics of the lung texture in chest radiographs to 
restrict texture analysis to regions of interest (ROIs) that 
do not contain normal structures such as (crossing) rib 
borders and (large) vessel projections. Ginneken [13, 14] 
proposed a method based on texture analysis on local 
regions in the image and the detection is not restricted to 
any ROIs.  
The method proposed in this paper detects and quantifies 
the interstitial abnormalities in a chest radiograph using 
the contents based image retrieval (CBIR) scheme. This 
technique is based on the image feature vector obtained 
from quasi-Gabor filters and a 3D structure classification 
scheme. Our approach differs from Ginnenken’s method 
to overcome the above problems since the lung region 
segmentation is not needed to employ local and global 
properties. Our approach does not require any predefined 
patterns and is not limited to a chest radiograph; the 
method could be applied to any other natural scenery and 
various medical images. 
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2. Materials 

The database used for this study includes 31 
posteroanterior (PA) 14″×17″ chest radiographs including 
13 normal and 18 abnormal, selected in the Department of 
Radiology, St Vincents Hospital. In order to train 
classifiers to distinguish between different patterns, the 
radiologist has outlined the most clear areas containing 
dots or grape-like patterns in each abnormal image.  
Abnormal images contain 8 images with dots pattern, 7 
images with grape-like pattern and 3 images with both 
dots and grape-like patterns. All images were read by an 
experienced radiologist. The digital images were obtained 
by digitizing the chest radiographs with a Kodak Lumisys 
Film Digitizer. The original digitized image has a pixel 
size of 0.175 mm, a matrix size of 2048×2487 pixels, and 
12 bits gray level range.  

3. Methods 

3.1 System Overview 

The system segments the right and left lung fields. A 
raster-scan convolution on input image is performed with 
step size at 32 when the block size is 128 × 128 to process 
the texture analysis algorithm on one block at a time. The 
block is transformed using 2D-DFFT to obtain a power 
spectrum. A 42 dimension feature vector is formed from 
the power spectrum through the 42 channels of a quasi-
Gabor filter and is normalized along the frequency range 0 
to 1.  The system then classifies the feature vector based 
on contents-based image retrieval scheme. The class value 
of the feature vector is assigned to the whole block and a 
part (cell) of the block is classified using 3D classifier 
with score block operation. After a raster-scan convolution, 
the classified lung field is divided into 3 regions which are 
upper-, middle- and lower-lung. The final classification is 
executed for each region. Figure 1 shows the system 
overview block diagram. 

3.2 Segmentation of lung fields 

The right and left lung fields are automatically extracted 
using a knowledge based method [5, 35]. The outside 
region of each lung is set to a very high intensity, which is 
higher than the maximum intensity of the radiograph, for 
the background that is the non lung region. 
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Fig. 1  System overview 

3.3 Texture analysis 

The texture feature vector is derived with the quasi-Gabor 
filter [36, 37]. Our quasi-Gabor filters consist of 42 
channels. There are six frequency channels (f = 1, 2, 4, 8, 
16 and 32), and seven orientation channels (θ = 0°, 36°, 
72°, 108°, 144°, 45° and 135. Each channel is either a 
square or a rectangle in the frequency domain, as shown in 
Figure 2. The value of  the channel is the mean spectrum 
of the region, ie,  
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is )2( 7−× nf  when the size of the image is nn 22 × . 
Blocks at 0°, 36°, 72°, 108° and 144° are a full size square 
and the blocks at 45° and 135° are rectangles half the size 
of the square. Using the quasi-Gabor filters, it is much 
faster (O(nlog(n)) than using Gabor filters (O(n2)) [45, 46] 
or other filters. 

3.4 Classifying texture feature vectors 

Our texture analysis system adopts the content-based 
image retrieval scheme. Our system consists of three 
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spaces which are representation space, feature space and 
Euclidean space. Representation space uses image 
processing feature extraction methods in order to represent 
a given image. After having characterized an image as a 
point in a multidimensional vector, feature space 
maintains the vector. There are two feature spaces which 
are test feature space and training feature space. Test 
feature space maintains a query vector. Training feature 
space is constructed for normal, dots and grape-like 
patterns. When a query feature vector is presented to 
Euclidean space, the k nearest neighbors of the query 
feature vector are retrieved from the training feature space. 
If there are k neighbors and {c1,…,ck} are the classes of 
the k neighbors, with ω1 for normal, ω2 for dots and ω3 for 
grape-like patterns, the classification for the query feature 
vector is 

 cvector =  modal{ }kcc ,...,1  (2
) 

where modal{} is the index of the maximum value of the 
set. 

3.5 Classifying the cell using 3D classifier 

Image segmentation for both natural images and medical 
images by texture processing usually involves processing 
an image in sections called blocks, rather than processing 
the entire image at once. The blocks have the same size 
across the image. Every pixel within each large block was 
assigned the same texture values. There is no overlap 
between the blocks. This is called distinct block operation. 
This leads to a significant loss of resolution that is 
especially unacceptable in medical imaging [28]. An 
alternate method was used where the texture values were 
assigned to a pixel by using a window centered about that 
pixel [41]. This is called sliding neighborhood operation. 
There are three considerable problems of this operation. 
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 Fig 2. Possible problematic examples  

The first problem occurs near the border of different 
textures. The pixel in the center of window w1 in Figure 
2(a) is assigned a value calculated from both textures A 
and B, which could be neither A nor B.  
The second problem occurs at the neighbor of high strong 
texture. Strong texture means its texture value is highly 
distinguishable, especially with high intensity, so the pixel 
in the center of window w1 in Figure 2(b) can be classified 

as B when the texture of B is more stronger than texture A. 
This usually happens when Fourier spectra is used for 
texture analysis and if the texture has a high spectrum.  
The third problem occurs at the boundary of an image or a 
segmented image. When an image operation is performed 
over the boundary of an image some of the pixels in a 
neighborhood may be missing, especially when the center 
pixel is on the corner of the image (see w1 and w3 in 
Figure 2.c). To process these neighborhoods, sliding 
neighborhood operations pad the borders of the image, 
usually with 0's (15Gonzalez 1993). This can lead to an 
imprecise result for those areas. 
In order to overcome the bottleneck of classification 
discussed above, we propose a 3D classifier [39] with 
score block operation [38] without changing the 
underlying feature extraction mechanism.   
Score block operation is like distinct block operation since 
once the block is classified as a class c, every pixel within 
each block was assigned the same class c. The block then 
slides by m pixels, where 1 <= m <= β when the block size 
is β ×β. β is 2N where N = 0,1,2… and  m is  β/2n  (= 2N-n) 
where n <= N and n=0,1,2…, therefore the probability of 
the overlap areas is 
 

 Poverlap = 
β

β m−  (3)

In score block operation, m×m is the smallest unit to 
classify the image and it is called a cell. If m is 1, the 
block moves only one pixel and the cell classifier is 
performed based on a pixel. If m is β as a maximum, the 
block moves β pixels, so it becomes the same method with 
distinct block operation. The most important key point of 
this approach is to hold all possible classes on the overlap 
areas instead of overwriting with later classification. To 
achieve this, 3D cell classifier is presented. Each cell 
maintains a score stream to collect votes for a certain class 
regarding the texture values. Therefore, the length of score 
stream depends on the possible number of classes. Figure 
3(a) shows 2d square image to illustrate score block 
operation. The image size is unknown and one cell 
represents m×m pixels. The block size is mβ×mβ pixels in 
this example. When the block moves by m pixel(s) (one 
cell in Figure 3.a), the numbers in each cell denote the 
frequency of overlap by the number of blocks. The cell 
collects votes of the class to store in the score stream. In 
this case the maximum frequency of overlap is β2.  Figure 
3(b) shows a score block operation example with an 
irregular shaped image, for example a segmented image 
such as a lung field in a chest radiograph. The block size is 
m×4 pixels, and the block moves by m pixel(s), so the 
maximum chance to collect votes for cells in this image is 
42 (=16). 
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We do a raster-scan convolution on input image with step 
size at m. The 3D classifier has two phases as follows: 
 
phase 1. collect votes for cells 

process one block at a time 
classify the texture feature vector of the block 
collect votes for a certain class for the score 
stream in each cell of the whole block 

phase 2. classify cells  
decide  a range to be classified 

if the block reaches the bottom-right corner 
     range ← index(i,j) to index(i+β-1, j+β-1) 

              else if the block reaches the bottom 
    range ← index(i,j) to index(i+m-1, j+β-1) 

              else if the block reaches the right boundary 
     range ← index(i,j) to index( i+β-1,j+m-1)  
             else 

    range ← index(i,j) to index(i+m-1, j+m-1) 
   classify the range to the most frequent score in 

the score streams of cells 
 
Cell classification should be performed before a block 
moves to the next position. When processing is finished 
on a block, a part of the block can be classified according 
to its collecting votes in score stream. There are four cases 
to select a part of the block to classify that part. When a 
block reaches the right of an image, the first top row cells 
of the block can be classified. When a block reaches the 
bottom of an image, the left most column cells of the 
block can be classified. When a block reaches the right-
bottom of an image, the whole cells in the block can be 
classified. For all other cases, only one left-top cell of the 

block can be classified (see Figure 3.c). The classification 
for each cell is 
 
 ccell =  modal{ }cellmScoreStrea  (4) 
where modal{} is the index of the maximum value of the 
set. 

3.6 Classifying region 

The texture analysis is processed on the segmented lung, 
then the classified lung field is simply segmented into 
three regions which are upper, middle and lower. The final 
classification for each region is 
 

 cregion =  modal{ }region  (5) 

However, for analyzing a chest radiograph it is a bit 
different from other general images since even though the 
maximum number of classes is normal class, the system 
can not report the region is normal if there are any 
abnormalities. Therefore, to classify the regions when 
there are three classes ω1 = normal, ω2=dots and ω3=grape-
like, the classification is  
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where modal{a, [b]} is the index of the maximum value of 
the set a and the index value must belong to set b. 
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Fig 3. Referenced frequencies board with score stream. 
(a) presents a square shape of 2d image example with 4 possible classes. 

(b) presents an irregular shape of 2d image example. 
(c) presents 4 classification cases regarding the location of the block. 
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4. Performance analysis and discussion 

4.1 Experiment arrangement 

Evaluation of diffuse interstitial disease in chest 
radiographs is one of the most difficult problems in 
diagnostic radiology. This difficulty is due to: (a) the 
numerous patterns and complex variations that are 
involved, and (b) variations among radiologists in the 
terms that they use to describe radiographic patterns, and 
which are not defined objectively [22]. The typical 
descriptions of the patterns are termed linear, reticular, 
reticulonodular, ground glass, mottled, military, or 
honeycomb [11]. To simplify the problem, we group the 
patterns into dots, grape-like and honeycomb and thus dots 
pattern refers to small irregular (reticular) pattern, and 
grape-like or honeycomb pattern refers to alveolar (air 
space) pattern. A mixture of patterns would be 
recognizable radiographically. As a general rule, it is safer 
for the radiologist to select the predominant pattern as the 
basis for differential diagnosis, so our system recognizes 
the most pixels of a certain pattern as the predominant 
pattern. The evaluation of our diffuse interstitial texture 
concurs radiologists’ view. Radiologists describe the 
texture as follows: 

‘Probably PCP (Pneumocystic Carinii Pneumonia), 
more lung markings (dots and lines) in both lower 
lung fields, suggests an interstitial process.’ 

While a radiologist can outline the clearest abnormal areas 
in the abnormal images, it is not easy to precisely outline 
the actual abnormal area. Therefore, our system analyzes 
the texture based on the parts of the lung such as upper-
right lung, middle-right lung, lower-right lung, etc,. If our 
system detects grape-like texture in middle-right lung, the 
system reports the middle-right lung has grape-like texture. 
If there is more than one texture such as grape-like and 
dots texture, our system reports more pixel patterns. We 
then compare this result with a radiologist’s result. If our 
result is the same as the radiologist’s, it is a true positive.  
If the result is not the same as the radiologist’s, it is a false 
positive or a false negative.  
The resulting database contains 186  (31 radiographs × 2 
lungs × 3 parts) sub-images since a chest radiograph is 
segmented into the right lung and left lung and each lung 
is divided into the upper, middle and lower lung. A 
radiologist usually says the lung abnormalities occur at the 
right-upper, the right-middle, the right-lower, the left-
upper, the left-middle, and the left-lower, so our system is 
able to report using the terms found in radiology reports. 
186 sub-images include 122 normal, 28 dots and 36 grape-
like patterns. The sub-image database does not include 
honeycomb patterns.  

The training feature vectors are extracted from one normal 
image, an image with dots patterns image and an image 
with grape-like pattern image. From the normal image (n = 
376), from dots pattern image (n = 189) and from grape-
like image (n = 270), image feature vectors are extracted. 
These training sets are obtained from the actual images, so 
there is no need to define the patterns. When the unknown 
patterns are detected from the testing sets, the patterns can 
be simply added to the training sets.  
We used 2 test sets generated from four methods for the 
accuracy testing. Method 1 used the 42 dimensions image 
feature vectors and three classes including normal texture 
(NT), dots texture (DT) and grape-like texture (GT). 
Method 2 used the 42 dimensions image feature vectors 
and two classes including NT and the abnormal texture 
(AT) class. AT simply adds DT and GT, so the system 
only needs to detect the normal texture and abnormal 
texture which includes the dots texture and grape-like 
texture. Method 3 used the 21 dimensions image feature 
vectors selected from the whole vector’s f = 8, 16, 32 and 
three classes including NT, DT and GT. We tested the 
vector at high frequencies (f = 8, 16, 32) because the 
patterns in the vector are more clear at high frequencies 
than at low frequencies (f = 1, 2, 4). Method 4 used the 21 
dimensions feature vectors which is the same vector of 
method 3 and two classes which are NT and AT. The first 
set of method 1 to 4 used 3D classifier with score block 
operation. The second set of method 1 to 4 used the slide 
block operation.  
Lung segmentation is beyond the scope of this paper. 
Interested readers can look at Brown et al [5] and Park et 
al [35]. 

4.2 Results 

We tested various block sizes from 64×64 to 512×512. We 
selected 128×128 pixels block since the performance was 
the best compared to other size blocks. Small block size is 
useful to process a narrow area such as around sharp edges 
(costophrenic angle), but the blocks smaller than 128×128 
do not capture enough texture information, so the 
performance is low. Blocks larger than 128×128 pixels 
possess too much texture information, so the performance 
with this block size was not acceptable. 
Score block operation assigns the same texture value to 
every pixel within each is just like a distinct block 
operation. This property enables us to classify the 
boundary of an image (or a segmented image) based on its 
true texture since it does not need to include dummy pixels 
with ‘0’ for padding. Our block operation also overlaps 
between the blocks like sliding block operation since the 
block is sliding by m pixels. These overlap areas can 
control the resolution of a classified image. If m is 1, the 
resulting image will have a very high resolution, but there 
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are too many unnecessary overlaps. If m is β, it is just like 
distinct block operation with very low resolution results. 
We choose m = 32 from our experiments, which means 
our system allows 75% overlap. 
 
When k=1 to 5, the results are not much different because 
a block moves one or two pixels to build the training 
feature vectors so the feature vectors are very close to each 
other. Therefore, we finally selected k=5, β=128, and 
m=32. 

Tables 1 and 2 show the results, which were compared 
with the most experienced radiologist’s diagnosis. For the 
normal pattern, method 1 and 2 are better than method 3 
and 4. That means the whole 42 features vector is better to 
represent normal pattern than partial 21 features vector.  
28.7% of normal patterns were recognized as grape-like 
pattern and 0.8% of normal patterns were recognized as 
dots patterns. These false negatives occurred around the 
hilar region or around the clavicles. These areas show a 
more complicated structure in both normal and abnormal 
images. The false positive rate for the normal pattern 

Table 1: Result for all testing sets using method1 and method 3 
 Normal Dots Grape-like 

Radiologist 122 28 36 

 correct 
identification 

false 
dots 

false 
grape-like

correct 
identification 

false 
normal 

false 
grape-like

correct 
identification  

false 
normal 

false 
dots 

Method1 86 
 (70.5%) 

1 
(0.8%) 

35 
(28.7%)

7  
(25%) 

5 
(17.8%)

16 
(57.1%)

34 
(94.4%) 

1 
(2.8%) 

1 
(2.8%)

Method3 84 
(68.9%) 

3 
(2.4%) 

35 
(28.7%)

6 
(21.4%) 

6 
(21.4%)

16 
(57.1%)

31 
(86.1%) 

1 
(2.8%) 

4 
(11.1%)

 

Table 1: Result for all testing sets using method2 and method 4 
 Normal Abnormal 

Radiologist 122 64 
 correct identification false abnormal correct identification  false normal 

Method2 86 
(70.5%) 

36 
(29.5%) 

58 
(90.6%) 

6 
(9.4%) 

Method4 84 
(68.9%) 

38 
(31.1%) 

57 
(89.1%) 

7 
(10.9%) 

 

          
                  (a)  normal image (dis01)                                                     (b) abnormal image (dis21)  

Fig 4. The example images for testing sets 
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regarding dots pattern is 17.8%. This high error rate is 
because we have very clear dots pattern training feature 
vectors in our vector base but the testing images including 
dots pattern can vary from close to the training dots 
pattern images to close to the normal image. Therefore, to 
reduce the false positive rate for normal pattern, a more 
precise classification scheme to construct the training sets 
and testing sets is needed. For the same reason, the true 
positive rate of dots pattern is 25% which is very low. The 
testing images including dots patterns, which were 
indicated by a radiologist, are not clearly categorized. 
Those images are still bound with normal images and 
grape-like pattern images. The best result, 94.4%, is 
shown when grape-like pattern was detected using method 
1. This result actually is very remarkable since the training 

feature vectors were built from both left- and right-lung of 
one image and 34 regions were detected. Only 2 regions 
were missed. 
The first row of Figure 5 and 6 show the results from set 1, 
which used 3D classifier with score block operation, and 
the second row of the figures shows the result from set 2, 
which used a sliding block operation. The first column to 
the last column of the figures presents the result for 
method 1, 2, 3 and 4. Figure 5 shows the classified image 
of the normal lung in Figure 4(a). As the result shows, the 
normal image is clearly classified as normal pattern by our 
new classifier. Figure 6 shows the classified image of the 
abnormal lung in Figure 4(b), which includes grape-like 
and dots pattern. The most dark parts indicate grape-like 
pattern and the middle gray parts indicate dots pattern. The 

(1)

(2)

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

(1)

(2)

(a) Method 1 (b) Method 2 (c) Method 3 (d) Method 4

Fig 5. Result dis01: (1) use score block operation (2) use sliding block operation 

(1)

(2)

(a) Method 1 (a) Method 2 (a) Method 3 (a) Method 4

(1)

(2)

(a) Method 1 (a) Method 2 (a) Method 3 (a) Method 4

Fig 6. Result dis23: (1) use score block operation (2) use sliding block operation 
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results by method 2 and 4 only show normal and abnormal 
(grape-like and dots) patterns, so black areas indicate 
abnormal pattern and gray areas indicate normal pattern. 
The result with sliding block operation also detects the 
abnormal patterns but the area looks like a combination of 
several patterns. Therefore, the difference between our 
method and sliding block operation is the precision of 
classification result and the results are clearly visible. The 
results regarding the whole lungs are 10 true positives out 
of 13 normal images and 16 true positives out of 18 
abnormal images among the 31 PA chest radiographs 
database.   
 

5. Conclusion 

We have presented quasi-Gabor filters to analyze the lung 
texture and a 3D structure classification scheme with score 
block operation to classify the lung texture in chest 
radiographs. The CBIR scheme was adopted to classify 
image feature vectors and to solve the problem of 
identifying undefined patterns and distinguishing the 
complex background of superimposed structures of lung 
fields. The quasi-Gabor filters are capable to maintain low 
computational cost while they keep the important 
information in the power spectrum of 2D-DFFT, such as a 
band-pass frequency and a direction of texture. The 3D 
classifier with score block operation successfully 
performed to capture not only local texture but also global 
distribution of lung texture and it overcame the existing 
problems of a general block operation such as sliding 
block operation. Our method is a generic one in the sense 
that it could be applied to analyze the texture of any other 
images including natural scenery and various medical 
images such as CT or MRI images. 
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