
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

202

The Artificial Collective Engine Utilising
Stigmergy (ACEUS) a Framework for Building

Adaptive Software Systems
G.B. O’Reilly and E.M. Ehlers

Abstract—Many software systems are deemed failures due to the systems inability to rapidly adapt to its ever-changing domain
needs. Designing and developing software solutions along the lines of a Complex Adaptive System (CAS) ensures the robustness
and adaptability of the software solution. The utilisation of a CAS model in a software solution has the benefits of enhanced flexibility,
adaptability, distribution and reusability. Such benefits can strengthen the ability of business software solutions to evolve and survive
in the market place. Especially on the eve of the Semantic web. The Artificial Collective Engine Utilising Stigmergy (ACEUS)
framework is described under the properties and mechanisms of a CAS. ACEUS forms a framework for building distributed business
solutions for the Semantic web. The ACEUS framework is base upon and utilses the ant colony analogy. The taxonomy of the
ACEUS framework is presented in terms of the layers and the utilization of stigmergy.

Index Terms—Complex adaptive systems, Stigmergy, Distributed systems, Semantic web.

—————————— ——————————

1 INTRODUCTION

HE predicted Semantic web will cause an ever
increasing demand for modern distributed systems that
are robust, adaptable and even self-organizing. Web-

accessible programs and a variety of other physical devices
will be dependant on the services supplied by the semantic
web. This ever increasing demand to access networked
applications on the semantic web will cause a dramatic
change in the scale, reliability, availability, adaptability,
security and complexity of current distributed systems. The
distributed systems on which the semantic web is to be
built will need to be extremely dynamic, adaptive, robust
and self-organizing. Characteristics not exhibited by
traditional (current) distributed systems.

At present the traditional distributed systems are
designed and developed in an inflexible and centralized
manner based on client-server architectures. The most
common motivation for the centralized, top-down design of
current distributed systems is easier system management.
These methods of distributed systems design are showing
their vulnerability when dealing with adaptiveness, self-
organization and an enormous amount complexity. With
the event of the semantic web distributed systems will be
reaching a point of complexity that will put them far
beyond traditional or classical means of management and
deployment. A means of constructing adaptable, robust,
scalable, self-organizing and self-repairing distributed
systems is needed.

Commercial organizations will be a major driving force
behind the building and promotion of the semantic web. It
is vital that business systems that utilise the semantic web
as well as acting as services on the semantic web have the
characteristics to confront the coming complexity explosion.
A demand has arisen for a dynamically adaptive
framework for create business systems that have the
characteristcs to continually adapt to change and that are
robust enough to cater for that change dynamically.
Dynamically adaptive frameworks will accomodate change
without having to be disassembled and redesigned.

The Artificial Collective Engine Utilising Stigmergy
(ACEUS) framework attempts to cater for this type of
dynamical adaptation and self organization. The ACEUS
framework is an attempt to model an artificial complex
adaptive system. The ACEUS framework is modeled
around the ant colony metaphor. The ACEUS framework
will be ideal for commercial organizations that what to
integrate and utilise the semantic web in their daily
business. ACEUS will also help automate and streamline
business processes to adapt intelligently and optimally to
changing business environments.

A Complex Adaptive System (CAS) has been defined as
systems composed of interacting agents that are diverse in
both form and capabilities [1]. The individual agent’s
behavior is governed by a collection of rules. These agents
respond to stimuli and the stimulus-response exhibited is a
result of the rules embedded in the agent [1]. Major
improvements in adaptivity and robustness can be
achieved in software solutions by integrating the typical
properties and mechanisms of CAS defined by Holland [1],
[2], [3].

Inter communication between the agents and between
the agents and their environment is referred to as
interactions. Interactions cannot be anticipated since the
modifications induced in the environment by the agents’

————————————————
• G.B. O’Reilly is with the Department of Computer Science, Rand

Afrikaans University, Auckland Park, Johannesburg, South Africa. E-mail:
oreill_g@mtn.co.za.

• E.M. Ehlers is with the Department of Computer Science, Rand Afrikaans
University, Auckland Park, Johannesburg, South Africa. E-mail:
eme@na.rau.ac.za.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

T

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

203

actually influence the future interactions of these agents.
Interactive systems can never be fully specified nor fully
tested due to their undeterministic nature. Business
systems that have been developed that incorporate
interactive software agents can be categorized as complex
adaptive systems. CAS is defined by Holland as a system
composed of interacting agents that respond to stimuli and
is characterised by stimulus-response behavior that can be
defined in terms of rules [1], [2], [3]. The ACEUS
framework takes advantage of the idea that the
undeterministic interactions between agents and between
agents and their environment may result in emergent
behavior a fundamental feature of a CAS. The framework
also utilises the idea of creating rules for the agents that
allows them to respond to various stimuli in the
environment. The response to stimuli in the environment
allows the agents to interact with each other and with the
environment. These interactions in the ACEUS framework
are modeled on stigmergy taken from the ant colony
analogy [4], [5].

2 ANT SYSTEMS
A new paradigm of evolutionary computation has been
discovered with the ant colony metaphor. One of the most
successful application models based on the ant colony
analogy is the Ant Colony Optimization model (ACO) [6].
Another approach to the ant colony analogy is Ant System
(AS) proposed by Dorigo, Maniezzo and Colorni [7] and
the Ant Colony System (ACS), which was a refinement of
the Ant System. The Ant system has shown promising
results when applied to the traveling salesman problem
(TSP) while the Ant Colony System has displayed
competitive results with some of the best-known heuristics
for the TSP [8]. Schoonderwoerd, Holland, Bruten and
Rothkrantz [9] and Bonabeau, Henaux, Guerin, Snyers,
Kruntz and Theraulaz [10] have also proposed ant
algorithms for network routing and load balancing in
telecommunication networks. The ant foraging algorithms
have also been used for cargo operations such as cargo
routing and handling systems on airlines [11]. Valckenaers
proposed concepts for designing agent-based control
systems for manufacturing environments using stigmergy
[12]. According to this proposal stigmergy can be utilised to
model suitable control behavior.

The ACEUS framework differs completely from
previous ant algorithms and stigmergy control models. The
ACEUS framework utilises the analogy of an ant colony to
create a software engine that will be distributed, self-
organizing, adaptable and robust. This will allow automatic
configuration and optimization of a system in a complex
environment. A complex environment can be seen as an
environment that is non-linear, unpredictable and
continually changing, for example the semantic web. The
need for adaptability, intelligent self-reconfiguration and
self-optimization is essential in a complex environment.

 3 ACEUS FRAMEWORK
ACEUS as the name depicts utilises stigmergy as a

communications mechanism where as other models have
used stigmergy as a controlling mechanism [12]. In ACEUS
the stigmergy layer does not control the system; it records
changes in the environment induced by agents. These
changes then act as stimuli to the agents in the collective.
Due to the agents responding to the stimuli in the
stigmergy layer, the stigmergy layer is actually influencing
the behavior of the agents in the collective. Agents induce
the changes in the stigmergy layer by depositing
pheromones or objects in this layer. All agents in the
ACEUS framework are self-contained and execute
independent of one another. However, agents can
indirectly influence one another by inducing changes in the
stigmergy layer. The stigmergy layer simulates the
environment. The environment acts as another member of
the collective. When a pheromone or object is deposited in
the stigmergy layer the actual changing of the environment
in the stigmergy layer stimulates various agents. In a sense
the environment in the stigmergy layer is acting as a
driving force for stimulating responses from the agents.
There is no central controlling mechanism in the stigmergy
layer.

The ACEUS framework defines a collective that can be
thought of as a cybernetic type collective as it incorporates
both organic and in silica agents. Organic agents are agents
composed of organic material such as human beings. In
silica agents are silicon-based agents that are created by and
exist on a computer system. Moreover, this cybernetic type
collective is limited on the organic agent side since the
organic agents can only interact with the collective via
interfacing agents. Interfacing agents are also silicon-based
agents. An example of an interfacing agent would be an
agent with a user interface that is dependant on input from
an organic agent. The organic agent is constrained to the
functionality that the interfacing agent provides and has to
operate to these constraints. Any interaction between an
organic agent and an in silica agent will happen via the
interfacing agent.

Since ACEUS is based on a complex adaptive system
many individual agents exist in the framework. The
ACEUS framework has two perspectives, namely: the
collective’s perspective and the individual’s perspective.
The collective’s perspective is the perspective from an
observer outside the collective who is able to comprehend
and understand the entire collective. The individual’s
perspective is the perspective from an individual inside the
collective i.e. an agent that cannot comprehend nor
understand the entire collective. The ACEUS framework’s
ontology can be seen from these two perspectives. Firstly if
the perspective were at the level of the individual agents in
the collective the ontology would appear as small segments
or atom ontologies. These segments of the ontology are
accesable to specific individual agents. An individual agent
can only comprehend its segment. It cannot comprehend
the entire ontology of the collective as it only has access to
its segment. However, if the perspective is changed and the
ontology is viewed from the collective’s perspective the
entire ontology is seen. The collective or swarm entity has
the comprehension of the entire ontology.

Similarly, the rule base of ACEUS can also be seen from

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

204

the two different perspectives. The intelligence in the
ACEUS framework is embedded into the individual agents
in the form of rules. Each agent has a rule set that
constitutes the individual agent’s intelligence. However,
the individual agent cannot comprehend the intelligence of
the collective it can only comprehend its own rule set. The
ACEUS framework when viewed as a collective seems to be
an entity that possesses the intelligence of the entire
collective and maybe even more due to emergence [13], [14].
The ACEUS framework emerges as an intelligent entity just
as an ant colony emerges from the collaboration of the
individual ants.

4 LAYERS
The ACEUS framework has a layered design. The five
layers are: the ontology layer, the rule base layer, the in
silica agent layer, the stigmergy layer and the organic agent
layer (see Fig. 1). The ACEUS framework layers allow the
framework to be easily understood and accessed. These
layers add to the robustness and flexibility of the ACEUS
framework design.

Fig. 1. The ACEUS framework layers.

4.1 Organic layer
 Similar to the ants constituting the individual agents in

the ant colony the organic and in silica agents are the
individual agents in the ACEUS framework. Having a
cybernetic type collective is very useful in a business type
environment. When a situation arises where human
intervention is needed i.e. a decision that a business
organization would prefer a human to handle instead of an
automated in silica agent (e.g. a morale decision), the
decision can be handled by the organic layer of the
framework. Thus the framework makes allowance for
human intervention, but sees the intervention as another
agent altering the environment (see Fig. 2).

Organic agents are able to request certain tasks or make
recommendations in the cybernetic colony by depositing
pheromones in the stigmergy layer via the interfacing agent
(see Fig. 2). All agents in the ACEUS framework are

unaware of any of the other agents in the framework this
includes the organic and interfacing agents. The only
interaction or communication between the agents is via the
stigmergy layer. For example an organic agent will have to
place a pheromone in the stigmergy layer via the
interfacing agent to communicate with the inner layers as
depicted in Fig.2.

Organic agents and interfacing agents are the main
players in this layer. Organic agents in ACEUS are simply
the human users of the system. The framework sees all
human interaction in the framework as interactions of
agents in the environment. The framework does not see the
difference between an organic agent and an in silica agent.
The ACEUS framework also does not differentiate between
the organic agents, so no hierarchical structure can take
place.

Thus all recommendations made to the system are
considered. Recommendations that are advantageous to the
system will be adopted while other recommendations that
are disadvantageous will be rejected. The hierarchical
structures formed in an organization do not influence the
ACEUS framework at all. For example if a high ranking
individual in the organisation makes a recommendation
that is not advantageous to the system that
recommendation will be rejected. Whereas
recommendations that are advantageous to the system
made by low ranking individual in the organization will be
accepted. In short the ACEUS framework utilises it
business intelligence to make decision that are
advantageous to the collective i.e. the organization and not
decisions that are based on the hierarchy of individuals.

The limitation of the organic agents is that the organic
agent can only interact with the collective via an interfacing
agent. Thus the organic agent is limited to the functionality
offered by the interfacing agent. For example if an organic
agent wants to initiate a request or recommendation in the
system, the organic agent will use the interfacing agent to
set that request up and the interfacing agent will drop the
request in the form of a pheromone into the stigmergy layer
(see Fig. 2). A pheromone in the ACEUS framework is a
message object in the form of an XML file. The pheromone
has properties that define the characteristics of the
pheromone. Organic agents can deposit pheromones into
the stigmergy layer via the interfacing agent.

The interfacing agent will contain all the traditional
graphical user interfaces (GUI). GUIs are needed for the
organic agent to interact with the interfacing agent. All data
about the environment needed to create pheromones or
objects will be given to the organic agent via the interfacing
agent. Again due the advantage of the layers in the
framework new interfacing agents can be dynamically
added to the organic layer without affecting any of the
other layers. Interfacing agents can vary from full-blown
applications to small HTML pages.

4.2 Stigmergy layer
Stigmergy is the coordination of tasks and regulation of
constructions (e.g. an ant hill in an ant colony and a
business system in the ACEUS framework) in an
environment that does not depend on the agents, but on the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

205

constructions themselves [5]. The agent does not direct the
work but is guided by it. In the ACEUS framework,
stigmergy is defined as the influence the changing
environment has on the agents in the environment. It is
assumed that the constructions created by the agents in the
environment form part of the environment. These
constructions change the environment and the changing
environment stimulates a certain response in the agents. In
stigmergy the fundamental mechanism is the ability to use
the environment as a shared medium for storing
information so that other individuals can interpret it [4].

Fig. 2. The ACEUS framework depicted with its various layaers and
components. The components of each layer and their interconnections
are also depicted.

4.2.1 Stigmergy in natural systems
Pheromone signaling and object signal is demonstrated in
natural systems such as ant and termite colonies. Object

signaling can be described by a termite colony. Termites
drop small pieces of mud randomly in the environment.
These small pieces of mud can be seen as objects changing
the environment. The change is signaled in the
environment by the stigmergy layer when the object is
moved or dropped. This can be referred to as object
signaling. If several pieces of mud are randomly placed
next to one another in the environment, the signaling of
change in the environment at that specific point will be
increased several times. Due to the increased signaling at
that point the probability of the termite agents being
stimulated enough so that they respond by dropping their
mud objects at this location is increased. So long as the
termite agent has a stimulus-response rule that allows a
response of dropping its object at a point of increased
signaling. The changing environment thus influences the
termite agents on where to drop their mud objects. The
larger the signaling the more attractive it is for further
agents to drop their mud objects at this location. This
results in small heaps been abandoned and larger heaps
growing into tall columns.

To demonstrate pheromone signaling in ant colonies
assume two trails A and B have been established between
the nest and a food sources. Trail B is slightly shorter than
trail A. Initially there will be the same amount of ant agents
following trail A as there would be following trail B as the
two trails cannot be differentiated initially. As the ants
follow the trail they deposit pheromones in the
environment. Again the stigmergy layer will begin
signaling a change in the environment. Once an ant finds
the food source its then starts making its way back to the
nest depositing food pheromones in the environment. The
ants following trail B will obviously return to the nest the
quickest and then want to return to the food source. These
ants will then follow the highest signaling in the
environment pointing toward food i.e. the strongest scent
from the pheromones. This would be trail B as the signaling
along this trail would have been reinforced with food
pheromones from the ant that have just returned to the nest
from the food source. This would result in more
pheromones been deposited on trail B and the signaling of
change in the environment along trail B would continually
increase. Thus the stimuli for the ant to follow trail B
instead of trail A would continually increase. Eventually,
because of this positive feedback, the longer trail A will be
abandoned, while the shorter trial B will attract all the
traffic. The ant agents are constantly tracing and updating
an intricate network of trails in the environment that
indicate the most efficient ways to reach different food
sources. Individual ants do not need to keep the locations
of the different sources in memory all they need is the
stimulus response rules to follow the highest signaling
trails in the environment. Thus a collectively developed
trail network emerges that will always be there to guide
them.

The two examples of pheromone signaling and object
signaling may seem similar. However, the difference is that
the ants leaving pheromone are not making any physical
contribution to the solution of their problem (collecting
food), unlike the termites whose actions directly contribute

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

206

to the mound building. With pheromone signaling the
agents are merely providing the collective with a map to
guide them through the environment. In fact, the trail
network functions like an external mental map, which is
used and updated by all the agents. This is a typical
example of a collective memory map.

4.2.2 Stigmergy in the ACEUS framework
In the ACEUS framework the environment in which the
agents deposit and detect their pheromones and objects is
incorporated into the stigmergy layer i.e. the stigmergy
layer simulates the environment. Any changes to the
environment are signaled in the stigmergy layer. Thus if the
ACEUS framework was simulating an ant colony, then the
stigmergy layer would represent the actual spatial
environment in which the ants roam, deposit and detect
pheromones. Similarly, when the ACEUS framework is
applied to a commercial organization, the stigmergy layer
must represent the environment in which the organization
operates.

The stigmergy layer in ACEUS signals any changes in
the environment. The changes to the environment induced
by the deposited pheromones or objects stimulate the
agents to respond. The stigmergy layer is the
communication layer of the ACEUS framework. Agents
inter communicate in the ACEUS framework indirectly by
depositing pheromones or objects in the environment. The
changing environment communicates with the agents by
acting as a hidden driving force that influences the agent’s
actions. Thus due the critical influence the environment
plays in communication both between agents and between
agents and the environment the stigmergy layer is the ideal
layer for simulating the environment.

When simulating an environment in a computer model
the conceptual environment could be captured in a
collective ontology. A collective ontology is a huge
ontology made up of a number of smaller ontologies called
Atom ontologies. An Atom ontology is designed to capture
the conceptual intelligence of a single agent in the ACEUS
framework. Thus no agent will be able to comprehend the
collective ontology it will only be able to comprehend its
own ontology. Agents cannot utilise the collective ontology
they can only utilise their own atom ontology. Any
violation of this rule would severely hamper the idea of
emergent behavior, as the size of the controlled content of
the collective ontology would not be able to grow beyond
the cognitive capabilities of an individual agent. To ensure
that no problems of this nature occurs in the ACEUS
framework agents will only be able to deposit pheromones
or objects in the stigmergy layer. They will not be able to
comprehend the stigmergy layer or understand the
mechanisms of the stigmergy layer.

The messaging mechanism in the stigmergy layer can be
seen in Fig. 3. The stigmergy layer utilises an embedded
rules engine. When an agent deposits a pheromone or
object into the assertion pool of the stigmergy layer a rule
will fire depending on the pheromone or object type. This
rule will then stimulate an existing agent by setting its
detecting parameter to true. The rule will also retract the
pheromone or object from the rules engine. Once an agent’s

detecting parameter has been set to true it will respond to
this stimuli by performing its dedicated task. After the
agent has completed its tasks it will set it’s detect parameter
too false. In this fashion the stigmergy layer is acting as a
stimuli provider to the agents in the ACEUS framework. It
also ensures a driving force for stimulating responses in the
agents. The agents have no control on the stigmergy layer
and cannot comprehend the means by which they are being
stimulated. The main controlling mechanism in the
stigmergy layer is the rules engine. The rules in the
stigmergy layer are able to stimulate the agents into
performing certain tasks. This is a modeled replica of the
changing environment influencing agents such as ants and
termites to perform certain tasks. The rules in the stigmergy
are defined in the rule base layer (see Fig. 2). All the
different pheromones and objects that can be deposited in
the stigmergy layer are defined in the ontology layer.

Fig. 3. Agents depositing pheromones and objects into the assertion
pool of the rules engine. The assertion pool asserts these pheromones
and objects into the rules engine that cause particular rules to fire. The
rules then activate other agents. This mechanism is acting as if the
activated agents actually detected the pheromones or objects.

The stigmergy layer in this framework acts as a single
virtual agent. This virtual agent would be the environment

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

207

that all the agents are interacting with. This is analogous to
the overall concept of an ant colony as the ants interact and
communicate with the environment as if it were just
another agent.

4.3 In silica agent layer
All the in silica agents in the framework are housed in the in
silica layer. These agents are responsible for the key tasks in
the environment being simulated. In a natural ant colony
system these agents would represent the queen, drones,
workers, soldiers and brooding ants. The activities of these
agents ensure the survival and operation of the collective as
a whole.

In silica agents communicate indirectly with each other
via the stigmergy layer. Communication takes place by
depositing pheromones or objects in the stigmergy layer.
Communication between the in silica agents is vital in the
ACEUS framework even though the agents are unaware of
one another and the communication is indirect. In the
ACEUS framework detecting different pheromones
stimulates the agents. The response of the agent to the
stimuli is governed by the rules built into the agent.

Every in silica agent in the framework inherits from a
template agent. The template agent contains all
functionality that is common among all the agents. The
template agent will basically contain a rules engine utilising
a RETE algorithm [15], a terminating mechanism and a
communications mechanism. The rules engine will be used
to assert and retract facts as well as fire the agent’s rules.
The rules engine acts as the agent’s brain. The simple
intelligent behavior displayed by the agent is a result of
rules firing in the rules engine. The communication
mechanism is utilised to deposit and detect pheromones or
objects in the stigmergy layer. The communication
mechanism utilises the rules engine in order to know how
to respond to certain pheromones or objects in the
stigmergy layer. Individual in silica agents will have their
own set of rules that will be based on the concepts in their
atom ontology. If a new agent is to be added to the
framework, the designer simply has to inherit from the
template agent and design an atom ontology and a new set
of rules for that agent. An embedded rules engine is used
instead of a global rules engine so that the agents can act as
independent executing entities that may be distributed on
different machines all over a computer network.

If a new agent is added to the system in order to extend
the systems functionality it is simply added to the in silica
layer. Thus no disassembling or redesign is needed when
extending the system. The new agent only needs to know
how to interact with the stigmergy layer and which
responses it should have for specific pheromone stimuli.
The ability to interact with the stigmergy layer will be
encoded into the agent’s rule set. This robustness and
flexibility in the ACEUS framework is due the agents in the
framework being unaware of each other. The only
interaction or communication between the agents is via the
stigmergy layer. If a commercial organization
implementing the ACEUS framework needed to extend it’s
domain in order to incorporate new entities the framework
would be adaptive and robust enough to handle the

transition without any disassembling or redesign. Only the
new agents with the knowledge of the new entities are
added to the the in silica layer.

4.4 Rule base layer
The rules for the different agents are written into individual
rule files. All the rule files in the ACEUS framework make
up the rule base layer. When an agent is instantiated or
activated the agent knows which rules file to execute in the
rule base layer. The rules file can be edited i.e. new
intelligence can be added to the agent dynamically without
effecting other layers in the ACEUS framework.

The rule base layer also allows the designers easy access
as well as dynamic access to the rule files. Dynamic access
means that the designer can change the rules while the
agent is executing. The new rules set or edited rule set will
be executed when the agent refreshes or resets. A designer
does not have to even stop or terminate the agent when
editing the agent’s rules set nor delve into the runtime code
of each agent to change its intelligence as in present
systems.

Rules form a powerful means for developing intelligence
into different agents. The ACEUS framework allows rules
to be defined that are general in the rule base layer. General
rules are rules that are used by a number of agents in the
framework i.e. this is shared intelligence. Designers only
need import the file location of general rule set in order for
the agent to utilse the general rules.

4.4 Ontology layer
The ontology layer constitudes the core layer of the ACEUS
framework. Similar to the rule base layer the ontology layer
is the ontology for the entire collective. The collective
ontology of the ACEUS framework represents the ontology
layer. Thus the ontology layer is an ensemble of atom
ontologies. Atom ontologies are captured in the Web
Ontology Language (OWL) [16] format in an XML files
which are referred to as ontology files. The ontology layer
is composed of all the ontology files in the ACEUS
framework.

The ontology layer can also be described as the
collective’s vocabulary. Every entity and object known in
the domain simulated by the ACEUS framework will be
defined in the ontology layer. The ontology structure will
help form the main blue print of the simulated system. The
simulated system refers to the system domain being
simulated by the ACEUS framework. In short the complete
simulated system is modeled or characterised by means of
the ontology.

What is interesting about the ontology layer and rule
base layer is due to the distribution of the segments of both
these layers into to the agents no agent will ever be able to
comprehend the collective’s intelligence or have an
understanding of these layers. At most an individual agent
will only be able to comprehend main chores and abilities
which form a small segment of these layers. Thus the
ACEUS framework forms a true analogy of an ant colony.

The ontology file for an agent is executed before the
rules file when an agent is activated. This is due to the rules
being dependent on the concepts and entities defined in the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

208

ontology files. The ontology files contain concepts as well
as services with specific URL locations. The concepts
defined are entities that contain properties and are meant to
simulate or mirror the real entities in the domain. The
services are utilities that the agent can utilise to complete a
specific task. The services are executable java applications
that are encapsulated into a java archive files (jar files).
These jar files are distributed over the computer network or
web. The URL of the jar file is specified in the ontology.
The agent can instantiate the classes for the service on
distributed machines via HTTP. These services can be used
by the agents to perform a magnitude of tasks e.g.
connecting to databases, utilising TCP/IP, RMI, CORBA
and communicating with vendor specific hardware.

5 CAS PROPERTIES AND MECHANISMS
In order to present ACEUS as a CAS, ACEUS needs to be
described according to the properties and mechanisms of a
CAS as defined by Holland [1]:

5.1 Aggregation (property)
The ontology layer in the ACEUS framework satisfies
aggregation. According to Holland [1] aggregation has two
instances. In the first instance familiar entities are
categorized. In ACEUS all the entities in the domain to be
simulated are defined and categorized in the ontology. The
ontology layer is the definition layer of all entities in the
domain. The ontology forms the vocabulary for the
framework and all modeling of intelligence in the rules.
The rules are highly dependant on the definition and
categorization of the entities in the ontology layer. The
second instance of aggregation is concerned with the
emergent behavior that emerges from the aggregated
interactions of the agents. The ACEUS framework has been
designed so that there are unpredictable interactions both
between agents and between agents and the environment.
In ACEUS the individual agents have a very stereotype
behavior and have no way of perceiving the complete
collective. The aggregate in ACEUS framework would then
be the collective agent layers, ontology layer and rule based
layer that are highly robust and adaptive.

5.2 Tagging (mechanism)
The formation of aggregates and boundaries is consistently
facilitated by the tagging mechanism [1]. Tags can be
described as a mechanism of signaling between agents.
This mechanism facilitates communication. Tags can also be
seen as messages in different forms that agents can
interpret allowing them to selectively interact with other
agents or the environment. In ACEUS the utilization of
deposited pheromones or objects in the stigmergy layer
facilitates the signaling between the agents or between
agents and the environment. The ACEUS framework thus
utilises the tagging mechanism in the stigmergy layer.

5.3 Non-linearity (property)
The in silica agent layer in ACEUS is composed of many
individual in silica agents. These in silica agents are event
driven as they have embedded rules engine that fires
particular rules when the necessary facts are asserted. This

allows the in silica agents an undeterministic characteristic
that is unpredictable. Similarly, the stigmergy layer in the
ACEUS model also has an unpredictable nature. It too has a
rules engine that facilitates event driven actions that are
unpredictable. It can be concluded that the ACEUS
framework has a non-linear property associated to due
firstly to the actions of the in silica agents in the in silica
agent layerbeing unpredictable or non-linear and secondly
to the actions inside the stigmergy layer being
unpredictable.

5.4 Flows (property)
Flows in CAS are referred to as the flow of an entity
through a network of nodes and connectors. The nodes are
the processors i.e. the agents in the model and the
connectors are the designate possible interactions. Flows
vary over time. Nodes and connectors can appear and
disappear in a CAS over time. Thus neither the flows nor
the network are fixed in time they are simply patterns that
reflect a certain state of the model in time [1]. The tagging
mechanism defines the network by creating major
connections where the interactions are most critical.

ACEUS have objects and pheromones that flow through
the system over time. No pheromone or object in the
stigmergy layer is static in time. Each pheromone that is
deposited in the stigmergy layer has a predefined lifetime
as it begins to evaporate as soon as it is deposited. The
objects do not evaporate but are consumed by the agents in
the framework. The agent can consume the agent by
retracting it from the stigmergy layer. The pheromones and
objects in the stigmergy layer form a network of messages
in the framework. However, the network is not static it
constantly changes over time as the pheromones evaporate
and the objects are consumed. As pheromones and
signaling objects are used as tags in the ACEUS model they
facilitate the creation of interactions between the nodes
(agents) in the model.

5.5 Diversity (property)
The wide range of agents interacting in the framework
satisfies the diversity property of ACEUS. ACEUS
provides for organic agents, interfacing agents and in silica
agents all of which are diverse in their own right. For
example in the in silica layer of ACEUS there is a wide
range of in silica agents, each filling a small niche that is
defined by interactions depending on the agent. The rules
embedded in the agent define the type of interactions the
agent can engage in. Similarly in the organic layer there are
a number of unique interfacing agents with completely
different interactive roles.

The persistence of an individual agent depends on the
ecosystem of agents that surround it. For example in the
ACEUS framework if there is a void in the interaction of
agents, an agent is created by the designer to fill in that
void. The new agent may be a hybrid representation of
other already existing agents i.e. the new agent might share
some of the already existing agent’s rule files and ontology
files. This can be seen as convergence of the system.
Convergence is the basis of emergent patterns that reappear
again and again in widely disparate environments [1].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

209

Mimicry can also be modeled with ACEUS by means of
inheritance in the ontology layer. Agents can be mimicked
in ACEUS by inheriting from another agent’s atom
ontology. This means rules that applied to the original
agent will also apply to the mimicked agent. The rules are
not changed only the atom ontology of the mimicked agent
is different i.e. the mimicked agent’s atom ontology might
be a subset of its ancestor agent’s atom ontology. The rules
will fire as normal on the ontology segments.

5.6 Internal models (mechanism)
An ideal model of a CAS would be a system that could
learn from experience and adapt its behavior. In order for a
system to incorporate such behavior a basic mechanism is
needed that ensures the ability to develop and act on
internal models that simplify the external world.

The rules in the rule base of the ACEUS framework
provide for this mechanism. The segmented rule base i.e.
specific rules files that each agent executes gives the agent
the ability to choose particular actions as a response to
specific stimuli encountered. The rules allow the agents to
infer the results of actions before they are taken allowing
agents to select actions that would result in productive
results.

5.7 Building blocks (mechanism)
A comprehensive feature of a CAS is the utilisation of
building blocks to generate internal models [1]. Building
blocks used to generate internal models could be the basis
of dramatic improvements in software productivity [11].
Building blocks incorporated into a model ensure that the
complexity is made more understandable and easier to
manage.

The building blocks of the ACEUS framework are
embedded in all the layers. The ontology layer is the layer
in which all concepts of the environment are defined. The
rule base layer is the layer where all the rules are built up
from the concepts in the ontology layer. The in silica agents
and interfacing agents contain the rules that are the
building blocks of their intelligence. The aggregated
intelligence of all the agents in the ACEUS framework
builds up the collective’s intelligence. Thus the importance
of the building blocks mechanism in the ACEUS framework
can be seen.

6 CONCLUSIONS
The ACEUS framework has been presented that can be
used in a business environment to build a software system
that imitates a complex adaptive system (CAS). The design
of ACEUS entailed a number of layers. These layers
allowed the system to be easily accessed from a designer’s
point of view. The layers allowed the framework to be
easily changed without disassembling or redesigning any
parts of the framework. The framework’s design allowed
easy adaptability in terms of adding new agents to the
framework as well as an easy way to access the systems
ontology and rule base without accessing the individual
agent’s internal code.

The ACEUS framework was created for environments
that are growing at a rapid pace where the present methods

of software design cannot keep up to the constant change.
The present design structures in these environments are not
robust or adaptable enough to cope with the constant
change and expansion. The ACEUS framework allows
reuse of code, agents, concepts and rules as well as
dynamic addition of these entities into the framework.
Designers can add entities to the framework without
having to have a complete understanding of all the entities
in the framework. The ACEUS framework is robust enough
to be distributed over many machines or operate on a single
machine. ACEUS allows thin client, thick client or web
clients. For example interfacing agents can be designed to
be simple HTML pages or full-blown applications.

One of the most promising ideas the ACEUS framework
presents is that complex behavior patterns can emerge from
individuals that are following simple rules. As the ACEUS
framework grows i.e. more and more agents are added to
the framework the complexity of the system can increase
dramatically. To avoid this problem the complexity of the
rule base and ontology is hidden from the individual
agents. Individual agents can only view a small segment of
the rule base and a small segment of the ontology. The
segment the individual agent can comprehend is the
segment that is actually executes. Thus a designer adding a
new agent to the framework will only be concerned with
the atom ontology and the rules of the agent. The agent
designer does not need to be concerned with all the other
ontologies and rules in the collective.

The ontology layer and rule base layer is abstract as a
whole, as these two layers are an aggregate of many smaller
segments. The complete ontology layer and rule base layer
can only be viewed from the collective’s perspective. By
incorporating a collective’s and an individual’s perspective
reduces complexity in the framework e.g. viewing the
system from a collectives perspective could be
overwhelming in complexity whereas the view point from
the individuals perspective would be very simple and easy
to understand.

The intention for future research is to implement ACEUS
as a framework for the semantic web. Utilise ACEUS as a
framework for building and maintaining peer-to-peer (P2P)
networks. Build applications for monitoring and controlling
complex environments such as cellular telecommunications
network and modern pebble bed nuclear reactors. The main
goals are to utilise the ACEUS framework to help build
adaptive, robust and self-organizing systems that are able
to handle the constant fluctuations and growth of modern
business software.

ACKNOWLEDGMENT
The authors wish to thank the Rand Afrikaans University
and the Department of Computer Science at the Rand
Afrikaans University.

REFERENCES
[1] J.H. Holland, Hidden Order: How Adaption Builds Complexity, Helix

Books, 1995.
[2] J. Sutherland, “Business Object and Component Architectures:

Enterprise Application Integration Encounters Complex Adaptive

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

210

Systems”, HICSS-34 Outrigger Wailea Resort Maui, January, 2001,
http://jeffsutherland.org/papers/HICSS2001/EAICAS.pdf,
(URL accessed 2004, Jul).

[3] J. Sutherland and W. van den Heuvel, “Enterprise Application
Integration Encounters Complex Adaptive Systems: A Business
Object Perspective”, 35th Annual Hawaii International Conference
on System Sciences (HICSS’02) Big Island, Hawaii, Volume 9,
January,2002,
http://csdl.computer.org/comp/proceedings/hicss/2002/1435/
09/14350286b.pdf, (URL accessed 2004, Jul).

[4] F. Heylighen, “Collective Intelligence and its Implementation on
the Web: algorithms to develop a collective mental map”,
Computational and Mathematical Organizational Theory, 5(3):
53-280, 1999.

[5] L.K. Kristensen, “Aintz: Collective Problem Solving by Artificial
Ants”, http://www.evalife.dk/publications2.php, 2000, (URL
accessed 2003, Aug)

[6] M. Dorigo and G. Di Caro, “The ant colony optimization meta-
heuristic”, New Ideas in Optimization, D. Corne, M. Dorigo and F.
Glover, eds., McGraw-Hill, pp.11-32, 1999.

[7] M. Dorigo, V. Maniezzo and A. Colorni, “Ant system:
Optimization by a colony of cooperating agents”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 26, no. 1, pp.29–
41, Feb 1996.

[8] M. Dorigo and L. M. Gambardella, “Ant colonies for the traveling
salesman problem”, BioSystems, vol. 43, pp.73–89, 1997.

[9] R. Schoonderwoerd, O. Holland, J. Bruten and L. Rothkrantz,
“Ant-based load balancing in telecommunications networks”,
Adaptive Behavior, HP Labs Technical Report, HPL-96-76, May,
1996.

[10] E. Bonabeau, F. Henaux, S. Guerin, D. Snyers, P. Kuntz and G.
Theraulaz, “Routing in telecommunications networks with smart
ant-like agents”, Proc. of Intelligent Agents for Telecommunications
Applications, 1998.

[11] E. Bonabeau and C. Meyer, “Swarm Intelligence: A Whole New
Way to Think About Business”, Harvard Business Review,
Harvard Business School Publishing Corporation, 2001.

[12] P. Valckenaers, M. Kollingbaum, H. Van Brussel, O. Bochmann
and C. Zamfirescu, “The Design of Multi-Agent Coordination and
Control Systems using Stigmergy”, Proc. of the IWES'01
Conference,2001,http://www.csd.abdn.ac.uk/~mkolling/public
ations/DesignMultiAgentCoordControlStigmergy.pdf, (URL
accessed 2004, Jul).

[13] J.H. Holland, Emergence: from Chaos to Order, Oxford University
Press, 1998.

[14] S. Johnson, Emergence: The Connected Lives of Ants, Brains, Cities
and Software, Scribner, 2002.

[15] C.L. Forgy, “Rete: A Fast Algorithm for the Many pattern/Many
Object-Pattern Matching Problem”, Artificial Intelligence, Vol. 19,
no. 1, September, pp 17-37, 1982.

[16] M.Dean and G.Schreiber, “OWL Web Ontology Language
Reference”, W3C Working Draft, http://www.w3.org/TR/owl-
ref/, 2003, (URL accessed 2004,Jun).

G.B. O’Reilly is a PhD student in Computer
Science at the Rand Afrikaans University
(RAU). His research interests include
swarm intelligence, complex adaptive
systems and application of these
technologies to new fields of research such
as the semantic web. He received his MSc
degree in physics in 1994 and his MSc in
computer science in 2003 both from RAU.
He works as a software engineer at Mobile

Telecomunications Network (MTN) in South Africa.

E.M. Ehlers is a professor of computer
science at the at the Rand Afrikaans
University (RAU). Her research interests
include agent technology. She holds a
PHd. in computer science received in
1987 from RAU.

