
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

216

ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO
INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT

*P.Nirmalkumar, **J.Raja Paul Perinbam, @S.Ravi and #B.Rajan

*Research Scholar, Department of ECE, Anna University, Chennai-25
**Professor,Dept. of ECE, Anna University, Chennai-25

@Professor, Dept. of ECE, Dr.M.G.R.Deemed University, Chennai-95.
#Dept. of ECE, Dr. M.G.R.Deemed University, Chennai-95.

ABSTRACT

Integrating the reconfigurable logic and the host
processor can eliminate the communication
bottleneck that is present in current custom
computing units. This integration is of great
advantage if the reconfigurable block consumes
less power. Once power optimization of the VRC
is possible, the combined system can provide high
speed computing with low power consumption.
This paper describes experiments conducted to
analyze the power consumed by the individual
processing elements of a virtual reconfigurable
circuit (VRC) according to the functionality
performed. The experiment is performed on a
model VRC designed to perform sensor validation
and automatic functional reconfiguration in case of
occurrence of single or multiple sensor faults. The
power analysis done in this work will assist to
estimate how the use of VRC’s influence the
integration of FPGA based evolvable systems with
host processor and can facilitate reconfigurable
computing to enter the mainstream and provide
high performance benefits.

Keywords: Virtual Reconfigurable circuit, Power
Analysis, Evolvable hardware.

1. INTRODUCTION

Reconfigurable hardware [1] devices offer
both the flexibility of computer software, and the
ability to construct custom high performance
computing circuits and make a good compromise
between software and hardware solutions. Virtual
reconfigurable circuits were introduced for digital
evolvable hardware as a new kind of
reconfigurable platform utilizing conventional
FPGAs. Virtual reconfigurable circuit (VRC) is, in
fact, an implementation of a domain-specific

reconfigurable circuit on top of an ordinary
FPGA. The structure of a reconfigurable
hardware device can be changed any number of
times by downloading into the device a software
bit string called configuration bits. A VRC can
be designed to exactly fit the needs of a given
evolvable hardware-based application. Also,
reconfigurable systems have provided
significant performance improvements by
adapting to computations not well served with
current processor architectures. The inherent
redundancy present in the VRC can protect the
circuits from faults.

 On the pessimistic side, the
implementation of VRC’s are relatively
expensive in terms of gates used since
interconnection circuits of VRC’s are selected
using multiplexers which are area expensive.
Rather than only optimize the speed, optimizing
the power consumed by the PE’s in the VRC is
also a crucial factor to be considered when
integrating reconfigurable circuits with host
processor. This paper is organized as follows:
Section 2 provides an overview of the
evolutionary design of digital circuits. Section 3
describes the details of the model VRC designed
using evolved operators to handle exceptions
such as sensor faults. Section 4 discusses the
implementation of the PE’s using the tanner
software tool. The experimental results and
discussions showing the power consumed by the
different PE’s as well as the overall VRC
corresponding to the different sensor failure
conditions are presented in Section 5.

2. EVOLVING DIGITAL CIRCUITS

Evolvable Hardware (EHW) is a new
concept in the development of online adaptive
machines. In contrast to conventional hardware
where the structure is irreversibly fixed in the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

217

design process, EHW is designed to adapt to
changes in task requirements or changes in the
environment through its ability to reconfigure its
own hardware structure online and autonomously
[2]. The capacity for adaptation is achieved
through evolutionary algorithms such as Genetic
Algorithm (GA). The main requirement in an
evolved digital circuit is that the evolved circuit
should have the ability to control the granularity of
configurable elements and provide a transparent
structure of the configuration data.
Although various evolvable systems have been
implemented as Application Specific Integrated
Circuits (ASIC), this solution is relatively
expensive [5]. Hence a great effort is invested to
designing evolvable systems at the level of FPGAs.
The typical feature of these approaches is that the
most families of FPGAs can be configured
externally (i.e. from an external device connected
to the configuration port).

The evolved circuit shall be evaluated
either using software simulation models or entirely
in hardware. Accordingly the evolution process is
classified as extrinsic or intrinsic evolution
respectively. In both cases, the evolution process
itself is carried out in software. Alternately, it is
also possible to have the evolution process itself
done on hardware and this is called as complete
evolution. The advantage of the last one is that it
provides a speed up in the process. An evolved
circuit can either be of gate level evolution or
functional evolution. For gate level evolution, the
gene is considered as an AND, OR, XOR, NAND,
NOR or XNOR gate. For a functional level
evolution, the gene is considered as a ‘m’ input
LUT. A functional level evolved VRC using GA
based techniques for handling sensor faults in a
process using multiple sensors is proposed and
examined in the next section.

3. VIRTUAL RECONFIGURABLE
CIRCUITS

Virtual reconfigurable hardware is the

combination of Genetic Algorithms and the
software reconfigurable devices. The structure of
the reconfigurable device can be determined by
downloading binary bit strings called the
architecture bits [1]. When a VRC is uploaded into
the FPGA, its configuration bit stream will create
the following units at specified positions: (i) an
array of programmable elements called the PE (ii)

a programmable interconnection network (iii) a
configuration memory (implemented as a
register array) and (iv) a configuration port. The
basic idea of the VRC with the evolved circuit is
shown in figure 1. The VRC shown can be
described in HDL and can be synthesized using
common synthesis tools and for various target
platforms. In this work, the following evolvable
systems are implemented using the idea of VRC
in an FPGA.

Figure 1 Basic VRC model

(i) Evolvable circuit to detect
single sensor failure

(ii) Evolvable circuit to detect
multiple sensor failures

(iii) Evolvable circuit to filter
the noise present in the
input sensors

The chromosomes are transformed into
configuration bit stream and the configuration
bit stream is uploaded into an SRAM-based
FPGA. The evolved circuit along with the VRC,
Genetic unit and the host processing units to
perform the estimation and failure detection
mechanism is shown in figure 2. The approach
utilizing VRC offers many benefits, such as 1) It
is relatively inexpensive, because the whole
evolvable system is realizable using an FPGA.
2) The architecture of the reconfigurable device
can be designed exactly according to the needs
of a given problem. Slices have to implement a
new array of programmable elements, new
routing circuits and new configuration memory.
The hypothetical VRC chosen for experimental
study is shown in figure 3 and consists of 25 PEs,
having 3 inputs and 1 output and the behavior

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

218

fully defined using 217 configuration bits of
SRAM.

Figure 2 Block Diagram of EHW with VRC

Figure 3 Model VRC with 25 PEs

Each of the PEs can be configured to operate with
any of the 13 functions provided in table-1.

Table 1

F0: 0000
F1: 0001
F2: 0010
F3: 0011
F4: 0100
F5: 0101
F6: 0110
F7: 0111
F8:1000
F9:1001
F10:1010
F11:1011
F12:1100

X<<1
~X
X | Y
X^Y
(X+Y) >> 2
(X+Y) >> 1
X & “F0”
X | “F0”
X | “0F”
Min(X,Y)
Max(X,Y)
X >> 1
X+Y

4. IMPLEMENTING THE PE’S IN VRC

The configuration word contains details
about the interconnection between the
processing elements (PE) of the VRC and the
functional operations performed within each PE.
The inputs of a PE can be connected to circuit
inputs or to the outputs of preceding PEs.
However, only up to 8 combinations are
permitted in order to reduce the number of
configuration bits. While 8 configuration bits
define the complete behavior of the PEs of the
1st column (PE0-PE3), 10 configuration bits
define the behavior of the remaining PEs (PE4-
PE25). It is evident that both combinational and
sequential functions can be created in the model
VRC. The reconfiguration of the circuit is
required once a sensor failure is detected by the
failure detection mechanism. The logical
configuration of the circuit is defined by a set of
25 integer triplets, one for each of the 25 PEs in
the reconfigurable architecture. The first two
integers of each triplet represent the source of
inputs to the PE (sel1& sel2) and the third
integer of the triplet (sel3) indexes the function
to be applied by the PE. The configuration
memory is composed of flip-flops. All bits of
the configuration memory are connected to
multiplexers that control routing and selection of
functions in PEs. This is shown in figure 4 for
PE2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

219

Figure 4 PEs with the MUX and function selector

4.1 Tanner Simulator

In this work the implementation of the
PEs of the hypothetical VRC in an FPGA is
simulated using the Tanner simulator tool. The
advantage of this approach is that the
reconfigurable circuit can be made available as a
soft IP core i.e. the model VRC can easily be
removed or modified from or on FPGA. Once
simulated it is possible to (i) know the power
consumed by both the individual PEs and the
complete VRC model and (ii) develop effective
methods to improve fault tolerance in FPGAs and
recover the functionality by means of a smart
reconfiguration strategy.

Figure 5.1 First input left shift by 1 function

Figure 5.2 Inverter Function

Figure 5.3 OR Function

Figure 5.4 Ex-OR Function

 Figure 5.5 Adder + Right shift by 2 function

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

220

Figure 5.6 Adder + Right shift by 1 function

Figure 5.7 First input ‘AND’ with 0xF0 function

Figure 5.8 First input ‘OR’ with 0xF0 function

Figure 5.9 First input ‘OR’ with 0x0F function

Figure 5.10 Minimum Of 2 input function

Figure 5.11 Maximum/minimum of two inputs function

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

221

Figure 5.12 First input right shift by1 function

Figure 5.13 Adder Function

The different functions that each PE can perform
are simulated in the Tanner package tool and are
shown in figures 5.1 to 5.13.

5. EXPERIMENTAL RESULTS

Case–I: Circuit evolved to handle single sensor
failure (Sensor 3 is assumed to be at fault)

The power consumed by the VRC chip configured
to handle single sensor failure is shown in figure 6.
The VRC has reconfigured itself to reject the
sensor 3 reading and give an output, which closely
matches with the average of the sensor 1 and 2
readings.

Case–II: Circuit evolved to take care of
multiple sensor failure (Sensors 1 and 2 are
assumed to be faulty)
The result obtained by using the evolvable
hardware chip on a real-time plant for this case
is shown in figure 7. The VRC has reconfigured
itself to reject the fault reading of sensors 1 and
2 and give an output, which closely matches
with the sensor 3 reading.

Case–III: Circuit evolved to filter the noise
present in the input sensors
The VRC output captured using the Tanner tool
corresponding to this condition is shown in
figure 8. In this case, a Gaussian noise of mean
zero and variance 0.1 was added to all the three
sensors. The VRC configures itself to act as a
filter and filters the noise present in the three
input sensors.

6. CONCLUSION

This work has presented the use of
Tanner tool to perform an analysis of the power
consumed by a model VRC for three different
reconfigured architectures. The other functions
of the complete EHW chip namely the estimator
and the fault decision unit is performed in the
host processor (PC). The results presented here
can be used to assist the integration of VRC with
host processor.

7. References

1. Canham, R. O. and Tyrell. A (2002). Evolved fault

tolerance in evolvable hardware. IEEE Congress on
Evolutionary Computation. IEEE Computer Society.

2. Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization & Machine Learning. Pearson Education,
Inc.

3. Hereford, J., Pruitt, C. (2004). Robust sensor systems
using evolvable hardware. Proc. of the 2004
NASA/DoD Conference on Evolution Hardware.
IEEE Computer Society.

4. Hollingworth, G., Smith, S. and Tyrell, A. (2000).
Safe intrinsic evolution of Virtex devices. In Proc. of
2nd NASA/DoD Workshop on Evolvable Hardware.
IEEE

5. Iwata, M., Kajitani, I., Liu, Y., Kajihara, N., Higuchi,
T.. Implementation of a Gate-Level Evolvable
Hardware Chip. IEEE.

6. Keymeulen, D., Stoica, A., Zebulum, R. and Dong, V.
(2000). Results on the Fitness and Populational based
Fault Tolerant Approaches using a Reconfigurable
Electronic Device. IEEE.

7. Layzell, P. (1999). Inherent Qualities of Circuits
Designed by Artificial Evolution: A preliminary study

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9A, September 2006

222

of populational fault tolerance. In Proc. of the 1st
NASA/DoD Workshop on Evolvable Hardware. IEEE
Computer Society.

8. Murakawa, M., Higuchi, T., Iwata, M., Kajitani, I., Liu,
W., and Salami, M. (1997). Evolvable Hardware at
Functional Level. IEEE

9. Ramsden, E., Greenwood, G. W., and Hunter, D. (2004).
Fault Recovery in Linear Systems via Intrinsic Evolution.
Proc. of the 2004 NASA/DoD Conference on Evolution
Hardware. IEEE 1Computer Society.

10. Sekanina, L. (2003). Towards Evolvable IP cores for
FPGAs. In Proc. of the 2003 NASA/DoD Conference on
Evolvable Hardware. IEEE Computer Society.

11. Sekanina, L., and Friedl, S. (2004). On Routine
Implementation of Virtual Evolvable Devices Using
COMBO6. Proc. Of the 2004 NASA/DoD Conference
on Evolution Hardware. IEEE Computer Society.

8. Biographies

1)Mr.P.Nirmalkumar is a research scholar in the faculty of
ECE, Anna Uty. Chennai. His areas of interest include
evolvable hardware, fault tolerant systems, genetic algorithms
etc.
2)Dr.Raja Paul Perinbam is a Professor in the faculty of ECE,
Anna Uty. Chennai. His areas of interest include EHW,
embedded systems, low power VLSI etc.
3)Dr.S.Ravi is a Professor in the faculty of ECE, Dr.M.G.R.
Deemed Uty. Chennai. His areas of interest include
reconfigurable architectures, signal processing, low power
VLSI etc.
4)Mr.B.Rajan is in the department of ECE, Dr.M.G.R.
Deemed Uty. Chennai. His areas of interest include image
processing, ASIC, Evolvable hardware etc.

Figure 6 Power consumed by evolved VRC for case (i)

Figure 7 Power consumed by evolved VRC for case (ii)

Figure 8 Power consumed by evolved VRC for case (iii)

