
 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

28

Manuscript received September 5, 2006.
Manuscript revised September 19 , 2006.

An Efficient Learning Algorithm of the Hopfield Neural Network for
the Minimum Set Cover Problem

Rong-Long Wang1, Pei Zhang1,2 and Kozo Okazaki1

1Faculty of Engineering, Fukui University, Fukui-shi, Japan 910-8507
2Faculty of Information Science and Technology, Beijing University of Chemical Technology, Beijing , China

Summary
The minimum set cover problem (MSCP) is an important NP-
hard problem. In this paper, we propose a learning algorithm of
the Hopfield neural network which can escape from local minima,
for efficiently solving the problem. Extensive simulations are
performed, and the simulation results show that the proposed
learning algorithm works much better than the other existing
algorithms on random instances of hypergraphs.
Key words:
Hopfield neural network, Learning algorithm, Minimum set
cover problem, NP-complete problem

Introduction

The minimum set cover problem (MSCP) is the problem
of finding the smallest set cover in a given hypergraph [1].
It has many practical applications in important fields such
as production, capital investment, project selection; it
includes airline crew scheduling [2], location of
emergency services [3], and assembly line balancing [4].
Since MSCP is an NP-hard problem [1], it is useful to
study approximation algorithms for it. Some greedy
algorithms are proposed. One of the best greedy heuristic
was discovered by Johnson [5], which is referred to as G2.
However, the classical algorithms cannot be applied under
parallel computation platforms. For solving such problems,
the Hopfield neural network [6] constitutes an important
avenue. Using the Hopfield neural network technique, D.
Kaznachey et al. [7] proposed a parallel algorithm for the
problem. Unfortunately, due to its inherent difficulties at
dealing with local minima, the probability of obtaining the
minimum set cover using the Hopfield neural network is
very low.
In this paper, a learning algorithm of the Hopfield neural

network is presented for solving the problem. The learning
algorithm adjusts a parameter in the energy function so
that the local minimum that the network once falls into
vanishes and the network can continue updating in a
gradient descent direction of energy. We evaluate the
proposed learning algorithm by simulating a large number
of random instances of hypergraphs. The simulation

results are compared with those of Simulated Annealing
(SA) [8], a greedy algorithm called G2[5] and the
Hopfield neural network method presented by Kaznachey
et al. [7]. The simulation results show that the proposed
learning algorithm works much better than the other
algorithms on random instances of hypergraphs.

2. Problem Formulation

Given a hypergraph),(EVH = with a vertex set
{ }nvvvV ,,, 21 L= and an edge set { }meeeE ,,, 21 L= , a set

cover is a subset of vertices (VC ⊆) that covers all the
edges. The MSCP is the problem of finding the smallest
set cover in a given hypergraph [1]. In this paper, we deal
with k-cardinality hypergraphs, i.e., hypergraphs whose
edges have maximum cardinality k. A hypergraph H can
be represented by an incidence matrix A = (aij) in which aij
is 1 if vertex j is in the edge i and 0 otherwise.
In general, an n-vertex MSCP can be mapped onto the

Hopfield neural network with n neurons. Neuron yi
represents #i vertex. The output of neuron yj is 1 if the
vertex i is included into the set cover and 0 otherwise.
Then the goal of the problem is to minimize ∑

=

n

i
iy

1

 subject

to constraints 1
1

≥∑
=

n

i
eia for each edge me ,,2,1 L= . When

we follow the mapping procedure by Hopfield [6], the
energy function for the MSCP is given by:

2

1 11
∑ ∑∑
= ==

⎟
⎠

⎞
⎜
⎝

⎛
−⋅+⋅=

m

e

n

i
iei

n

i
i yadyE βα (1)

Where βα , are parameters. The first term in Eq.(1) is
cost term and the second one represents the quadratic
constraints, and is minimized when the number of vertices
covering each edge ∑

=

n

i
iei ya

1

 equals parameter d. If d is

chosen properly, this term will be maximized if the edge is
not covered. Evidently, d must be between 0 and k.
Parameter d is very important, but difficult to be selected.
If d is too small, the second term in Eq.(1) does not

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

29

penalize uncovered edges. On the other hand, if d is too
large, then even covered edges are penalized a lot.
Note that the standard energy function of Hopfield

network can be written as follow:

∑∑ ∑
= = =

−−=
n

i

n

j

n

i
iijiij yIyywe

1 1 12
1 (2)

where wij (i,j=1,…,n) is weight of a synaptic connection
from the j-th neuron to the i-th one, Ii is external input of
neuron #i and is also called threshold.

For the MSCP problem, the resulting weight and
threshold can now be obtained by equating the energy
specified by Eq.(2) with the energy as in Eq.(1). The
weight of the Hopfield network is

∑
=

−=
m

e
ejeiij aaw

1
2β (3)

And the threshold is

αβ −= ∑
=

m

e
eii adI

1
2 (4)

It is proved that the state of the Hopfield network
converges to a stable state with the energy taking on lower
and lower values [6]. It can be viewed as seeking a
minimum in a mountainous terrain. Thus, we can find the
solution to the minimum set cover problem simply by
observing the stable state that the Hopfield network
reaches. However once the network fall into a local
minimum, the updating procedure will stop. There is no
way for the network to reach the global minimum from a
local minimum. Because this local minimum problem and
the difficulty of selecting the value of parameter d, the
solution found by the existing parallel algorithm based on
neural network are not good. In the next section, focusing
on the problems, we propose a learning algorithm that can
help network efficiently searching the optimal solution.

3. Learning Algorithm for the MSCP

In order to realize the global minimum convergence of the
Hopfield neural network, we now propose a learning
algorithm that adjusts the balance of two terms in Eq.(1)
by modifying the parameter d, thus the local minimum
vanishes. Because the energy terrain is determined
partially by the parameter d, the learning can be performed
by changing parameter d once the network fall into a local
minimum so that the local minimum vanishes. The
variation of energy of network with the state change of i#
(i=1,…,n) neuron can be written as:

nifory
y

yyyEE i
i

n
i ,,2,1),,,(21 L

L
=Δ⋅

∂
∂

=Δ (5)

We analyze the characteristics of binary Hopfield neural
network. It is well known that a local minimum
satisfies[9]

0≥Δ iE for i=1,2,…,n. (6)

We now propose a learning algorithm to make 0<Δ iE (it
means that the local minimum vanishes) with the state
change of neuron in local minimum. Using Eq.(1) we
have:

i

m

e
ei

m

e

n

k
eikeki yadayaE Δ⎥

⎦

⎤
⎢
⎣

⎡
⋅−⎟

⎠

⎞
⎜
⎝

⎛
+=Δ ∑∑∑

== = 11 1
22 ββα (7)

We note that:
 02

1 1
>⎟

⎠

⎞
⎜
⎝

⎛
+ ∑∑

= =

m

e

n

k
eikek ayaβα (8)

 02
1

<⎟
⎠

⎞
⎜
⎝

⎛
− ∑

=

m

e
eiaβ (9)

Thus, we can modify the parameter d using the following
learning rule:

im

e
ei

m

e

n

k
eikek

y
a

aya
d Δ⋅+

+
=

∑

∑∑

=

= = δ
β

βα

1

1 1

2

2 (10)

Where δ is a small positive constant that controls the
learning speed. We know that with the state change of the
i# neuron, the variation of the energy of the network can
be described by the following formula by substituting
Eq.(10) into Eq.(7).

2

1
2 i

m

e
eii yaE Δ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅−=Δ ∑

=

δβ (11)

It is evident that:

02 2

1
<Δ⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅−=Δ ∑

=
i

m

e
eii yaE δβ (12)

The derivatives of Eqs. (11) and (12) show that the energy
of the network decreases with the state change of the i#
neuron by the above learning rule (Eq.(10)). Thus, the
learning (Eq.(10)) eliminate the local minimum that the
network falls into. Besides the learning (Eq.(10)) also
provide a method to select a critical value of parameter d.

4. Algorithm

The following procedure describes the proposed algorithm
for the MSCP problem of k-cardinality hypergraphs. Note
that there are two kinds of conditions for end of the
learning. One has a very clear condition, for example, the
N-queen problem in which the energy is zero if the
solution is the optimal. Another one has not a clear
condition, for example, the traveling salesman problem
and the MSCP in which the energy is not zero even the
solution is the optimal. For the latter case, we have to set a
maximum number of the learning (learn_limit) in advance.
Learning stops if the maximum number of learning is
performed. In general, we can determine the value of
learn_limit according to the allowable computation time
and the complexity of the problem. For MSCP problem,

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

30

we found that the network can always find good solutions
within 10 learning times; therefore, we selected 20 as the
maximum number of learning time in our simulations. If
the learn_limit is supposed to be the maximum number of
learning times for the system termination condition, we
have the following algorithm for solving a k-cardinality
hypergraphs:

1. Set learn_time=0, learn_limit=20, and ,0.2=α
,0.1=β 2/)1(+= kd

2. The initial value of yi for i=1,…,n are randomized in 0
or 1.

3. The updating procedure is performed on the Hopfield
network with original weights and thresholds until the
network converges a stable state.

4. Record the stable state.
5. Use the learning rule (Eq.(10)) to modify the

parameter d.
6. Compute the new weights and new thresholds

(Eq.(3) and Eq.(4)) using the new d.
7. The updating procedure is taken on the Hopfield

network with the new weights and thresholds until the
network reaches a stable state.

8. If the new stable state is better than the recorded
stable state, then the recorded stable state is replaced
by the new stable state obtained from step 7.

9. Increment the learn_time by 1. If
learn_time=learn_limit then terminate this procedure,
otherwise go to the step 5.

100

150

200

250

300

350

400

450

500

550

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Updating Step

E
ne

r
gy

Fig. 1 The variation process of the energy during learning

5. Simulation Result

In order to assess the effectiveness of the proposed
learning method, extensive simulations were carried out
over randomly generated instances on PC Station.
Simulations referred to parameter set at 0.2=α 0.1=β
and 1.0=δ . The first instance that we tested was a
randomly generated 100-vertex 154-edges hypergraph.
Figure.1 showed the change of energy on the instance that
illustrates a typical progressive intermediate solution
during the learning. Initially the Hopfield network
converged to a stable state. From this stable state, we
found that there were two uncovered edges. It was
obviously not a valid solution. After the first learning, the
Hopfield network found a valid set cover with 44 vertices.
In this problem, the network performed totally 3 learning
and finally found the set cover with 40 vertices.

To widely verify the proposed algorithm, we tested the
algorithm with a large number of randomly generated p-
random n-vertex k-cardinality hypergraphs in which each
of the possible edges is independently included in the

Table 1: Simulation Results

Test Graphs SetCover Size Validity Ratio(%)
No. Notes Edges G2 SA Kaznachey et al. Our Method G2 SA Kaznachey et al. Our Method

1 50 19 12 20 13 10 100 100 100 100
2 50 115 29 25 29 22 100 100 80 100
3 50 17628 48 50 48 47 100 100 70 100
4 100 154 44 66 83 40 100 100 82 100
5 100 796 76 85 85 60 100 100 60 100
6 100 1632 82 78 89 75 100 100 83 100
7 100 16053 95 90 96 90 100 100 84 100
8 200 162 65 108 129 56 100 100 96 100
9 200 785 123 180 157 120 100 100 40 100

10 200 1348 138 160 185 131 100 100 70 100
11 400 10570 280 280 361 240 100 100 63 100
12 400 6524 328 380 361 320 100 100 40 100
13 400 105765 395 400 395 390 100 100 58 100

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

31

graph with probability p. In the experiment, up to 400-
vertex graphs with different probability are used. To
evaluate our results, we compared our results with those of
Simulated Annealing (SA) [8], a greedy algorithm called
G2[5] and the Hopfield neural network method presented
by Kaznachey et al.[7]. For each of instances, 100
simulation runs with different initial input values were
performed. Information on the test graphs as well as all
results are shown in Table.1. The results that we recorded
for each graph are the solutions in number of vertex
produced by each algorithm and the ratio of finding valid
solution for each methods. From table.1, we can know that
the proposed parallel algorithm can find better solution
than other algorithms, and the solution found by the
proposed learning algorithm is always a valid solution

The average computation time within 100 runs are shown

in the Table 2. From the table we can know that although
the computation time of the proposed learning algorithm is
larger than that of algorithms G2 and the algorithm of
Kaznachey et al., it is realistic considering the size of the
problem. Besides, it is worth to note that our simulations
were performed on a series computer for generating
optimal or near-optimal solution to the MSCP problem,
and naturally result in large CPU times that were
uncompetitive with alternative techniques. We adhered to
the philosophy that the model being tested should be
always having a possible “silicon implementation” [10].
Thus on a parallel computation device the computation
time of the proposed method will become very short.
Furthermore, because of the simplicity of the proposed
learning method, it is easy to implement the proposed
method on electronic circuits.

6. Conclusion

We have proposed a Hopfield network learning algorithm
for minimum set cover problem and showed its
effectiveness by simulation experiments. The simulation
results showed that the proposed algorithm works much
better than the other existing algorithms on random
instances of hypergraphs, and has higher convergence rate
to valid solution.

References
[1] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Comleteness,
Freeman, New York, 1979.

[2] J. Bartholdi, “A guaranteed-accuracy round-off algorithm
for cyclic scheduling and set covering,” Operations
Research, Vol. 29, No.3, May/Jun, pp.501-510, 1981.

[3] C. Toregas, R. Swain, C. Revelle, L. Bergman, “the location
of emergency service facilities,” Operations Research,
Vol.19, No.6, pp.1363-1373, 1971.

[4] S. T. Hackman, M. J. Magazine, T. S. Wee, “Fast effective
algorithms for simple assembly line balancing problems,”
Operations Research, Vol.37, No.6, pp.916-924, 1989.

[5] D.S. Johnson, “Approximation algorithms for combinatorial
problems”, J. Computer System Sci. Vol. 9, pp.256-278,
1974.

[6] J. J. Hopfield, “Neurons with graded response have
collective computational properties like those of two-state
neurons,” Proc. Natl. Acad. Sci. USA, Vol.81, pp.3088-
3092, 1984.

[7] D. Kaznachey and A. Jagota, “Approximating Minimum set
Cover in a Hopfield-Style Network,” Information Sciences,
Vol.98, No.1-4, pp.203-216, 1997.

[8] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C.
Schevon, “Optimization by simulated annealing: An
experimental evaluation; Part 1, graph partitioning,”
Operations Research, Vol.37, No.6, pp.865-892, 1989.

[9] M.Ohta,A.Ogihara,K.Fukunaga, “Binary neural networks
with negative self-feedback and its application to N-Queens
problem” IEICE Trans. Inf. Systems, Vol.E77-D, No.4,
pp.459-465, 1997

[10] K. A. Smith, “Neural Networks for combinatorial
optimization: A Review of more than a decade of research,”
INFORMS Journal on Computing, Vol.11, No.1, pp.15-34,
1999.

CPU Time(s)
No

G2 SA Kaznachey et al. Our Method
1 0.09 0.22 1.67 0.02
2 1.78 1.8 1.2 0.12
3 223 2204 94.2 165.14
4 11.3 3.7 2.72 0.17
5 10.51 46.1 31.3 2.05
6 31.34 76.7 3.25 5.12
7 218.2 4135 262.09 499.24
8 10.6 9.4 313.33 2.87
9 101.1 89.1 28.03 10.92

10 109.4 28.33 685.52 22.63
11 172.8 380.1 1352.7 71.86
12 823.4 9698 2270.9 3426.6
13 1517 97984 1883.2 67155

Table 2: Computation Time

