
  IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September  2006 
 
 

 

28 

Manuscript received September 5, 2006. 
Manuscript revised September 19 , 2006. 

An Efficient Learning Algorithm of the Hopfield Neural Network for 
the Minimum Set Cover Problem 

Rong-Long Wang1, Pei Zhang1,2 and Kozo Okazaki1 

 
  

1Faculty of Engineering, Fukui University, Fukui-shi, Japan 910-8507 
2Faculty of Information Science and Technology, Beijing University of Chemical Technology, Beijing , China 

 
 
Summary 
The minimum set cover problem (MSCP) is an important NP-
hard problem. In this paper, we propose a learning algorithm of 
the Hopfield neural network which can escape from local minima, 
for efficiently solving the problem. Extensive simulations are 
performed, and the simulation results show that the proposed 
learning algorithm works much better than the other existing 
algorithms on random instances of hypergraphs. 
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Introduction 

The minimum set cover problem (MSCP) is the problem 
of finding the smallest set cover in a given hypergraph [1]. 
It has many practical applications in important fields such 
as production, capital investment, project selection; it 
includes airline crew scheduling [2], location of 
emergency services [3], and assembly line balancing [4]. 
Since MSCP is an NP-hard problem [1], it is useful to 
study approximation algorithms for it. Some greedy 
algorithms are proposed. One of the best greedy heuristic 
was discovered by Johnson [5], which is referred to as G2. 
However, the classical algorithms cannot be applied under 
parallel computation platforms. For solving such problems, 
the Hopfield neural network [6] constitutes an important 
avenue. Using the Hopfield neural network technique, D. 
Kaznachey et al. [7] proposed a parallel algorithm for the 
problem. Unfortunately, due to its inherent difficulties at 
dealing with local minima, the probability of obtaining the 
minimum set cover using the Hopfield neural network is 
very low. 
In this paper, a learning algorithm of the Hopfield neural 

network is presented for solving the problem. The learning 
algorithm adjusts a parameter in the energy function so 
that the local minimum that the network once falls into 
vanishes and the network can continue updating in a 
gradient descent direction of energy. We evaluate the 
proposed learning algorithm by simulating a large number 
of random instances of hypergraphs. The simulation 

results are compared with those of Simulated Annealing 
(SA) [8], a greedy algorithm called G2[5] and the 
Hopfield neural network method presented by Kaznachey 
et al. [7]. The simulation results show that the proposed 
learning algorithm works much better than the other 
algorithms on random instances of hypergraphs. 

2. Problem Formulation 

Given a hypergraph ),( EVH =  with a vertex set 
{ }nvvvV ,,, 21 L=  and an edge set { }meeeE ,,, 21 L= , a set 

cover is a subset of vertices ( VC ⊆ ) that covers all the 
edges. The MSCP is the problem of finding the smallest 
set cover in a given hypergraph [1]. In this paper, we deal 
with k-cardinality hypergraphs, i.e., hypergraphs whose 
edges have maximum cardinality k. A hypergraph H can 
be represented by an incidence matrix A = (aij) in which aij 
is 1 if vertex j is in the edge i and 0 otherwise. 
In general, an n-vertex MSCP can be mapped onto the 

Hopfield neural network with n neurons. Neuron yi 
represents #i vertex. The output of neuron yj is 1 if the 
vertex i is included into the set cover and 0 otherwise. 
Then the goal of the problem is to minimize ∑
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we follow the mapping procedure by Hopfield [6], the 
energy function for the MSCP is given by: 
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Where βα ,   are parameters. The first term in Eq.(1) is 
cost term and the second one represents the quadratic 
constraints, and is minimized when the number of vertices 
covering each edge ∑

=

n

i
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1

 equals parameter d. If d is 

chosen properly, this term will be maximized if the edge is 
not covered. Evidently, d must be between 0 and k. 
Parameter d is very important, but difficult to be selected. 
If d is too small, the second term in Eq.(1) does not 
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penalize uncovered edges. On the other hand, if d is too 
large, then even covered edges are penalized a lot. 
Note that the standard energy function of Hopfield 

network can be written as follow: 
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where wij (i,j=1,…,n) is weight of a synaptic connection 
from the j-th neuron to the i-th one, Ii is external input of 
neuron #i and is also called threshold. 

For the MSCP problem, the resulting weight and 
threshold can now be obtained by equating the energy 
specified by Eq.(2) with the energy as in Eq.(1). The 
weight of the Hopfield network is 
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And the threshold is 

αβ −= ∑
=

m

e
eii adI

1
2                                (4) 

It is proved that the state of the Hopfield network 
converges to a stable state with the energy taking on lower 
and lower values [6]. It can be viewed as seeking a 
minimum in a mountainous terrain. Thus, we can find the 
solution to the minimum set cover problem simply by 
observing the stable state that the Hopfield network 
reaches. However once the network fall into a local 
minimum, the updating procedure will stop. There is no 
way for the network to reach the global minimum from a 
local minimum. Because this local minimum problem and 
the difficulty of selecting the value of parameter d, the 
solution found by the existing parallel algorithm based on 
neural network are not good. In the next section, focusing 
on the problems, we propose a learning algorithm that can 
help network efficiently searching the optimal solution. 

3. Learning Algorithm for the MSCP 

In order to realize the global minimum convergence of the 
Hopfield neural network, we now propose a learning 
algorithm that adjusts the balance of two terms in Eq.(1) 
by modifying the parameter d, thus the local minimum 
vanishes. Because the energy terrain is determined 
partially by the parameter d, the learning can be performed 
by changing parameter d once the network fall into a local 
minimum so that the local minimum vanishes. The 
variation of energy of network with the state change of i# 
(i=1,…,n) neuron can be written as:  

nifory
y

yyyEE i
i

n
i ,,2,1),,,( 21 L

L
=Δ⋅

∂
∂

=Δ      (5) 

We analyze the characteristics of binary Hopfield neural 
network. It is well known that a local minimum 
satisfies[9] 

0≥Δ iE         for i=1,2,…,n.                                     (6) 

We now propose a learning algorithm to make 0<Δ iE  (it 
means that the local minimum vanishes) with the state 
change of neuron in local minimum. Using Eq.(1) we 
have: 
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We note that: 
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Thus, we can modify the parameter d using the following 
learning rule: 
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Where δ  is a small positive constant that controls the 
learning speed. We know that with the state change of the 
i# neuron, the variation of the energy of the network can 
be described by the following formula by substituting 
Eq.(10) into Eq.(7). 
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It is evident that: 
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The derivatives of Eqs. (11) and (12) show that the energy 
of the network decreases with the state change of the i# 
neuron by the above learning rule (Eq.(10)). Thus, the 
learning (Eq.(10)) eliminate the local minimum that the 
network falls into. Besides the learning (Eq.(10)) also 
provide a method to select a critical value of parameter d.  

4. Algorithm 

The following procedure describes the proposed algorithm 
for the MSCP problem of k-cardinality hypergraphs. Note 
that there are two kinds of conditions for end of the 
learning. One has a very clear condition, for example, the 
N-queen problem in which the energy is zero if the 
solution is the optimal. Another one has not a clear 
condition, for example, the traveling salesman problem 
and the MSCP in which the energy is not zero even the 
solution is the optimal. For the latter case, we have to set a 
maximum number of the learning (learn_limit) in advance. 
Learning stops if the maximum number of learning is 
performed. In general, we can determine the value of 
learn_limit according to the allowable computation time 
and the complexity of the problem. For MSCP problem, 
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we found that the network can always find good solutions 
within 10 learning times; therefore, we selected 20 as the 
maximum number of learning time in our simulations. If 
the learn_limit is supposed to be the maximum number of 
learning times for the system termination condition, we 
have the following algorithm for solving a k-cardinality 
hypergraphs: 
 

1. Set learn_time=0, learn_limit=20, and  ,0.2=α  
,0.1=β  2/)1( += kd  

2. The initial value of yi for i=1,…,n are randomized in 0 
or 1. 

3. The updating procedure is performed on the Hopfield 
network with original weights and thresholds until the 
network converges a stable state. 

4. Record the stable state. 
5. Use the learning rule (Eq.(10)) to modify the 

parameter d. 
6. Compute the new weights and new thresholds 

(Eq.(3) and Eq.(4)) using the new d. 
7. The updating procedure is taken on the Hopfield 

network with the new weights and thresholds until the 
network reaches a stable state. 

8. If the new stable state is better than the recorded 
stable state, then the recorded stable state is replaced 
by the new stable state obtained from step 7. 

9. Increment the learn_time by 1. If 
learn_time=learn_limit then terminate this procedure, 
otherwise go to the step 5. 
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Fig. 1 The variation process of the energy during learning 

5. Simulation Result 

In order to assess the effectiveness of the proposed 
learning method, extensive simulations were carried out 
over randomly generated instances on PC Station. 
Simulations referred to parameter set at 0.2=α  0.1=β  
and 1.0=δ . The first instance that we tested was a 
randomly generated 100-vertex 154-edges hypergraph. 
Figure.1 showed the change of energy on the instance that 
illustrates a typical progressive intermediate solution 
during the learning. Initially the Hopfield network 
converged to a stable state. From this stable state, we 
found that there were two uncovered edges. It was 
obviously not a valid solution. After the first learning, the 
Hopfield network found a valid set cover with 44 vertices. 
In this problem, the network performed totally 3 learning 
and finally found the set cover with 40 vertices. 

To widely verify the proposed algorithm, we tested the 
algorithm with a large number of randomly generated p-
random n-vertex k-cardinality hypergraphs in which each 
of the possible edges is independently included in the 

Table 1: Simulation Results

Test Graphs SetCover Size Validity Ratio(%) 
No. Notes Edges G2   SA Kaznachey et al. Our Method G2 SA Kaznachey et al.  Our Method

1 50 19 12 20 13 10 100 100 100 100 
2 50 115 29 25 29 22 100 100 80 100 
3 50 17628 48 50 48 47 100 100 70 100 
4 100 154 44 66 83 40 100 100 82 100 
5 100 796 76 85 85 60 100 100 60 100 
6 100 1632 82 78 89 75 100 100 83 100 
7 100 16053 95 90 96 90 100 100 84 100 
8 200 162 65 108 129 56 100 100 96 100 
9 200 785 123 180 157 120 100 100 40 100 

10 200 1348 138 160 185 131 100 100 70 100 
11 400 10570 280 280 361 240 100 100 63 100 
12 400 6524 328 380 361 320 100 100 40 100 
13 400 105765 395 400 395 390 100 100 58 100 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B,  September 2006 
  
 

 

31

graph with probability p. In the experiment, up to 400-
vertex graphs with different probability are used. To 
evaluate our results, we compared our results with those of 
Simulated Annealing (SA) [8], a greedy algorithm called 
G2[5] and the Hopfield neural network method presented 
by Kaznachey et al.[7]. For each of instances, 100 
simulation runs with different initial input values were 
performed. Information on the test graphs as well as all 
results are shown in Table.1. The results that we recorded 
for each graph are the solutions in number of vertex 
produced by each algorithm and the ratio of finding valid 
solution for each methods. From table.1, we can know that 
the proposed parallel algorithm can find better solution 
than other algorithms, and the solution found by the 
proposed learning algorithm is always a valid solution 

 
The average computation time within 100 runs are shown 

in the Table 2. From the table we can know that although 
the computation time of the proposed learning algorithm is 
larger than that of algorithms G2 and the algorithm of 
Kaznachey et al., it is realistic considering the size of the 
problem. Besides, it is worth to note that our simulations 
were performed on a series computer for generating 
optimal or near-optimal solution to the MSCP problem, 
and naturally result in large CPU times that were 
uncompetitive with alternative techniques. We adhered to 
the philosophy that the model being tested should be 
always having a possible “silicon implementation” [10]. 
Thus on a parallel computation device the computation 
time of the proposed method will become very short. 
Furthermore, because of the simplicity of the proposed 
learning method, it is easy to implement the proposed 
method on electronic circuits. 

6. Conclusion 

We have proposed a Hopfield network learning algorithm 
for minimum set cover problem and showed its 
effectiveness by simulation experiments. The simulation 
results showed that the proposed algorithm works much 
better than the other existing algorithms on random 
instances of hypergraphs, and has higher convergence rate 
to valid solution.  
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CPU Time(s) 
No 

G2     SA Kaznachey et al. Our Method
1 0.09 0.22 1.67 0.02 
2 1.78 1.8 1.2 0.12 
3 223 2204 94.2 165.14 
4 11.3 3.7 2.72 0.17 
5 10.51 46.1 31.3 2.05 
6 31.34 76.7 3.25 5.12 
7 218.2 4135 262.09 499.24 
8 10.6 9.4 313.33 2.87 
9 101.1 89.1 28.03 10.92 

10 109.4 28.33 685.52 22.63 
11 172.8 380.1 1352.7 71.86 
12 823.4 9698 2270.9 3426.6 
13 1517 97984 1883.2 67155 

Table 2: Computation Time 


