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Summary 
A large variety of Web-based applications demand access and 
integration of up-to-date information from multiple distributed 
and heterogeneous information systems. Data-Sharing 
Environments(DSE) contribute to the achievement of 
information superiority which will enable decision dominance. 
The goal of DSE is to help data interaction between distributed 
and heterogeneous information sources.  One challenge in Data 
Sharing is how to select the right data at the right time and right 
cost. We call this problem as quality of service(QoS) guarantee 
in DSE. In this paper, we model the problem and present an 
efficient mechanism to deal with QoS guarantee in DSE.  
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1. Introduction 

A wide variety of information sources are available both 
in internal networks of organizations and on the Web. 
Information today resides on a variety of information 
sources that are increasingly interconnected. File systems, 
databases, document retrieval systems, workflow systems, 
ERP (enterprise resource planning) systems, data 
warehouses, and other sources of valuable information are 
accessible inside corporate intranets. Moreover, they are 
also becoming increasingly available to the “outside 
world,” through extranets or the Internet.  

Information sharing succeeds when the right information 
is provided to the right people at the right time and place 
so that they can make the right decisions. People make 
better decisions when they have the right information – 
data which they understand and which is relevant to the 
decision at hand. These “five rights” describe the purpose 
of DSE. Specifically, the “five rights” sets three goals for 
the activities in DSE: to ensure that the right data exists, is 
accessible, and is understood and discoverable. The first 
and most important step is to ensure that data is accessible; 
that is, made available by those who have it and 
deliverable to those who need it. The next step is to make 
the right data discoverable and understandable. Individuals 
and organizations must be able to obtain all the data they 
need, but to avoid the problem of data overload, it must be 
possible for them to receive only the data they need. 
Finally, the enterprise must take steps to ensure that the 
right data will exist. The enterprise must develop an 
understanding of current and anticipated information 

needs to drive the development and operation of its data 
resources, so that the data needed by a decider will be 
collected and made available somewhere in the enterprise.  

Exploring information superiority plays a more and more 
important role in the practices of enterprises[1]. The key to 
information superiority is constructing an integrative data 
sharing environments in which information is stored, 
discovered and retrieved. In data sharing environments, all 
information or knowledge exist in the form of data and 
individuals or Community of Interests(COIs) share their 
data with others. DSE is a collection of data intended to 
suit the needs of a group of consumers. Data producers 
post data to one or more information spaces; data 
consumers pull the data they need from one or more 
information spaces.  

Previous study focuses on unifying their enterprisewide 
data and designing architectures to maximize the 
usefulness and accessibility of that data. Even there are 
some research on quality of service in DSE, they mainly 
concerns on the accuracy, insistence of data. In this paper, 
however, we consider a more practical case that causes 
more difficulties in DSE. It is obvious that, in data sharing 
environments, distributed information sources are 
interconnected, which means that there may be more links 
between two information sources.  Furthermore, there 
might be more information sources that have the same data. 
In such cases, we have to decide which information source 
should be selected to exchange data.  

In quality of service routing(QoSR), each links in 
networks is associated with some metrics. Researchers 
focus on how to find a path that can satisfy the coming 
routing requests. We know that links in networks are 
usually redundant so as to make the whole sharing system 
more robust and improve the survival ability of the sharing 
system itself[2][3][4]. However, this brings more 
difficulties to QoSR and also to Quality of service study in 
DSE, i.e., data and link redundance also brings another 
embarrassment for decision-makers: which data source 
and which links should be used so as to make efficient 
decision? 
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2. Problem Formulation 

It is obvious that if we know how to select path between 
data consumer and each data source(SPCS), we have 
solved the whole problem.  

Definition 1. SPCS Problem: Underlying network is given 
as a G(N;E), where N is the set of nodes and E is the set of 
links. Each link is associated with a k-dimensional metric 
vector w ),...,,( 21 kwww . iw  is an additive QoS metric, 

ki ,...,1= . sdP  denotes the path set between data 
consumer(also known as source node) and data source d. 
The problem is to find sdPp∈  such that: 
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Path p can also be written as ),...,,( 21 kwwwp . The 
path satisfies all k constraints is called as a feasible path. 

iw  may denote specific delay or cost of the links in 
networks. It is obvious that SPCS is a typical discrete 
multi-object optimization problem(MOOP).  Now we will 
give some key concepts in MOOP. 

3. Pareto Optimal 

First, we give some requisite mathematical preliminaries. 

Definition 2. Dominance: Vector ),...,( 1 kuuu =  is said 

to dominate ),...,( 1 kvvv=  if and only if u is partially less 

than v, namely },...,1{ ki∈∀ , ii vu ≤ Λ },...,1{ ki∈∃ : ii vu < . 
We use up v to denote that u dominates v. 

Definition 3. Pareto Optimal solution: Path 
),...,,( 21 kwwwp sdP∈  is a Pareto Optimal solution if and 

only if there is no path sdk Pwwwp ∈′′′′ ),...,,( 21  such 

that ),...,,(),...,,( 2121 kk wwwwww p′′′ . 

Definition 4. QoS Metric Space (QoSMS): For any path 
),()(),...,(),(( 21 ENGpwpwpwp k ∈ , if ii Wpw ∈)( , then 

)...( 21 kWWW ××× is called QoS Metric Space 
(QoSMS). 

Definition 5. Mapping F: Mapping F is a function that 
maps path )(),...,(),(( 21 pwpwpwp k  to a point in 

QoSMS, i.e., )(pF = ))(),...,(),(( 21 pfpfpf k = 

))(),...,(),(( 21 pwpwpw k . 

Pareto optimal is a key concept in MOOP. The 
significance of Pareto optimal solutions lies in that if none 
of Pareto optimal paths can satisfy the constraints, then 
there is no path that can satisfy the constraints. Therefore, 
we can only consider Pareto optimal solutions of SPCS, 
which reduces the search space greatly. Like other discrete 
MOOPs, the solutions to SPCS are a set of Pareto optimal 
paths.  

4. Algorithm SPCSA  

Focusing on quality of service guarantee in DSE, we 
present an efficient algorithm SPCSA. By means of 
nonlinear path cost function and the concept of Pareto 
optimal, SPCSA manages selecting optimal data sources 
in data sharing environments. We first present the 
description of SPCSA. 

4.1. Algorithm Description 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 1. The description of SPCSA 

Fig 1 describes the main steps of SPCSA. Firstly, SPCSA 
computes candidate paths { 0|)( ≥jdp ij } for each 

Description of SPCSA  
s:  source node indicating data consumer 

id : data source 

(1) For i=1, i ≤ k, { 0|)( ≥jdp ij }=GCPEDS(s, id ). 
//Generating Candidate Paths for Each Data Source 

id  
(2)  Computing the cost of candidate paths according to 

preferred information ),...,,( m21 ααα , ∑ =
=

m,1i i 1α , 

0i ≥α , ∏ ∑= ∈
=

m

1i )d(pi
ij

)())((cos
e iij ewdpt α  

(3)  D= 1d ; 
(4)  For i=1, ki <  
(5) if )))((min(cos)))((min(cos 1+≥ inij dptdpt  

D= 1+id    
//j, n are the number candidate paths for data source 

d d
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data source id  by means of GCPEDS(s, id ). There may 
be multiple Pareto optimal paths in the path set 
{ 0|)( ≥jdp mj } for data source md . These Pareto 
optimal paths are all optimal if there is no preferred 
information about the paths and each of them can be used 
to get the data in md . While in the presence of preferred 

information ),...,,( k21 ααα  about paths, optimal path 
can be selected according to the combination cost of the 
candidate paths.  

4.2 Function GCPEDS(s, id ) 

Function GCPEDS(s, id ) is used to generate candidate 
paths between data consumer and each data source. By 
means of normal measure based nonlinear path cost 
function(NMCF), GCPEDS(s, id ) manages measuring 
path cost without the need of constraints information. 
Hence, GCPEDS(s, id ) performs, for the first time, 
nonlinear path cost based precomputation. The proposed 
NMCF is mainly inspired by NBI method[10]. 

4.2.1 NBI Method 

Normal Boundary Intersection(NBI) is proposed to 
generate approximate Pareto optimal solutions for 
continuous MOOP problems. By provided manually 
parameter β , NBI solves the following subproblem to 
find Pareto optimal solutions evenly distributed in 
QoSMS: 

Minimize λ     (3) 

Subject to *)(ˆ FxFn −=+ λφβ  (4) 

In this sub-problem, R∈λ , φ  is a kk × matrix in 

which the thi column is composed of the vector 
** )( FxF i − , in which *

ix  is the solution of which the 
thi  objective function has its minimum, )( *

ixF  is the 

vector of objective functions evaluated at the point *
ix , 

i=1,2,…,k and *F is the vector containing the individual 
global minima of the objective functions. *F  is also 
called as Utopia point. β  is a vector satisfying that 

1
1

=∑=

k

i iβ  and 0≥iβ . n̂ = eφ , kRe∈ . φβ  is also 

called as Convex Hull of Individual Minima(CHIM). 

For a MOOP problem, let h  be the set of attainable 
objective vectors{ })( xF , and h∂  be the boundary of h . 
In essence, the NBI method tries to find the portion of h∂  
which contains the Pareto optimal points.  

For a given β , φβ  is a point in the CHIM. 
nt ˆ+φβ , Rt∈ , represents the set of points on normal n̂ . 

The point of intersection of the normal and h∂  closest to 
the origin is the global solution of (3). The constraints in 
(4) claim that the solutions to NBI are sure to be on the 
normal.  

 

4.2.2 Normal Measure Cost Function(NMCF) 

Although the NBI method is very efficient for an MOOP 
in case of continuous objective space, it cannot directly be 
used for discrete objective space. As clearly stated by Das 
and Dennis [26], the NBI method may fail if the objective 
space is discrete. The reason is that there may not be any 
point of intersection between the normal and the boundary 
for a particular setting of the NBI parameter. 

To deal with the points in discrete space, we used a novel 
nonlinear path cost function NMCF which can efficiently 
be used in discrete objective space since it does not require 
that the point measured lies on the given normal[11]. We 
introduce the idea of NMCF first and then present 
GCPEDS(s, id ). 

Let *ip  denote the path in sdP  whose thi objective 

achieves its minimum, i.e., for any path q sdP∈ , 
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*

qfpf i
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1
* =  

T
kfff ],...,,[ **

2
*

1  is called as Utopia point and the plane 

comprises of mipF i ,...,2,1),( * =  is called as Utopia 
hyperplane denoted by U. Let define a normalizing vector 
as T

klllL ],...,,[ 21= = *FFN − , where TN
k

NNN fffF ],...,,[ 21Δ  

and )](),...,(),(max[ **2*1 k
iii

N
i pfpfpff = . 

We can now define the normalized )( pF  as 

)( pF = T
m pfpfpf )](),...,(),([ 21 , where 

i

ii
i l

fpf
pf

*)(
)(

−
= .  

Using the above definitions, we can define the following 
nonlinear path cost function: 

len(p)= ),...,,min( 21 mλλλ−   (5) 
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GCPEDS(s, id ): 
G: Network topology; s: Data consumer node; 
d: Data source node. 
(1)For i=1,2,…,k, compute *ip  
(2)Determine the Utopia point   

=*F T
kfff ],...,,[ **

2
*

1  

           = Tk
k pfpfpf )](),...,(),([ **2

2
*1

1  
(3)Compute normalizing vector  

     T
klllL ],...,,[ 21=  

(4)for each ∈β { )/,...,/,/( 21 bababa k | 

                 baba i
k

i i ≤≤=∑ =
0,1/

1
, Zbai ∈, } 

 (a) T
k ),...,,( 21 γγγ Δ βφ  

 (b)compute the normal of hyperplane U that crosses 
T

k ),...,,( 21 γγγ :    

),...,,(ˆ 21 knnnn =  

(6)NM_Dijkstra(G, s, id ) 

)(.. pFNts =+βφ    (6) 

where T
m pfpfpfpF )](),...,(),([)( 21= . The 

meaning of n̂  is the same as the one in (4). Let 
T

m ),...,,( 21 γγγγ =  denote βφ  and the constraint 
condition in (6) can be rewritten as  

iiii pfn γλ −= )(  i=1,2,…,m.   (7) 

For the intuitive meaning of iλ  and how we can obtain 

different Pareto optimal points by varying β , please refer 
to [11].  

4.2.3 Description of GCPEDS 

As outlined in Fig 2, GCPEDS function mainly performs 
normal measure based nonlinear search in the manner of 
precomputation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Description of GCPEDS(s, id ) 

 

Firstly, GCPEDS computes the shortest paths individually 
w.r.t. each constraint. Then the Utopia point and Utopia 
hyperplane can be determined, see steps 1~2 in Fig 2. Step 
4 indicates the search granularity, i.e., the larger the b, the 

finer the search granularity. Each point βφ  on the 
hyperplane corresponds to a normal that can be used to 
measure candidate paths. Step 5 calls NMCF based 
Dijkstra algorithm, or NM_Dijkstra, to perform nonlinear 
search. The relaxation procedure used by NM_Dijkstra is 
given in Fig 3. 

 

 

 

 

 

 

 

 

 

Fig 3. Relaxation procedure of NM_Dijkstra 

5. Performance Evaluation 

Performance evaluation includes three parts. (1) 
Evaluation of path cost when data consumer only has 
preferred information. (2) Evaluation of success rate when 
data consumer has specific constraint requests. (3) 
Evaluation of response speed when data consumer has 
specific constraint requests. 

5.1 Simulation Model and performance measures 

The underlying network topologies used for simulations 
are randomly generated based on Waxman's model with 
200 nodes. Data consumer node and data source nodes are 
also randomly generated and at least two nodes away. 
Without explicitly announcement, we assume that there 
are 5 data sources in the network. 

To fully evaluate our algorithm, we compare SPCSA with 
two typical algorithms with high performances, namely 
H_MCOP[7][8] and MEFPA[6]. While the former is 
chosen as a representative for on-demand algorithms, the 
latter is chosen as a representative for precomputation 
based algorithms. Although these two algorithms are not 
proposed to address multiple data source selection 
problem, they can be used to search the shortest path 
between two nodes in networks. Viewing data consumer 

NM_Dijkstra_Relax(u,v) 
(1) Increase= )),(),...,,(),,(( 21 vuwvuwvuw k  
(2) Tempcost=cost(u)+ Increase 
(3) newcost(i)=(Tempcost(i)- *

if )/ il ,  
for i=1,2,…,k 

(4) =iλ ( −iγ newcost(i))/ni , for i=1,2,…,k 

(5) templen= - )min( iλ  
(6) If templen<len(v) 
(7)   len(v)=templen 
(8)   parent(v)=u 
(9)   cost(v)=Tempcost 
(10)end if 
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node and each data source as a node pair, we can compare 
H_MCOP and MEFPA with SPCSA. The real 
computation cost of SPCSA and MEFPA are related to the 
extent to which they care about the search granularity, i.e., 
parameter b reflects the computation cost of these two 
algorithms(parameter b means that Dijkstra algorithm will 
be called 1k

2-kbC −
+  times in the precomputation phrase).    

We use preferred path cost, i.e., the least cost of the path 
found by SPCSA between data consumer and each data 
source according to specific preferred information, to 
evaluate the efficiency of the paths found by SPCSA. As 
the key performance measure, we use success rate (SR), 
the ratio of the constraints satisfied by heuristic to the total 
constraints generated, to evaluate the feasibility of SPCSA. 
Finally, we use precomputation success rate(PSR), the 
ratio of the number of constraints satisfied by primary 
paths to the number of constraints generated, to evaluate 
the response time of SPCSA. 

5.2 Preferred Path Cost 

To keep the computation cost at a tolerable level, we let 
parameter b=7 in MEFPA denoted by MEFPA(7), and 
b=3,5,7 in SPCSA denoted respectively by SPCSA(3), 
SPCSA(5), SPCSA(7). Because the real path cost is 
meaningless for the evaluation of algorithms, we use the 
cost of paths found by SPCSA(7) to normalized other 
costs. Fig 4 shows the simulation results. Y-coordinate is 
the normalized preferred path cost(NPPC). X-coordinate 
denotes preferred information(PI). There are six kinds of 
preferred information used in the simulations, i.e., 

iPI =(1.2-0.2i, 0.2i-0.2),i=1,2,...,6. We can see from the 
Fig that, compared with MEFPA and H_MCOP, SPCSA 
has small path cost and SPCSA(7) has the least path cost. 
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Fig 4. Evaluation of preferred path cost 
 

5.3 Response Time 

SPCSA can response at once by precomputation when 
data consumer has preferred information. But when data 

consumer has specific QoS request, SPCSA will perform 
on-demand computation if the paths found by 
precomputation cannot satisfy the request. Although on-
demand computation increases the success rate, it suffers a 
longer response time. Hence, we use precomputation 
success rate(PSR) to evaluate the response time of SPCSA. 
We generate the constraints as that in [8]. Fig 5 shows the 
simulation results. Y-coordinate is precomputation success 
rate(PSR) and X-coordinate is the number of data 
sources(NDS). We can see from the Fig that over 92% 
constraints can be satisfied by the paths found in 
precomputation phase and PSR increases with NDS. We 
also know from Fig 5 that even SPCSA algorithm need 
on-demand computation, it calls Dijkstra algorithm at 
most NDS times. So it is reasonable to believe that SPCSA 
response very quickly. 
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Fig 5. Evaluation of Response Time 

 

6. Conclusions 

How to select an appropriate data source and path in data 
sharing environments with a low cost and short response 
time is a key challenge that researchers who care about the 
quality of service. Based on Pareto optimal theory, we 
analyze the advantages and shortcomings of related 
algorithms and then we propose SPCSA algorithm. Based 
on normal measure based path cost function, SPCSA 
searches nonlinearly approximate Pareto optimal paths 
between data consumer and each data source, which 
reduces search space greatly. Extensive simulations show 
that, compared with related algorithms, SPCSA manages 
achieving a high success rate and a short response time 
while keeping computation cost at a low level. 

As the future work we plan to further investigate 
distributed search algorithm so as to avoid the need to 
maintain all network state information. In addition, we 
plan to study the problem of data source selection when 
data itself is different in completeness, correctness and 
consistence etc.  
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