
 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

38

Web-based system for learning of communication protocols

Dan Komosny

Brno University of Technology, Czech Republic

Summary
 The paper introduces a new web-based system that
provides on-line access to software source codes
developed using the Specification and Description
Language (SDL). The purpose of this web system is to
support the teaching of protocol techniques by offering
practical examples of protocol implementation. However,
examples developed in low-level languages such as C++
do not clearly describe the communication process as is
desired. Therefore, a formal approach is often used for
teaching purposes. SDL is one of the well-known formal
languages used. SDL is an object-oriented programming
language that uses graphical expressions for the source
code. Furthermore, a simulation and validation of the SDL
software can be performed without real implementation.
The simulation results are again presented graphically
using the Message Sequence Charts (MSC) diagrams. The
above web system offers users the possibility to publish
and search through SDL source codes with accompanying
MSC diagrams.
Key-words:
protocol, e-learning, SDL, MSC

 1 Introduction

 The teaching of communication protocols has usually two
forms - theoretical and practical. The practical form
usually involves developing a selected protocol part using
a common programming language. However, the
commonly used low-level languages such as C++, Java or
C# do not allow students to easily understand the protocol
structure and its behavior. The problem is that with these
languages, the specification and implementation are quite
different. Moreover, the communication process is usually
hidden in a huge amount of program code, including parts
for encapsulating interfaces and operating system specific
functions. This makes the final program code difficult to
understand and, consequently, it is not very suitable for
teaching the networking techniques. On the other hand,
teachers often use manually drawn flow-state diagrams in
order to show the basic behavior of a communication
protocol and its internal messaging. In some cases, this
does not give the intended information as desired and,
furthermore, such diagrams quite often do not relate to a
real system implementation. Therefore, these teaching
techniques do not give a complex overview of the protocol
presented - they are either too general or too concrete.

 A solution to this problem can be found in using a formal
specification language [1]. A formal approach can be
useful in a number of teaching ways. Formal description is
also of central importance in standardization. Networking
protocols are often specified in this language. Generally,
formal languages are used because they make the
developers think in detail about the system at an early
stage of the development. This helps to create an error-free
system on the first go. The higher-layer abstract notations
included in the formal approach allow designing in
preliminary stages of system development. All this
results in abstract design instead of the coding from the
early beginning. The abstract approach is mainly
significant in complex systems. Developers or customers
can have an overall overview of the system and they can
go into detail in partial parts. Several techniques for formal
specification have been standardized, such as LOTOS
(uses a process algebra), Estelle (uses finite state
machines) and SDL (uses finite state machines), see [2] [3].
Fig. 1 shows an overview of these formal languages. More
specification oriented approaches are thought to be more
abstract without definition of specific behavior (i.e. limited
timing models, verifiable, incomplete language with
limited data parts, declarative language styles and static
process structure). On the other hand, more
implementation-oriented approaches are thought to
describe specific behavior (rich model of time, validation
through simulation, complete language with usable data
parts, imperative language styles, dynamic
reconfigurability).

 2 Specification and Description Language

 From the above languages, SDL is thought to have
features which comply with the teaching needs. SDL is an
object-oriented programming language that uses graphical
expressions for the source code. It is a high-level language

Fig. 1 Formal specification techniques

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

39

(in contrast to the low-level C++, Java ...). SDL is
intended to be used for the description of real-time
communication systems. It allows system specification on
various levels of abstraction, starting from the general
view of the whole system and finishing with details, e.g.
frame structures. Together with SDL the MSC language
is often used. MSC is used for the description of real-time
communication behavior. It uses a graphical interface with
a textual description of the transmitted signals. MSC is
often used as a simulation outcome of an SDL system.
Therefore, using MSC diagrams, the signal transmission
can be followed and the system behavior checked easily.
SDL together with MSC can be seen in many
communication fields such as cellular phones, Bluetooth
devices, GPRS systems, DECT phones, radio systems,
network services systems, and so on.

 A simple overview of SDL is depicted in Fig. 2. The
client-server system shown allows the transmission of
request and response signals (packets). The system
consists of various levels of abstraction. The high level
represents the general communication, i.e. the server-client
channel; the lowest level represents more detailed
structures, for example a state machine. Each process in
the SDL is represented by a state-extended finite machine,
which describes its dynamic behavior. These finite state
machines can have timers and variables as in classic
languages. Indeed, an SDL model involves lots of state
machines. Fig. 3 shows a part of the communication using

MSC. It can be seen that both SDL and MSC are closely
related to each other. For further information about
software development in SDL see [2].

 Development environments for formal languages usually
also include some proof and validation techniques. The
well-known is the Telelogic TAU SDL Suite [4]. It has
several handy features such as the simulation and
validation of formal characteristics, code compilation
into the C++ low-level language (i.e. a formal description
can be automatically changed into an executable
application), and simple integration with MSC. A project
developed using this suite can be performed without an
implementation in the target system. This allows building
hardware-independent applications.

 Fig. 4 shows the development process from the initial
idea to the final application. Steps 1-3 covering the idea
notation, design proposal and final software
implementation are all made using the SDL. Then, a
transformation into a common low-level language is
processed. This allows running the final application on
devices where the C++ language is supported. The final
step, displayed using MSC, is the simulation and
validation. Usually, there procedures are specific to the
developing environment used.

Fig. 2 Server-client system example

Fig. 3 Server-client example

Fig. 4 Use of SDL and MSC

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

40

 3 Web system for SDL

 The web system developed is intended to provide free
Internet access to sample program codes created using
SDL. The system allows SDL from Telelogic TAU SDL
Suite to be easily uploaded to the web server. Then,
project viewers can see the graphical structure of a
communication protocol displayed using SDL and the
system dynamic behavior shown using the accompanying
MSC diagrams. An SDL project is divided into
elementary parts (blocks, processes, charts). These parts
are linked together using web links. Therefore, the user
can easily go through the software from the uppermost
layers to the lower ones. This feature is helpful if someone
is only interested either in a general overview of the
software or in a particular part. As the web system is freely
accessible, any SDL developer can upload their projects
and finally make a text description of the project to help
understanding the protocol. Also, projects can be
downloaded and used off-line. The web server is available
at the address http://sdl.utko.feec.vutbr.cz/project_list.php.
The main window of the web system is shown in Fig. 5.

 When a developer would like an SDL project upload to
the server, the following steps are processed. After the
development of a system using the Telelogic Tau
development environment, the SDL source code is
checked for errors (analyse) and then an .exe file is made
(make). Then, the developed system can be simulated in
order to create MSC diagrams describing the dynamic
behavior. It would be worth creating partial MSC diagrams
for error-free behavior, e.g. connection establishment, data
transfer and disengagement including various possible
scenarios. Furthermore, partial diagrams could be made for
error states such as packet lost, packet time-out, or
receiver/server malfunction. Each of the MSC diagrams
created should be added to the project file list for further
processing. Eventually, all project files are printed using
an integrated print tool in the Telelogic Tau environment
to create .png files encapsulated into web pages. That is
the final outcome from the development environment.

 The next step is to compress the outcome files into
one .zip file. Then, using a web uploading tool (see Fig. 6),

the .zip file is uploaded to the web server. The system
automatically decompresses the .zip file into the structure
for web publishing. After this step, the owner of the
project can add the formatted text description (see Fig. 7)
to each part of the developed system. The purpose of text
notes is to give a description of software parts to support
easy understanding of the protocol structure and its
behavior. When the system description is finished, the
system is ready to be published. Finally, any user visiting
the web pages can see the system structure presented as
SDL diagrams and also various system behavior scenarios

presented as MSC diagrams.

 4 Posted software

 To initially support the web system, three example
communication protocols were developed. These protocols
represent basic techniques for multimedia communication
in the Internet. Two of them, H.323 [5] and SIP (Session
Initiation Protocol) [6], cover signalization for connection
management, security issues, and bandwidth control in IP-
based multimedia transmissions. The third protocol is
RTP/RTCP (Real Time Protocol/ Real Time Control
Protocol) [7]. You can seen an overview of these protocols
in Fig. 8.

Fig. 6 New project upload

Fig. 5 Main window of web system

Fig. 7 Creating a notice in text editor

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

41

 The H.323 Recommendation covers several partial
protocols, such as H.225 and H.245. It is a part of the
H.32x protocol family containing, among other things,
ISDN. H.323 is a complex protocol and tries to
standardize everything in its scope. The SIP protocol is
more recent than H.323. The SIP messages are formatted
as text (H.323 uses binary encoding). The difference is that
SIP only standardizes new protocols and not services as
H.323 does. Both H.323 and SIP rely on RTP/RTCP,
which consists of two protocols, RTP and RTCP. RTP
carries multimedia data whereas RTCP carries
signalization and synchronization. RTP is a simple
protocol covering the multimedia transmitted. RTCP,
which is more sophisticated, provides a set of messages
exchanged among session users. These messages are used
as a feedback for monitoring the session behavior. The
feedback flow involves information such as a summary of
the data sent, synchronization of different media (audio,
video), packet lost, packet delays, and interarrival jitter.

 For all three protocols, these scenarios were developed
for the communication functions: access, transfer and
disengagement. Furthermore, in order to show the protocol
behavior in certain cases, the packet loss event was
implemented. The resulting scenarios show the protocol
time-outs with the recovery of the lost packet. An example
of the SIP protocol implementation is depicted in Fig. 9
and Fig. 10. The first figure shows a overview of the block
Manager. You can see how the block is connected to the
environment. An SDL structure of the location process is
shown in the second figure. It is a part of the finite state
machine including the definition of variables. The process
behavior can be intuitively seen through SDL icons and a
text descriptions.

 5 Conclusion

 In this paper, a web system built for supporting the
teaching of communication protocols was introduced. The
aim of the system is to offer a graphical interface for on-
line access to protocol code examples with accompanying
formatted text description. The web system works with
SDL formal language source codes. A formal approach to
protocol implementation is useful in a number of ways.
Instead of using low-level languages such as C++ or Java,
a formal language can show much more about the

Fig. 9 Block Manager - SIP protocol

Fig. 10 Process example - SIP protocol

Fig. 8 Overview of protocols

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

42

principle of the communication when a particular protocol
is used. Initially, the goal of formal specification
languages was to provide a tool for easy specification of
protocol standards and for functional analysis to find and
correct errors prior to real implementation. However, it
could be also used for teaching purposes. Formal
languages bring both easy-to-read general overviews of
the communication systems and detailed packet structures.
Another reason for building the web system is that
development environments for formal languages are
usually very expensive and therefore they are not
affordable for every user. Thus, the formal languages are
not much known and most people simply do not know
about the advantages they offer.

Acknowledgment

 This work was supported by the Academy of Sciences of
the Czech Republic (project 1ET301710508) and the
CESNET – Czech NREN operator (project 117R1).

References
[1] BLAIR, G., BLAIR, L., BOWMAN, H., CHETWYND A.

Formal Specification of Distributed Multimedia Systems.
Pretice Hall PTR, 1998.

[2] DOLDI, L. SDL Illustrated. Laurent Doldi, 2001.
[3] SDL Forum Society. What is SDL?. 2003 http://www.sdl-

forum.org/SDL/index.htm
[4] Telelogic AB. Telelogic TAU SDL Suite. 2005

http://www.telelogic.com/products/tau/sdl/
[5] KUMAR V., KOPRI M., SENGODAN S. IP telephony with

H.323. Wiley Computer Publishing, 2001.
[6] HANDLEY, M., SCHULZRINNE, H., SCHOOLER, E.,

ROSENBERG, J. SIP: Session Initiation Protocol. Request

for Comments 2543, Internet Engineering Task Force, 1999.
[7] SCHULZRINNE, H., CASNER, S., FREDERICK, R.,

JACOBSON, V. RTP: A Transport Protocol for Real-Time
Applications. Request for Comments 3550, Internet
Engineering Task Force, 2003.

Dan Komosny graduated from Brno
University of Technology, Faculty of
Electrical Engineering and Computer
Science in the field of Electronics and
Communication (2000), Ph.D. (2003).
He is engaged in research focused on
transmission of voice over IP network
(VoIP). He also focuses on
development of e-learning tools using

formal and visual languages.

Fig. 11 MSC diagram example - SIP protocol

