
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

63

Autonomic Element Design Based on Mind Agent Model

Maoguang Wang1,2, Jiewen Luo2, Li Zeng2, Zhongzhi Shi2

1School of Computer Science, China University of Mining and Technology, China
2Institute of Computing Technology, Chinese Academy of Sciences, China

Summary
In order to solve the increasing software and network
management complexity, the idea of autonomic computing is
brought forward by IBM. The aim is to increase the efficiency
and decrease the management complexity, which achieves the
goals of self-optimizing, self-healing, self-configuring and self-
protecting. One of the critical questions is how to design an
efficient and intelligent autonomic element for the autonomic
computing system. Due to the intelligent agent characteristics, it
is very suitable for agent to build autonomic element. Based on
the agent research we build a mind agent model for the
autonomic element, which has the autonomous and intelligent
characteristics. Then we give a self-optimizing definition for the
real application in AGrIP platform.
Key words:
Mind agent model, autonomic element, autonomic
computing, self-optimization

Introduction

Due to the complexity of the network and distributed
system applications, how to solve the software
management and deployment complexity is becoming
more and more concerned. In 2001 IBM releases a
manifesto observing that the main obstacle to further
progress in the IT industry is a looming software
complexity crisis. Therefore IBM proposes the autonomic
computing idea [1] to solve the software complexity crisis.

In accordance with autonomic computing idea, IT system
should hold the capability to adjust itself without needing
much manual intervention, namely, the system can
execute autonomically and adapt itself to the changing
environment. The autonomic computing inspiration comes
from the autonomic nervous system, which can monitor
the heartbeat, check the blood sugar and keep the body
temperature without human interference. Autonomic
computing includes four basic aspects: self-configuring,
self-healing, self-optimizing and self-protecting[1].

To implement autonomic computing, the industry must
take an evolutionary approach and deliver improvements
to current systems that will provide significant self-
managing value to customers without requiring them to
completely replace their current IT environments [2].In
the light of the autonomic evolution it is divided five
levels: basic, managed, predictive, adaptive, autonomic.
Basic level needs IT professional manual analysis and
problem solving. Managed level takes advantage of
centralized tools to collect distributed system information,
thus decreasing the manual work time and cost. Predictive
level correlates the system elements, predicts the optimal
configurations and provides the guidance to the manager.
Adaptive level can take actions according to the available
resources and environment knowledge. The autonomic
level can operate according to the dynamic business
polices and the manager only needs to specify the policies
and goals.

There are some key problems of autonomic computing
which need to be solved successfully, such as the theory of
problem determination, autonomic monitoring, complexity
analysis, policy management and so on. They involve
many disciplines including behaviour model, robust theory,
coordination theory, autonomic statistical modelling etc.
When designing the autonomic computing system, the
prerequisite is to design the autonomic element. Now
researchers are trying to make use of agent technology to
construct autonomic computing systems [3, 4]. Intelligent
agent has the characteristics of autonomous, self-learning,
adjusting itself to the environment and so on. Therefore
we focus on the application of agent technologies to the
autonomic computing system.

The rest paper is organized as follows. Section 2
introduces the related work. Section 3 describes the mind
agent model for autonomic element design. Section 4
illustrates the AGrIP platform architecture. Section 5
brings a summary of this paper.

2. Related Work

J.P Bigus, D.A.Schlosnagle, et al. [3] describe a toolkit for
building multi-agent autonomic systems, which provides a

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

64

lightweight agent framework and a comprehensive library
of intelligent software components and other test tools.
But it just adopts the traditional simple agent structure
though incorporating many relevant components for
planning and decision-making.

Y.Diao, J.L.Hellerstein, et al. [4] propose an agent-based
solution that not only automates the ongoing system
tuning but also automatically designs an appropriate
tuning mechanism for the target system. They study the
problem of controlling CPU and memory utilization of an
Apache web server. They design a modeling agent that
builds a dynamic system model from the controlled server
data. A controller design agent that uses optimal control
theory to derive a feedback control algorithm customized
to that server; and a run-time control agent that deploys
the feedback control algorithm in an on-line real-time
environment to automatically manage the web server. The
designed autonomic feedback control system is able to
handle the dynamic and interrelated dependencies between
the tuning parameters and the performance metrics.

Andrew Lee, Mohammed Ibrahim, et al. [5] describe the
principles behind the autonomic computing system
explored how an implementation can be used to
demonstrate autonomic behavior. It devised a simulation
experiment to determine the mathematical relationship
used to calculate attribute values and the criteria used
when actions are triggered.

From the point of view of fundamental autonomic element,
these work are very instructive. But it did not clarify the
autonomic element design and difficult to build a practical
autonomic system.

3. Mind Agent Model for Autonomic Element
Design

3.1 AE Functional Structure

AE(autonomic element) is the basic element of autonomic
computing system. AE collects the environment
information, makes decisions and adjusts itself
dynamically.

From the point of logic view autonomic element usually
comprises the components of analyzing, monitoring,
planning and executing, also contains the knowledge,
sensor and effector components. Usually it is divided into
four parts according to the functions:

Monitor: it is responsible for collecting, aggregating,
filtering, managing and reporting information. The system

should have uniform resource model in order to monitor
and collect information consistently.

Analyze: it analyzes the complex environment and builds
the model, which learns from the environment and
predicts the future.

Plan: it constructs the action sequences according to the
policy and agreement.

Execute: it executes the actions and manages the process
control.

Figure 1 illustrates the autonomic element function
structure. Four parts work together to provide the self-
management capability by policies.

Fig. 1. Autonomic element function structure

The ring connecting the respective parts should be looked
as a message bus, not the strict control flow. Four parts
collaborate to complete the specified task via
communication.

In order to adapt itself to the changing environment and
solve tasks cooperatively, AE must use the knowledge to
update the internal mind states that provide a further plan
for how to take actions.

3.2. AE Lifecycle

Autonomic system is different from general software
system and autonomic element varies from the traditional
component. Autonomic element should consider self-
management character from the start of design. The
lifecycle of AE has the states depicted as figure 2.

Policy-Driven

sensor

analyze

execute

knowledge

m
onitor

plan

effector

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

65

Fig. 2. Autonomic element lifecycle

When we deploy and configure autonomic element, the
relevant information should be registered to the directory
facilitator. Then autonomic element will enter into the
ready state. Autonomic element will initialize itself once
executing, then moves to the active state. If autonomic
element pauses, it will transfer to suspended state. AE can
come back to active state when resumed. If it does not
meet the running conditions it will switch to waiting state.
While migrating to other nodes AE will transfer to the
transit state. The active state comprises some sub-states
including optimizing, configuring, protecting, healing,
upgrading states and so on. Once AE quits, it will change
itself to ready state. If it is uninstalled or destroyed, AE
will jump to dead state [8].

Test and verify are used to ensure the correct autonomic
element behavior. However in a large complex
environment especially in distributed network, it is very
difficult to test and verify the correctness. One feasible
approach is to embed the test method into the autonomic
element.

3.3 Mind Agent Model for AE

The mind agent model is defined as a six-tuple <K, A, G,
P, I, L>, where

K is the belief knowledge base
A is the set of behavior capabilities
G is the set of goals
P is the set of plan
L is the set of policies
I is behavior intention
Belief is the most fundamental and important element

of mind agent. Other mind states representation and
reasoning rely on the rational believes. The belief can be
looked as knowledge base including the basic axioms, the
facts and the relevant domain data.

Behavior capability describes the capabilities of mind
agent and decides what actions to take, what effects will
be produced after taking actions. And the capability is the

basis of the mind agent plan, which decides whether the
goal can be achieved.

Policies including action policy, goal policy, utility policy
or mixture policy, describe the rules to guide the system
behaviors [8].

Goal reflects the state or behavior changes after executing
a specified task, which is usually produced when it
specifies the tasks and policies.

Plan is the action plan and determines the approaches to
achieve the goals. Plan connects the belief, the capability
and goal together, which illustrates what actions to take
for completing the specified goal based on the belief.

Intention is not equal to goal. Some scholars look
intentions as the choice and commitment of plan, however,
in our model the result of the plan, namely the action
sequence, is the behavior intention of the autonomic
element.

The architecture of mind agent is shown in figure 3.

Fig. 3. Mind agent model

The belief base is the bases of knowledge representation
and reasoning.

Action descriptions are used to express the capabilities and
services of a mind agent. Each action description is
connected to a behavior entity, which is encapsulated as a
component. These behavior entities act as functional
components with standard interface and can be loaded
dynamically.

Sensor can be regarded as the sense organs of mind agent.
It can observe the environment and receive messages from
other mind agents or users. When sensing new
occurrences, the sensor will send the new observation to
decision maker, also it can update the belief of mind agent.

f

Planner Sensor Decision
Maker

Belief DB
 Action

Description

Components

Effector

Policy(Privacy Rules/ Service Policy/ Authorization / Identity…)

B li f U d t

Policy Management(Expression, Transformation, Execution…)

 Waiting

Supended

 Transit

 Initiated

Active

Optimizing

Protecting

Configuri
ng

 Healing Upgrading

Wake

Wait

 Suspend

Resume

Move

Execute

Stop

 Design

 Implement

 Test

 Verify

 Install Configure

 Uninstall Dead

Run

 Destroy

Invoked
 Ready

Quit

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

66

Decision maker can be regarded as a reasoning machine,
which will decide whether a new goal will be achieved or
not. The decision will be made based on mind agent belief,
observation, and policy. There are three levels of decision.
The first level is directly made based on observation,
which is called reflection decision. The second level of
decision is based on mind agent belief and policy, which is
called intelligent decision. The third level of decision is
automatically made based on mental state of mind agent,
such as desires, long-term goals and complex policies.

After a new goal is added into the set, it denotes that the
mind agent has an intention to reach the goal. Then
planner will decide how to achieve it. The planning
algorithm is based on mind agent belief, action description
and policy. A static plan can be generated quickly by
specifying plan algorithms. But dynamic plan is more
adaptive and flexible according to complex policies. The
actions of a plan will be added into the action queue if the
plan is successful. The effector will load behavior entities
to execute and impose on the outer environment.

A mind agent program will repeatedly execute the
following steps:

(1) Observe the environment and update agent beliefs;
(2) Generate goals according to beliefs and observation

of agent, then add it into G;
(3) Select one of the most important goal δ∈G to be

achieved;
(4) Find a plan (α1,…, αn) to achieve goal δ according

to the policy;
(5) Execute the plan and feedback to agent belief.
Based on the mind agent model the autonomic element

structure is defined as Figure 4.

Fig. 4. Autonomic element structure

Sensor senses the environment and collects the needed
information.

Function module interface acts on the environment and
performs actions.

Communicator is used to communicate with other
elements, improving the interoperability.

Model constructor analyzes the complex environment
and builds the system collaboration model.

Policy enforcement point executes the policy decisions,
monitors and feeds back the running process of decision.
Autonomic computing system should have the module to
store, manage policies and make decisions based on the
dynamic policy.

Plan scheduler is in charge of scheduling and
performing the actions to complete the task based on the
constructed models and the action sequences.

Coordinator engine coordinates the interoperability,
communication and collaboration of different modules,
maintaining the autonomic element operating. When some
module fails, the coordinator engine can restore it such as
re-loading the new function module to replace the failing
one.

Resource database stores the available resource list of
autonomic element.

Task database provides the action logic description.
Knowledge base provides essential information (belief

etc.) for the management.
Plug-in manager manages the provided plug-ins such as

reasoner, coordinator, and collaborator so on.

3.4. Self-optimization

Autonomic system is made up of a group of the inter-
dependent and interconnecting autonomic elements. An

autonomic system s can be described as >=< fAs , ,

where },...,,{ 21 naaaA = is the set of autonomic

elements,
AAaf 2: →∈ is the dependency function

mapping an autonomic element to the autonomic element
set. When we say a is dependent on b , it means that a

needs the service b provides.)(af comprises the

providers a needs, namely,)(af is the set a depends on,
a has the connection with the autonomic element in

)(af .

Considering the autonomic element 1a and 2a , they rely

on the 1b and 2b respectively. Now assuming that the

final result of 1a vs 1b is 11sat , and that of 2a vs 2b is

22sat . If we change the connection 1a vs 2b , 2a vs 1b ,

their final result is 12sat and 21sat respectively. If

22112112 satsatsatsat +>+ , we say the result is

superior to the last one[8]. There is an assumption that 1b

and 2b provide the same service for 1a and 2a .

AE kernal
Sensor

Function

module

Communicator
Plan scheduler

Plug-ins
reasoner

coordinator

collaborator

…

Plug-in
 manager

Coordinator
engine

Model
constructor

Resource
database

Task database

Function
components

Policy

enforcement

 KB

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

67

Because every element has an opinion about the provided
service, such as service efficiency, service cost, service
quality and so on. We can look at the final result as the
comprehensive evaluation of the provided services. The
higher final result is, the better the self-optimization is.

Then we introduce),(SAT ba to represent the final
result a vs b .

Definition: Assuming that at the moment of t , the
autonomic system s has n autonomic elements,

>=< 1, fAs , },...,,{ 21 naaaA = , 1f is the
dependency function, P is the total number of the policies

specified in s ,
∑ ∑
= ∈∀

=
n

i afa
ji

ij

aasatSAT
1)(

1
1

),(
. If at the

moment of lt + , according to the new policy or business
goal the autonomic system changes the autonomic
elements connections. And the function is changed to

2f ,
∑ ∑
= ∈∀

=
n

i afa
ji

ij

aasatSAT
1)(

2
2

),(
. If 12 SATSAT > ,

the connection change can be looked as the self-
optimizing process.

Therefore the self-optimization of autonomic system
can be looked as the reasonable service allocation, that is,
it is the process of selecting better services to decide the
better autonomic element connections. If an autonomic
element a needs some kind of service, it will query the
autonomic directory facilitator (ADF) and request the
service. Then ADF will choose a suitable autonomic
element b for a , a will use the service b provides. If
a is unsatisfactory with the service it will request the
ADF for another provider.

4. Application

The autonomic element based on mind agent model is
tested in the multi-agent platform MAGE[9] developed by
key laboratory of intelligent information processing,
institute of computing, Chinese academy of sciences.
MAGE is a multi-agent development and running
environment, which is based on the intelligent and multi-
agent technologies, utilizes the agent-oriented software
engineering to analyze, design and deploy the multi-agent
system. As a distributed development platform, the MAGE
environment comprises three tools: Modeling Tool for
Multi-Agent System supports the system analysis and
design including AUML modeling tool; Visual Agent
Studio(VAStudio) is a multi-agent development platform;
MAGE deployer provides the deployment and running
environment for the multi-agent system[10].

AGrIP(autonomic grid intelligent platform) is developed
on the basis of MAGE. Our goal is to make full use of
agent and autonomic computing technologies to build an
autonomic grid test environment for the applications.
Because autonomic computing is an evolutionary process
AGrIP are evolving from the agent grid intelligent
platform to autonomic grid platform. Compared with the
previous design [11] AGrIP not only makes full use of the
agent technologies but also incorporates the autonomic
computing advantages from the kernel design to high level
implementation.

In the past decade attempts to apply intelligent agents in
realizing the grid vision have been made by academic
researchers. The most interesting work in the literature
might be the Agent Grid concept proposed under the
DARPA ISO's Control of Agent-Based Systems (CoABS)
program. The agent grid is a specific mechanism for
sharing distributed services and resources. We can view the
grid as a number of interacting agent-based autonomic
nodes. And we built different grain-level policy plug-ins
from the autonomic element, node, middleware to the
application level. Figure 5 shows the AGrIP architecture.

Fig. 5. AGrIP architecture

AGrIP makes it possible to configure autonomic element
dynamically through deployment solution center(DSC).
Using address mapping facilitator(AMF) autonomic
element can communicate via name directly so as to
eliminate the address complexity. Using autonomic
directory facilitator(ADF) we can provide self-configuring
and self-optimizing based on services. Broker has the
abilities of service composition and coordination. While
policy management center(PMC) is responsible for the
policy management. MTS provides the transparent
communication. Furthermore autonomic inherits the agent

AGrIP Kernel

自主
DSC ADF

元
AE

MTS(Message Transport System)

AGrIP Kernel

MTS(Message Transport System)

AMF Broke

Behavior
Library

Function
Compon

PMC SF

Resource Layer

Software Middle Layer

Application Layer

Poli
cy

Plug
-ins

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

68

characteristic of coordination and reasoning. Also security
issues are very important in autonomic systems. So
security facilitator(SF) answers for security detection.
AGrIP is a collaborative environment and provides a
resource-sharing platform. It can manage the sharing
resource of the grid nodes, including hardware, data,
information, knowledge and services etc, where the
hardware resource includes the grid node CPU, memory,
storage and their utilization. And services are the agent
services developed by VAStudio[12] and web services,
which provide the data mining, machine learning abilities
etc. After the node resources are updated AGrIP will
update itself timely and coordinate the resources.

Figure 6 shows the AGrIP management GUI. It describes
the grid node GUI that includes two dynamic physical
nodes qiu and huj. It can show all the relevant nodes if
they registered to AGrIP.

Fig. 6. AGrIP management GUI

Every registered node manages the hardware and software
resources, which can collect data, extract information,
manage knowledge and provide services so on. Once the
task is distributed to different autonomic nodes, every grid
node will monitor the network resource and local
hardware utility including CPU, memory, disk and
network resource to make decisions based on the concrete
policy. When distributing the sub-task to the nodes
according to the policy, every node will calculate the
resource utility and the provided services, then allocate the
sub-tasks to the optimal nodes. If the running task in one
grid node such as qiu is interfered by the computer or the
user, it will monitor and determine which registered node
is most suitable according to the policy, then it will
migrate to the node such as huj and continue to complete
the work otherwise it will have to wait. Ultimately the
related nodes will collaborate to complete the complex

work. The grid node has proved that it has the advantages
of autonomic element and agent simultaneously.

AGrIP has been applied successfully in a complex,
dynamic, multi-agent domain, such as GEIS(Grid-based
Emergency Interaction System), distributed data mining
and so on[12].

5. Conclusion and Future Work

The autonomic element based on the mind agent not only
has the traditional agent advantages but also incorporate
the policy to make decisions. It is a promising approach to
meet some challenges in autonomic computing initiative.
Further we are focusing on the complex collaboration and
consistency checking among the different nodes in AGrIP.

Acknowledgments

This work is supported by the National High-Tech
Programme of China (Grant No. 2003AA115220), the
National Basic Research and Development Plan of China
(Grant No. 2003CB317000) and the Youth Research
Programme of China University of Mining and
Technology (Grant No. 0D4489).
References
[1] Jeffery O. Kephart, David M. Chess. The Vision of

Autonomic Computing Outlook. IEEE Computer Society,
January 2003, pp.41-47.

[2] A.G.Ganek, T.A.Corbi. The dawning of the autonomic
computing era. IBM SYTEMS JOURNAL, VOL42, NO
1,2003, pp.5-18.

[3] J.P Bigus, D.A.Schlosnagle, J.R.Pilgrim, W.N.Mills
III,Y.Diao. ABLE: A toolkit for building multiagent
autonomic systems, IBM SYTEMS JOURNAL, VOL 41,NO
3, 2002, pp.350-371.

[4] Y.Diao, J.L.Hellerstein, S.Parekh, J.P.Bigus. Managing Web
server performance with AutoTune agents. IBM SYTEMS
JOURNAL, VOL 42,NO 1, 2003, pp.136-149.

[5] Andrew Lee, Mohammed Ibrahim. Emotional Attributes in
Autonomic Computing Systems. Proceeding of the 14th
International Workshop on Database and Expert System
Applications(DEX’03).

[6] Mingkai Dong. Research on Dynamic Description Logic for
Intelligent Agent, PhD Dissertation. Chinese Academy of
Sciences, Beijing, 2003.

[7] Mingkai Dong, Haijun Zhang, Zhongzhi Shi. The Agent
Model Based on Dynamic Description. Journal of Computer
Research and Development.2004, 41(5), pp.780-786.

[8] Haijun Zhang. Research On Agent-Based Autonomic
Computing. PhD Dissertation. Chinese Academy of Sciences,
Beijing, 2005.

[9] Zhongzhi Shi, Haijun Zhang, Yong Cheng, Yuncheng Jiang,
Qiujian Sheng, Zhikung Zhao. MAGE: An Agent-Oriented
Programming Environment. IEEE ICCI 2004, pp. 250-257.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

69

[10] Maoguang Wang, Zhongzhi Shi, Jiewen Luo,et al.Dynamic
Interaction Protocol Load in Mult-agent System
Collaboration. PRIMA2005,pp.101-115.

[11] Maoguang Wang, Jiewen Luo, Fen Lin, Zhongzhi Shi.
Internet intelligent Platform--AGrIP. Artificial Intelligence
Applications and Innovations II(AIAI2005), pp.363-370.

[12]Intelligent Science Web site:
http://www.intsci.ac.cn[OL],2006.

