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Summary 
Power management is one of the criteria which characterize any 
existing wireless communications device in the market. It has 
been a concern of design engineers and has been on continual 
development for a number of years now. Modules with 
rechargeable power source has been seen in the market recently 
giving rise to what is so called as  “perpetually” operating 
devices. This paper proposes a battery model for a solar cell 
replaceable power source taking account the time of day as well 
as the duty cycle of the device. With this model, routing 
protocols, clustering algorithms and other networking power 
saving methods can be devised. 
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1. Introduction 

A wireless sensor network is a large number of 
power-limited sensor nodes which are distributed over 
some specific area to gather information about a certain 
observable event. Due to the power limited nature of each 
sensor node, power efficiency is one of the major merit 
factors for commercially available devices as well as for 
wireless communication standards. Also for some 
applications, the location of the sensors, as well as the 
method of deployment, would make it hard to replace 
power sources each time a node loses power. Renewable 
sources are starting to gain popularity with regards to the 
powering nodes for various applications. Solar energy is a 
major source of energy especially for outdoor wireless 
sensor applications. This is primarily due to the periodicity 
and reliability of solar energy systems. Several years ago, 
photovoltaic cells (PV), as a means of an endless source of 
energy, are viewed as an expensive alternative to the 
customary and limited Lithium batteries. Due this cost 
issue, engineers opted to use the limited battery source 
arguing that it would be cheaper to let the nodes “die” than 
to employ photovoltaic cells to recharge the power source. 
Recent developments have changed this tough scenario 
into a favorable one for solar energy. With the increase in 

the need for longer lasting nodes, solar energy is one of the 
alternatives. 
 
2. Background and Related Works 
 
Power efficiency has been one of the vast areas of research 
when one talks about wireless sensor networks. Numerous 
MAC and routing protocol standards have been researched 
and implemented to solve the problem of power efficiency. 
Some of them is discussed in [1], [2], [3], [4], [5] and [6].  
However, in the end, power efficiency solutions only solve 
problem on how to make power last given a specific 
amount of energy. Majority of papers that were published 
deals with customary batteries which cannot be sustained. 
This is under the assumption that the utilization of 
perpetual energy sources such as solar energy would prove 
to be more expensive as compared to letting the nodes die. 
Standard batteries can be modeled in several ways 
according to a number of parameter i.e. temperature, 
capacity, rate discharge among others. [2] discusses some 
models as well as classifies them according to the method 
in arriving at a model. This paper, as well as [5], also 
discusses about several battery properties that describes 
battery operation during discharge as well as during idle 
times. Charge recovery effect is one of the battery 
properties most often considered in battery modeling of 
standard batteries as in [3], [4], [5] and [6].  Charge 
recovery can be measured using experimental means and 
was modeled using stochastic equations by [3] and [4] 
using the discharge profile provided by battery 
manufacturers. In [1] and [6] the battery is modeled to 
serve as a transmission cost in building a framework for a 
sensor network in [1] or applying it to an existing protocol 
in [6]. 

With developments of technology as well as necessity, 
designs and theory of utilizing an endless energy source 
are being produced. Despite currently being disadvantaged 
in terms of cost, photovoltaic cell attributes and its great 
potential to reduce its current price gives it advantage, 
motivating manufacturers and engineers to design sensor 
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nodes with renewable power source. In addition to being 
an unlimited source, solar energy from photovoltaic cells 
is a environmentally clean and safe source of energy. 
Prometheus in [7] is one of the researches and 
implementation of a sustainable energy source for wireless 
sensor nodes. This project utilizes photovoltaic cells to 
sustain energy buffers in the form of super capacitors and 
standard Li+, NiCad or NiMH rechargeable batteries. 
Combined with power efficient algorithms, we can 
increase the lifetime of sensor network nodes using 
charging mechanisms. To model the battery several factors, 
as well as concepts, are needed to ensure accuracy. The 
proceeding the discussions is divided into five parts. The 
first discussion would be regarding battery mechanisms 
and their effects during the discharge of battery. Solar 
energy fundamentals would be discussed in the second 
part of the discussion focusing on parameters affecting 
solar energy efficiency and energy delivery. The Markov 
model formulated would be discussed in the fourth part of 
the discussion. Conclusion would be brought out in the last 
section. 
 
 
3. Solar Battery Modeling and Analysis  
 
3.1 Battery Mechanism 
 
To model battery accurately, one must understand the 
mechanisms that take effect during battery utilization. 
These mechanisms lets us know how batteries behave in a 
given conditions. Two main mechanisms of batteries to 
consider are rate capacity effect and recovery effect [2], 
[6]. These two mechanisms are dependent on the discharge 
profile of a specific battery. Discharge profile are usually 
provided by battery manufacturers with information on the 
amount of time the battery voltage fall to a certain 
threshold voltage, i.e. the amount of time the battery 
reaches a discharged or “empty” state.  

To begin with, we must understand the nature at 
which the battery discharges its energy. The battery is an 
electrochemical device which allows storage of energy 
using the battery’s chemical characteristics. During a 
discharge situation, the battery is attached to some load 
which provides a path for charges to follow. These charges 
are produced by chemical reactions in the battery’s 
composition. In rechargeable type of batteries, an 
externally applied supply current can be applied to the 
battery to reverse the chemical process of discharging. 
Manufacturers usually classify batteries according to their 
rated capacity which is the amount of charge a battery can 
store. This amount of charge can be measured in A-hours 
(3600 Coulombs). This capacity is dependent on the 
amount of current being supplied as well as in the current 
charge state of the battery.  

This manufacturer-provided capacity does not 
necessarily equal the amount of charge delivered to the 
load. Some battery characteristics influence the usable 
capacity, termed actual capacity [2], delivered by a battery 
at a given temperature. Self-discharge can occur which 
brings down the actual capacity of the battery. This 
property of batteries is heavily dependent on temperature 
causing higher self-discharge rate in tropical countries. 
Rechargeable batteries exhibit higher self-discharge rate 
than standard batteries (about 2-3% a day).  Due to this, 
rechargeable batteries alone are not enough to replace a 
standard alkaline battery in a network environment. 
Sustainable recharging mechanism would provide a much 
needed leverage in terms of network lifetime. Rate 
Capacity Fading is also one the factors that affects how 
much energy a battery can provide. Rate Capacity Fading 
describes the observed data that the larger the discharge 
current drawn from the power source, the less the capacity 
delivered. This is also known as Peukert effect. The 
Peukert Effect can be described by Eq. (1). 

 

 
 where,  

C is the rated capacity of the battery 
I is the discharge current 
T is the runtime 
n is Peukert’s exponent 
C=InT 

In [9], a modification of Eq. (1) gives a more realistic 
way to use the Peukert formula according to the rated 
capacity given by battery manufacturer. The equation as 
used by Smart Gauge is  

 

T = C(C/R)1-n/In (2) 

 
where 

R is the battery hour rate at which the rated 
capacity is taken   

 
 

C=InT (1) 
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Fig. 1 Rate Capacity Fading 
 

 
Fig. 2 Recovery effect visualization. (A) fully-charged, (B) discharging 

state, (C) recovered state, and (D) depleted state. 
 
From the Fig. 1, we can observe that as the discharged 

current is increased, the difference between the actual 
runtime and rated runtime also increase. This can be 
explained in conjunction with another battery 
characteristic, Battery Recovery Effect. Battery effect 
occurs when the charge level inside battery composition 
balances out during diffusion. During the discharge 
process, charges near the anode flows out of the battery in 
a rate faster than the internal diffusion in the battery 
composition. The result is an internal imbalance of charges 
which can be graphically shown by Fig. 2B. When the 
battery is in the idle state, the electrons inside the 
electrolyte would diffuse to equalize the concentration of 
charges as in Fig. 2C. When the used continuously, the 
charges near the anode would be depleted thereby stopping 
the transfer of electrons from the battery. Thus the battery 
would be in discharge or ‘empty” state (Fig. 2D). Even if 
there are still charges present, the battery cannot supply 
any charges anymore because there are no more charges 
near the anode. The rate of diffusion is much less than the 
rate at which charges are discharged. The probability that a 
recovery would occur is Eq. (3). q describes the amount of 
discharge of the battery. N-q/N describes what fraction of 
the capacity remains in the battery. The probability that a 
battery recovery process would occur during a certain idle 
time is less when the amount of charges in the battery is 
small. k defines a constant which is dependent on the 
battery used. Since the diffusion rate us less than the 
discharge rate, recovery effect can explain the reason of 
energy inefficiency during continuous utilization of the 
battery as described by the rate capacity fading. 

 
 
 
3.2 Solar Energy 

 
The amount of solar energy that a certain photovoltaic cell 
can provide is dependent on several factors. Since solar 
energy is a natural resource, it is heavily dependent on the 
environmental conditions which are generally random in 
nature. To simplify the model, some parameters or 
conditions were assumed. Firstly, the temperature 
dependence of the solar energy is assumed to be negligible. 
The parameter we would focus on is the relationship 
between time and the amount of energy provided by the 
photovoltaic cell. We begin with the equation that 
describes the flux intensity for a photovoltaic cell. The 
flux intensity equation [8] is defined by Eq. (4). 

 

Szc
OeIzI )(sec)( −

=  (4) 

 
where 
 I(z) = Flux Intensity in kW/m2 

Io  = Exoatmospheric solar flux (1.353kW/m2) 
 Z   = zenith distance  
 C   = 0.357 
 S   = 0.678 
 
Solar flux intensity is a measure of the energy which is 

absorbed by a photovoltaic cell. S and c are empirical data 
numerical constants while Io is the flux intensity outside 
the earth’s atmosphere. The solar flux intensity data can be 
used to know how much energy is provided by the cells. 
From [8], at constant voltage, increasing the amount of 
solar flux intensity would also increase the amount of 
current supplied to the load. With this in mind, one can 
know the amount of current being supplied to charge a 
rechargeable battery. 

 
Fig. 3 Zenith distance. 

 
The zenith distance is the angular distance from the 

position of the sun directly above a spectator in Fig. 3. 
This parameter is dependent on the time of day. Eq. (5) [8] 
describes the zenith distance z. λ is the latitude of the 
collector site and δ is the solar declination. Solar 

        PR  = e –k(N-q/N)           for q ≠ N 

    =  0                   for q = N, q=0    
(3) 
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declination is angle between the earth-sun line and the 
equatorial plane in Fig. 4.  

 
Fig. 4 Declination angle. 

 
Due to a 23.45-degree tilt of the earth’s equatorial line 

with respect to the earth’s orbit, there would be variation 
of the solar declination throughout the year which causes 
seasons. The value of the declination angle can be 

approximated at about 23.50 during summer, about 00 
during equinox, and -23.50 during winter. A graphical 
representation is provided by the University of Southern 
Mississippi in [8] showing the declination angle 
throughout the year. Day 0 is defined as January 1. t is 
defined as the hour- angle which defines the hour of day. 
To define this angle, we define t as Eq. (6) where T is the 
number of hours from solar noon(highest point of the sun). 

 

cosz = sinλsinδ + cos cos costλ δ  (5) 

t = (360/24)T (6)

 
The transition model for the battery is illustrated in 

Fig. 5.  

 

 
 

Fig. 5 Markov chain model of battery process 
 

 
The states CN, CN-1,CN-2,…C0 represents the battery 

charge states with CN denoting the fully-charged state 
while C0 corresponds to the depleted or discharged state of 
the battery. The directional arrows represent the transition 
with the probability of making those transitions indicate 
above each arrow. To get these probabilities, equations 
defined above would be used. Some assumptions were 
made in formulating the model in Fig. 5. First, we assume 
that for every discharge process, two charge units are 
provided by the battery to the load. Second, the sensor 
network senses parameters in a periodic time, that is, it 
senses in a cycle. Third, the amount of charge recovered in 
a specific time is one charge unit. Lastly, we assume that 

for a certain season, the solar flux intensity behavior for is 
periodic for each day. During the whole process, two 
independent events are involved: a) battery is sourcing 
energy and b) solar energy charging. These events, a and b, 
are not mutually exclusive such that these events may 
happen simultaneously. The three sub-events of solar 
charging, namely recovery, discharge and no activity are 
mutually exclusive. A direct way to describe this is that 
while the battery is charging through the photovoltaic cells, 
one o the battery processes, namely discharging, battery 
recovery or no activity is occurring.  

To model the battery, equation from discussion A and 
B are used. We begin with state CN. N is the maximum 
amount of charge stored by a battery. Therefore, the 
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battery cannot charge any more than the value of N. With 
this in mind, the probability that solar charge or battery 
recovery would occur is 0. At state CN, the battery can 
either have a loss of charge or stay at the same state. For 
C0, only solar charge or a no change can happen because 
this is the depleted state of the battery. To find each 
transition probability, we must determine each 
combination of events that can lead to each state. Also, we 
must initially find the probability of each component of the 
events. 

For the case of solar charging, we need to use the solar 
flux intensity equation as given in Eq. (4). To get the 
probability, we need to express time in terms of the solar 
flux intensity. Re-arranging Eq. (4), we get Eq. (8). 
Combining this with Eq. (5), we can finally arrive at Eq. 
(9). From Eq. (6), we plot the solar flux intensity against 
the number hours from noon as shown in Fig. 6. The plot is 
symmetric about the x-axis which takes into account the 
energy supplied in the morning. The plot describes the 
solar flux intensity throughout the day. Looking at Fig. 6, 
we can observe that at different levels of solar intensity, 
the photovoltaic cell can provide an amount of current at 
constant voltage per time slot. This observation leads us to 
the idea that depending on the value of a charge unit, the 
photovoltaic cells can provide a discrete number of charge 
units. To illustrate the idea, suppose that one charge unit 
has a value of 10mAh and the time slot length is one hour. 
Looking at figure three, we can safely say that at the solar 
flux intensity range from 750W to 1250W, the PV cells 
can provide approximately 40mAh which is four charge 
units. In the same way, we can find the range from which 
the PV cells can provide 1, 2 or 3 charge units. The 
probability of the PV supplying a given number of charges 
(CH) given that the PV is supplying energy  is PCHARGE(I) 
Eq. (10) which is the energy from a to b (the range at 
which the PV is supplying CH) divided by the total energy 
for the day. We get energy per day because we assumed 
that the solar flux intensity for a given season is periodic 
on a day to day basis. We need to find the probability that 
a solar charging process is occurring to determine the 
probability in a day that the battery is charging CH charges. 
Using Eq. (9) and Eq. (6), we can have Eq. (7) which 
defines the equation that describes how much time in a day 
the PV cell is supplying energy.  

 
Fig. 6 Solar flux intensity vs the number of hours from noon 

 
The sensor node duty cycle is Pdischarge, the probability 

that the node is discharging the power of the battery.  
1-Pdischarge is the probability of having an idle time for the 
sensor node. At this idle time, the sensor node can either be 
recovering (if the concentration of charge is not uniform) 
or have no activity (uniform concentration).  The 
probability of recovery and no activity are given by Eq. 
(10) and Eq. (11) respectively where PR is given by Eq. (3). 
Now we have the values of the probabilities for all the 
events involved. The transition probability of arriving at a 
state Ck given that the current state is Cj is determined by 
finding the combinations of events to arrive at a k state.  

 

 
Fig. 7 Probability tree for the battery process 

 
Fig. 7 shows a probability tree which depicting the 

combinations of these events as well as their probability. 
The yellow box with level j represents the current state of 
the battery. The red boxes in the lowest levels of the tree 
represents the k to which we could transition to. To get the 
probability of transitioning from Cj to Ck, we add the 
probabilities of the independent events that results from 
going from j charges to k charges. For example, if wants to 
find the probability of transition from Cj to Cj+1, one must 
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find all the path in the tree from j to j+1 then sum the 
probabilities derived from these paths. This would give us 
Eq. (13). 

 
4. Simulation Results 
 
Simulations were conducted using Matlab as the 
calculation engine as well as the plotting software. 
Simulations were done to plot the change in capacity with 
respect to time during the operation of a rechargeable 
battery. Simulations were done where in solar charging, 

battery recovery and battery discharge is present. Some 
assumptions were made in the simulations for each 
scenario. A general assumption is the number of charge 
units utilized, recovered or regained by each of battery 
process. As we know, the amount of charge units gained or 
lost is random and is based on how much charge units are 
needed as well as how much charge is provided. In the 
simulation, we assume a constant range of the rate of 
recovery, discharge and solar charging. Also, the range of 
the rate has a linear relationship. 
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The following is the general flow of the simulation process. 
The initial time state in simulation is 0. 

1. Set constants and variables according to scenario. 
2. Determine the next time interval where in discharge 

would occur. This is a randomized determination of 
interval. The range of the interval is also set.  

3. Determine the solar flux absorbed by the photovoltaic 
cells each hour according to the value of the time 
interval from step 2. Get the amount of charge gained. 
Adjust the increment according to this amount. 

4. Get a randomized probability of the amount of 
discharged units. This would determine the amount of 
current discharged for a certain discharge event. 
Adjust the increment according to this probability. 

5. Get the probability that a recovery occurred during the 
idle state. Unlike the solar charging in step 3, this 
event should only occur once in every idle state and 
not in a per-hour basis. Adjust the increment 
according to this probability. 

6. Update the current capacity according to this adjusted 
increment value.  

7. Repeat process until capacity is equal to 0. 
 

In the first scenario, we aim to see the performance of our 
model in terms of varying capacity and time of discharge. 
Fig. 8 shows the graph of the first scenario. In this scenario 
we vary the amount of initial charge unit capacity (full 
charge load). In addition, we can also look at this graph to 
see what time instant a specific state of capacity would 
occur given a certain full load capacity. As one can 
observe in Fig. 1, the data taken and plotted is raw data 
and not averaged. The reason for this is to observe the 
instantaneous events. The rough edges in the graph 
describe sudden changes in the charging and discharging 
of the battery. Although we have a linear range, we note 
that the combinations of these ranges as indicated by 
increment adjustments results in random amount of charge 
gained or lost. This produces spur like data to be plotted 
which represents the variation of charge gained and lost. 
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Note also that the capacity values used in the simulation 
are relatively small compared to actual battery capacity. 
Also, the increment adjustment is set such that the amount 
of charge gained is comparatively less than the amount of 
charge lost which is also what happens in reality on the 
average. Also, looking at the figure, one can see the linear 
nature of plots with varying values of capacity. This is due 
to the linear relation of the rate ranges. 
 

 
Fig. 8 Capacity vs time plot. 

 
In the second scenario, we aim to compare the amount of 
time it would take for the battery to get fully discharged. 
As in the first scenario, we present raw data. Also, we set 
the full-charge capacity to 1000 charge units. As we can 
see from the Fig. 2, the runtime for simulation with solar 
charging is double that of the ordinary setup. This is based 
on a conservative increment where in the amount of 
discharged units are relatively larger than charges gained 
for each event.  
 

 
 

Fig. 9. Solar charging vs no solar charging 
 

In the third scenario, we vary the frequency of the 
discharge. The frequency of a discharge event is 

determined by the time interval as determined by step 2 in 
the simulation process. In the previous scenarios, we have 
set up the simulation such that a discharge event occurs at 
least once every 12 hours. On this third scenario, we want 
to vary the discharge rate and see how it affects the time it 
takes to fully discharge the battery. Increasing the 
discharge rate yields an increase in the sloe of the 
time-capacity plot giving larger amounts of charge loss. 
Also, we need to note that due to increase in discharge rate, 
the rate of recovery also decreases. 
 

 

Fig. 10. Variable discharge rate. 
 
Finally, we look at the effect on the time of year or season 
in the time-capacity plot. The previous scenarios use 
summer as the working scenario. Fig. 11 describes the 
behavior of the time-capacity plot in response to change in 
season. The change in season can be implemented by 
varying the declination angle δ in Eq. (5). Since 
photovoltaic cells can sustain more energy during the 
summer, the runtime in summer should be longer as 
compared to spring or winter. This is seen in the figure. 
However, this is assuming a fixed discharge rate 
throughout the year. 

 
Fig. 11 Season variation. 
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5. Conclusion 
 
In this paper, a mathematical model for a wireless sensor 
node with photovoltaic cell power source using Markov 
Chain model. The secondary buffer is an ordinary 
rechargeable battery (preferably Ni-MH). This model can 
be used to predict the state of the battery during running 
condition as well as determining the amount of charge the 
battery has stored. Formulation of the battery model a 
super capacitor primary buffer similar to [7] can be done 
for future work. Another development to be done is the 
formulation of a battery model which also takes note of the 
effect of ambient temperature and geographical height 
which also affects the amount of energy supplied by a 
photovoltaic cell array. 
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