
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

105

A Multi-agent System Development Tool Support for Self-Organization

Maoguang Wang1,2,Lirong Qiu2, Fen Lin2, Zhongzhi Shi2

1School of Computer Science, China University of Mining and Technology, China
2Institute of Computing Technology, Chinese Academy of Sciences, China

Summary
The theory of self-organization and adaptivity has grown out of a
variety of disciplines, including thermodynamics, cybernetics
and computer modeling. As modern computing environments
become more open, pervasive and complex, self-organization is
becoming more and more concerned in the multi-agent
systems(MAS). Self-organization can be defined as the
spontaneous creation of a globally coherent pattern out of local
interactions. Self-organizing systems not only regulate or adapt
their behaviors to the changing environment but also adjust their
own software structure. It requires both connections that
integrate the parts into a whole and organize different
subsystems to adapt to the changes. In this paper the VAStudio
multi-agent development platform is expected to create flexible
and self-organization MAS software. VAStudio adopts a
hierarchical structure form the fine-grain behavior level, the
medium agent level to large-grain society level. Also it adopts
the ontology to ensure the interaction message consistency, use
policy to control the dynamic load of agents, components,
protocols and plug-ins so on. And we give an experiment to
illustrate the VAStudio functions.
Key words:
Multi-agent system, self-organization, multi-dimensional
hierarchical structure, ontology

Introduction

Multi-agent technologies have been developed more than
20 years and the agent technology is considered to be a
promising method to construct the scalable, robust,
reusable high quality software system. Intelligent agent
and multi-agent technologies provide a new pattern for
developing the distributed, intelligent and pervasive
systems. Though many relevant theories and platforms are
provided by the academia and industry, it is still not easy
to develop the agent system.

Due to the complexity of the network and distributed
system applications, how to solve the complexity of the
computer system management and deployment is
becoming more and more concerned. In 2001 IBM
releases a manifesto observing that the main obstacle to
further progress in the IT industry is a looming software
complexity crisis. Therefore IBM proposes the autonomic
computing idea [1] to solve the software complexity crisis.
In accordance with autonomic computing proposal, IT
system should hold the capability to adjust itself without

needing much manual intervention, namely, the system
can execute autonomically and adapt itself to the changing
environment. Also, with the multi-agent system is
becoming more and more complex how to develop a self-
organization system is getting more and more attention.
Generally a self-organizing system not only regulates or
adapts its behavior, it also creates its own organization.
Organization is usually defined as structure with function.
Structure means that a system’s components are arranged
in a particular order. It requires both connections that
integrate the parts into a whole and separations that
differentiate subsystems to avoid interference. Function
means that this structure fulfills a purpose [2].

Despite the research done in the last years on the
development of methodologies for designing MAS[3-8],
there still lacks an efficient methodology suitable for the
development of self-organization MAS. So far most agent
development tools lack the self-organization support,
which makes the user understand and develop a self-
organization MAS difficult. Consequently we focus on the
MAS development support for self-organization.
Incorporating the AOSE(Agent Oriented Software
Engineering) philosophy, we analyze the design model
and agent architecture [7], a multi-dimensional and
hierarchical model to support self-organization is designed
and the tool VAStudion is developed to support the self-
organization development. As a consequence, a self-
organization behavior and a self-organization system
emerge in the process of interactions between autonomous
entities. This approach gives more flexibility, robustness,
and is more suitable for the modeling and control of
complex system. Compared with the related development
tool including JADE(Java Agent DEvelopment
Framework), JATlite (Java Agent Template, Lite), Zeus
and so on[13,14], VAStudio provides a visual design and
programming environment for the MAS. It facilitates the
multi-agent development and is convenient for building
the self-organization MAS system.

The rest paper is organized as follows: Section 2
introduces self-organization development support model.
Section 3 depicts the experiment to illustrate how
VAStudio supports the MAS development. Section 4
summaries the paper and discusses the future work.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

106

2. Self-organization Development Support
Visual Agent Studio(VAStudio)[12] developed by our
laboratory[12] is a visual MAS development platform and
provides the practical agent self-organization support.

Usually abstract method is used to deal with complex
systems. According to the multi-agent system characters
and abstract levels, we use a multi-dimensional and
hierarchical model to develop the multi-agent system. The
first dimension is the development process, the second
dimension is the self-organization interfaces support
including the ontology, policy, protocol and plug-ins. The
third dimension is the self-organization coordination
model. Figure 1 illustrates the dimension of hierarchical
development structure.

Fig.1 Hierarchical development structure.

The bottom Layer provides the support for the legacy
components. The behavior describes the agent capabilities,
which can be conveniently inherited by every child
behavior to implement various applications. Although
behaviors are components with concrete actions, they
cannot execute as independent entities. They are used and
added to different autonomous, intelligent and mobile
agents. In VAStudio, agents that wrap concrete behaviors
can migrate to distributed sites and can communicate and
collaborate with their peers. The highest layer of the
structure is agent society which can collaborate to resolve
the complex tasks according to their roles and goals. In
this layer, we can monitor the message transmission, agent
collaboration process, and so on.

During the design VAStudio support the two methods:
top-down and bottom-up from the fine-grain behavior
level to large-grain society level, or vice versa. Figure 2
depicts the VAStudio platform.

Fig. 2 VAStudio logical structure.

Using visual wizards VAStudio Design Platform supports
five generating methods: FSM(Finite State Machine),
Workflow Chart, Template Library, Behavior and Agent
Description, Cloning, where FSM support the
customization of the agent, Workflow chart generates the
agent by specifying the task flows, the template supports
the various agent models: deliberate, reactive, hybrid etc.
The behavior and agent description methods support the
simple and complex behavior composition. Agent
description illustrates the agent capability, the name, the
goal and the needed resource.

VAStudio Develop Platform supports the code edit,
compile and debug. Moreover the runtime platform
supports the deployment to the MAGE environment [12].
It supports the BDL to describe behavior and ADL to
describe agent.

Behavior Generating Algorithm:

<Behaviour>::= <Definition><Capabilities><Extra
Classes>
<Definition>::= <Behaviour Name><Behaviour
Type><Behaviour Package><Behaviour Description>
<Behaviour Type>::= Behaviour|CyclicBehaviour |
 FSMBehaviour|OneShotBehaviour|ParallelBehav
iour|SequentialBehaviour|SimpleBehaviour
<Capabilities>::=<Capabilities Type><Capabilities
Source><Capabilities Command><Capabilities
Parameters>
<Capabilities Type>::= Java Component|Executable
File|DLL
<Extra Classes>::=<Extra Classes Name><Extra Classes
Instance><Extra Classes Parameters>
Agent Generating Algorithm:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

107

<Agent>::=<Definition><Local Address><Acquaintance
Addresses><Extra Classes><Capabilities><Environment
Variables><Sessions>
<Definition> ::= <Agent Name><Description >
<Extra Classes>::= [Extra Classes]
BEGIN{<Class>}*END
<Capabilities>::=
[Capabilities]BEGIN{<Capability>}*END
<Capability>::=<Capability_name> <Capability_type>
<Capability_command_line> <Capability_source>
<Sessions>::= [Sessions]BEGIN{<Session>}*END
Given a society S and a scene s∈scenes(S), an interaction
contract is defined as a tuple, Interaction-contract=<a, s,
CC, P>, where the set of agents A={ (a,r) | a∈Agents, r
∈roles(s)},CC is a set of contract clauses, and P is the
protocol to be followed. The set A in this definition
represents the set of all agents enacting participating in
interaction scene s, and CC is a set of contract clauses
describing, that is possible conditions and deadlines
concerning the results and interaction patterns of scene s.
If the system satisfies the goal of self-organization, it
should adjust its behaviors according to the dynamic role
and scene.

As to the self-organization interfaces dimension, it
supports the behavior library Plug-ins, the agent library
Plug-ins, Policy interface, ontology interface, Service
Interface, component library etc. Users can reuse the
resources via ontologies and services. When modeling
ontology VAStudio provides an ontology editor to add or
delete concepts and relationships. Now we support the
concept classifier, the organization is a tree structure.

As to the self-organization coordination model dimension
we provides the coordination model including peer to peer,
hierarchical, federation and multi-issue models so on.

Now VAStudio supports the multi-dimensional and
hierarchical development. From the agent to the society, it
provides rich agent template generators:

 Mage.core.Agent
 Mage.core.ReactiveAgent
 Mage.core.DeliberativeAgent
 Behaviour Library
 Agent Library

Furthermore we are designing the graphical methods to
support the FSM, AUML and Flow Chart etc.

We are further enrich the support for the policy interface,
ontology interface, web services interface and various
coordination models.

3. VAStudio Experiment
Considering various scenes, the agents should adjust their
behaviors and structures according to the changing

environment. If the agent migrates from one society of
Auction to the society of Contract-Net, it should self-
organize the collaboration process and interaction
behaviors.

To support the self-organization, VAStudio provides[11]:

 The ontology library and the database for
describing the agent interaction messages and
resources.

 The defined organization relations and
coordination models, which mainly include the
relations of superior-subordinate, co-worker,
peer-peer relationship, and peer to peer model,
federation model etc.

 The protocol library contains most of the used
protocols, such as FIPA-Contract-Net-Protocol,
Negotiation-Protocol, Auction-Protocol, the
related Meta-Protocols and so on.

 The policy is used to control the agent interactions
and organizations, which depicts when and how to
interact with other agents [9].

Figure 3 shows one of the agent generation wizards.

Fig. 3 The agent generation wizard.

Now we set up a FIPA-Contract-Net scene, firstly we
develop 3 agents:a1,a2,a3, a1 is the initiator, a2 and a3 are
the responders, then add them to the society s1. Now these
agents only have basic behaviors. VAStudio just specify
the role and FIPA-Contract-Net-Protocol to them
respectively. Using top-down method to model the scene:
firstly we customize the agent which analyzes the needed
behaviors. And it generates the needed behavior code
framework automatically. Then according to the function
needs we add the code to the framework so as to make the
behavior own the corresponding functions. After adding
the behaviors to the behavior library we can generate the
needed agent. Ultimately a society can be organized
including the relevant agents. And the ontology can be
specified during the design process. Figure 4 illustrates
the agent ontology interface.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

108

Fig. 4 The ontology interface.

Once the scene is specified the coordination model will be
applied automatically during the agent interactions.Now
the agent a4 migrates from another auction society s2 to s1
society. VAStudio can load the FIPA-Contract-Net-
Protocol, load ontology and assign the corresponding role
to a4 agent. The process is showed in figure 5.

Fig. 5 The new agents role and protocol load.

After that VAStudio can deploy these agents to
MAGE[10] platform and verify the organization process
and task running. Figure 6 illustrates the Contract-Net-
Protocol processes.

Fig. 6 Contract-Net-Protocol process.

VAStudio has proved its successful development in many
projects: GEIS, Decision Support System based on agent
and so on [12].

4. Related Work
There has been work on developing the multi-agent
system. These works provide useful agent development
tools or methodologies. But with the agent system
becomes more open and complex how to support the
system self-organization when design a multi-agent
system is still lack efficient methodologies.

For instance, AgentBuilder[15] Pro provides graphical
tools for supporting all phases of the agent construction
process. Programming software agents is accomplished by
specifying intuitive concepts such as the beliefs,
commitments, behavioral rules and actions of the agent.
AgentBuilder Pro makes it much easier to create, debug
and test multi-agent systems.

JACK Intelligent Agents™ [16] is an agent oriented
development environment that is built by the Agent
Oriented Software Pty Ltd. It include the components such
as the JACK Agent Language, the JACK Agent
Compiler, the JACK Agent Kernel. The JACK™
Development Environment (JDE) allows the definition of
projects, aggregate agents and teams, and their component
parts under these projects. The JDE is a purpose-built
toolkit that facilitates the construction of agent/team
models.

The work of Vladimir Gorodetski et al [17] presents one
Multi Agent System Development Kit based on and
implementing of Gaia methodology. It supports the whole
life cycle of multi-agent system development and
maintains integrity of solutions produced at different
stages of the development process. Giacomo Cabri et al
[18] compared different approaches based on roles for
agent development and proposed the BRAIN [19]
framework. Lin Padgham et al.described a PDT

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

109

(Prometheus Design Tool) which supports the design of an
intelligent agent system using the Prometheus
methodology. They described how PDT supports the
various stages of Prometheus through various means such
as consistency checking, support for entity propagation,
and hierarchical views. Fernando Alonoso, Sonia Frutos,
et al [20] presented a SONIA methodology(Set of mOdels
for a Natural Identification of Agents) based on a generic
problem-independent analysis and a bottom-up agent
identification process. SONIA naturally outputs an agent-
based system.

5. Conclusions
In this paper, we describe the VAStudio tool for
developing MAS. When considering the self-organization,
VAStudio adopts the multi-dimensional hierarchical
design and development approaches, which has proved to
be very helpful in understanding and analyzing the self-
organizing MAS. To support the self-organization,
VAStudio provides the mechanism of policy control,
ontology editor, protocol load, self-organization
coordination models etc. We will further evaluate and
verify the self-organization processes using formal
methods.

Acknowledgments

This work is supported by the National High-Program of
China (Grant No. 2003AA115220), the National Basic
Research and Development Plan of China (Grant No.
2003CB317000) and the Youth Research Program of
China University of Mining and Technology (Grant No.
0D4489).

References
[1] Jeffery O. Kephart, David M. Chess. The Vision of

Autonomic Computing Outlook. IEEE Computer Society,
January 2003, pp.41-47.

[2] Steffen Staab. Neurons, Viscose Fluids, Freshwater Polyp
Hydra and Self-Organizing Information Systems Published
by the IEEE Computer Society. 2003 IEEE IEEE
INTELLIGENT SYSTEMS,pp.72-74.

[3] Marco Mamei, Franco Zambonelli. Self-Organization in
Multi-agent Systems: a Middleware Approach pp.1-9

[4] Gang Li, Linyan Sun, Haiquan Li. A Study of the Self-
organization Modeling of Distributed Manufacturing
Network. Proceedings of the IEEE International Conference
on E-Commerce Technology for Dynamic E-Business
(CEC-East’04)

[5] Camazine, S, et al. Self Organization in Biological Systems.
Princeton University Press, Princeton, U.S.A, 2001.

[6] Pierre Massotte, Roland Bataille. Future production systems:
Influence of self-organization on approaches to quality
engineering. International Journal of Production Economics
64 (2000), pp.359~377

[7] Javier Vazquerz-Salceda, Virginia Dignum, Frank Dignum.
Organizing Multi-agent Systems. Technical report UU-CS-
2004-015,Institute of information and computing sciences,
ultrecht university.http://www.cs.uu.nl

[8] Alan Colman, Jun Han. Operational management contracts
for adaptive software organization. Technical Report No:
SUTIT-TR2004.06. CeCSES-TR006, Oct. 2004.

[9] Maoguang Wang, Li Zeng, Jiewen Luo, Qing Yu. A DDL
Based Formal Policy Representation. PRIMA2006,
LNAI4088, pp. 245-255.

[10] Zhongzhi Shi, Haijun Zhang, Yong Cheng, Yuncheng Jiang,
Qiujian Sheng, Zhikung Zhao. MAGE: An Agent-Oriented
Programming Environment. IEEE ICCI 2004, pp. 250-257.

[11] Maoguang Wang, Zhongzhi Shi, Jiewen Luo,et al.Dynamic
Interaction Protocol Load in Mult-agent System
Collaboration. PRIMA2005,pp.101-115.

[12] Intelligent Science Web site:
http://www.intsci.ac.cn[OL],2006.

[13] JADE. http://jade.tilab.com/[OL],2006.
[14] Zeus. http://labs.bt.com/projects/agents/zeus/[OL],2006.
[15] AgentBuilder. http://www.agentbuilder.com/[OL],2006.
[16] JACK™ Intelligent Agents.http://www.agent-

software.com/[OL],2006.
[17] Vladimir Gorodetski, Oleg Karsaev, et al. MULTI-AGENT

SYSTEM DEVELOPMENT KITMAS SOFTWARE TOOL
IMPLEMENTING GAIA METHODOLOGY. IIP 2004,
Beijing.

[18] Giacomo Cabri, Luca Ferrari, Letizia Leonardi, et al. Role-
based Approaches for Agent Development. AAMAS'04,
New York, USA.

[19]G. Cabri, L. Leonardi, F. Zambonelli. “BRAIN: a
Framework for Flexible Role-based Interactions in
Multiagent Systems”. The 2003 Conference on Cooperative
Information Systems (CoopIS), Catania, Italy, November
2003.

[20] Fernando Alonso, Sonia Frutos, Loic Martinez and
Cesar Montes. SONIA: A Methodology for Natural
Agent Development. ESAW'2004 - 5th Intl.
Workshop on Engineering in the Agents World,
Toulouse, France, October 2004

