
 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

110

Manuscript received September 5, 2006.
Manuscript revised September 25, 2006.

Service Composition Techniques Using Data Mining for
Ubiquitous Computing Environments

Sun Young Lee†, Jong Yun Lee†, and Byung Il Lee††

†Department of Computer Education, Chungbuk National University, South Korea
†† Department of Computer Engineering, Chungbuk National University, South Korea

Summary
When users want to have a suitable application in ubiquitous
computing environments, it is necessary to discover and compose
primitive services considering context information. However,
previous works focused on only service discovery for user
queries and lack the consideration of context information such as
location, time, network, computing environment, and preference
for users. They also do not use the service history information on
service composition. Therefore, we present a framework for a
service provisioning middleware system that can discover
primitive services and compose dynamic complex services
according to the context information. We also describe an
algorithm of service composition which uses the service history
information and an ontology engine with data mining. Finally,
we show that our experiments enhance the possibility of
provisioning services considering user’s preference and thus
provide users with newly composed optimal services.

Key words:
Service composition, ubiquitous computing, service provisioning
Data mining

1. Introduction

In ubiquitous computing environments, available
resources and services changes over the mobility for users
and devices. It is also important to provide users with a
best-fit service considering the context information
because users want to have an optimal service in the
surrounding circumstance. If the suitable services for user
requests do not exist in primitive service databases (i.e.
service databases), it is necessary to compose primitive
services. A service composition is the construction of
complex services from basic services and the connection
of services implementing a logic that depends on the
application domain and on the control flow [1]. The
service composition enables users to utilize services in the
environment to solve complex queries [2].

1.1 Research Motivation

There have been studied on many service discovery
protocols such as JINI [3], UPnP [4], [5], [6], [7], and [8].

JINI [3] was developed to support the federation between
a user and resources by Sun Microsystems Corporation
and UPnP [4] was proposed by Microsoft Corporation
using existent IP and HTTP protocols. However, the
previous works focused on only the service discovery and
did not consider context information. Therefore, we need a
service provisioning mechanism that discovers and
composes services according to the context information.

In addition, existing service composition techniques [1,
9, 10, 11, 12] are only a discovery of primitive services
and do not consider the usage historical information for
services. In [1], a service composition module manages
service retrievals and composes stored primitive services
when a user requests an application query. For example,
USON [9, 10] searches STs (Service Template) at service
composition step based on a query and location
information and selects a candidate among the STs. The
detection of SE (Service Entity) requests to fix to the ST.
Service composition has a feature that services make a
group with correlation. If there is not a direct correlation
among services, however, we can discover a newly
composed service using the service history information.
Therefore, we need to provide a new service composition
method using service history rules.

1.2 Contributions

To solve these problems, we present a service composition
technique with data mining considering the context
information and the service usage history information. We
can summarize our results as follows. First, we design a
framework for context-aware service provisioning system,
called COSEP, which dynamically provides services
according to context information. Second, we present an
algorithm of service composition using an ontology engine
with data mining function, where it can discover primitive
services and compose new complex services considering
service historical information. Finally, we believe that our
results enhance the possibility for service provision and
thus provide users with newly composed optimal services.
The rest of this paper is organized as follows: Section 2
discusses related work and presents challenges. Section 3

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

111

describes the structure of context-aware service
provisioning middleware system. Section 4 presents our
ontology engine with data mining and Section 5 shows
simulation results. Section 6, we conclude briefly. From
this section, input the body of your manuscript according
to the constitution that you had. For detailed information
for authors, please refer to [1].

2. Related Work

This section reviews previous works for a framework in
ubiquitous computing environment and for service
composition techniques.

2.1 Frameworks

Jini[3] was developed by Sun Microsystems and
implemented using Java. All members of the network are
known as services. A service proxy object is registered
with a service registry, called a lookup service. Once the
lookup service of a suitable group has been located, the
service provider will upload its service proxy object. A
client service in search of a certain service type will
contact the lookup service to download the proxy object.
Another strong aspect of the Jini is independent from any
platform since it is based on Java and uses Java RMI for
communication. This makes Jini dependant on a
programming language Java as well as requires a java
virtual machine JVM which consumes a large part of the
device’s memory and resources. Furthermore, a detailed
standardization process is necessary if services are to be
represented in Java classes.

UPnP [4] is a middleware solution proposed by
Microsoft Corporation using existent IP and HTTP
protocols. It is designed to bring easy-to-use, flexible, and
standards-based connectivity to ad-hoc or unmanaged
networks whether in the home, in a small business, public
spaces, or attached to the Internet. SLP [5] is an enterprise
protocol to search public resource in a large network
generated by IETF. In addition, there have been proposed
service discovery protocols such as Bluetooth SDP [7],
Salutation [6], HAVi [13], etc. There have been studied on
several frameworks for provisioning services using the
context information, such as UbiCOSM [14], reggie [15],
and COPS-SD [16]. The UbiCOSM is a context-based
access control framework for service design and
deployment and the reggie is context-awareness service
discovery. In a corporate network with various levels of
users' authorization or in an operator network specifying
several classes of service level agreements, COPS-SD is a
protocol which can discover and use authorized services
depending on a user level.

2.2 Service Composition

Service composition refers to the technique of creating
complex services with the help of smaller, simpler and
easily executable services or component [12]. These
techniques can be categorized into two types: static service
composition and dynamic service composition. The static
service composition is an approach in which application
designers implement a new application manually by
designing a workflow or a state chart describing the
interaction pattern among components. On the other hand,
the dynamic service composition composes an application
autonomously when a user queries for an application.
UBIDEV [17] proposes a context centric management of
the environment. This allows applications to automatically
reconfigure themselves according to context changes and
represents a unified management model for resources,
services and context information at an application level as
a homogeneous coordination space. In this model, the
Coordination Manager at the Ubiquitous Access layer
decomposes complex queries coming from the Application
layer in terms of composing primitive services. The
Service Manager is responsible for instantiating and
monitoring services. It also analyzes the resource
classification to bind resources and services depending on
the application request. The Context Manger classifies the
context information into context types according to the
application ontology.

CB-SeC[1] was proposed to increase the functions of
service discovery and composition considering the
contextual information in order to satisfy user requests
regardless of position and resource in pervasive computing
environment. The system hierarchically consists of four
layers, such as Application layer, Service Provisioning
layer, Context Management layer, and Physical Entities
layer. The Service Provisioning layer is responsible for
carrying out the process of managing the discovery of
services to yield a composite service. Indeed when a client
queries an application service, it is necessary to compose a
complex service from primitive services. The composite
service that satisfies all the user preference is chosen and
the corresponding capsules are sent to the Service
Execution module. Both UBIDEV and CB-SeC provide a
set of basic services for context information, but they do
not consider service history information.

In USON [9, 10], a service is provided through the
combination of SEs (Service Entity). A SE is built by an
ST (Service Template) which acts as a meta-design for the
service. Service composition is achieved through the
actions of the USON engine as follows. First, the user’s
USON engine requests to discover STS for the USON
network. This request is based on information on a user
including what he wants, where he is located at, etc.
Second, the USON network handles STs and SEs

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

112

according to their advertising qualities. Third, after one or
more STs obtained, the USON engine selects a candidate
from among them and requests the USON network to
discover the SEs that are suitable for the candidates. Next,
we can successfully obtain SEs and the USON engine
invokes the methods of the SEs. Then the actions of SEs
provide the services for the user request. During these
steps, the information on the usage history of the STs and
SEs is stored in the USON network and this information is
used for service emergence.

In [2], a broker-based distributed service composition
protocol is proposed for pervasive environments. The
protocol enhances the flexibility of service discovery by
using GSD discovery protocol [18] and the efficiency of
service discovery by using a broadcast-based service
discovery mechanism. This distributed broker-based
composition architecture performs better than the
centralized solution in terms of composition efficiency,
broker arbitration efficiency and composition radius.

The semantics-based dynamic service composition
architecture [12, 19 and 20] assumes that a user requests a
service in an intuitive manner and dynamically composes
the requested service based on its semantics. The proposed
architecture consists of a semantics-aware component
model CoSMoS, a middleware CoRE, and a semantics-
based service composition mechanism SeGSeC. The
dynamic service composition has the potential to realize
flexible and adaptable applications by properly selecting
and combining components based on the user request and
context. For service composition, however, it is important
to discover primitive services simply as well as to
compose complex queries from the primitive services
considering the context information and the service usage
history for users.

3. A Framework for Service Provisioning
Middleware System

This section presents a service provisioning middleware
framework that can discover and compose services
considering the context information and service usage
pattern history for users. In ubiquitous environments, a
platform consists of several hardware and software
components to provide services effectively (Fig. 1). That
is, a platform can consist of service providers, service
consumers, and a service mediator (i.e. COSEP server)
and the peer-to-peer communication between service
provider and service consumer (Fig. 2).

In Fig. 2, the Service Provider registers available
services to a COSEP server and receives service requests
from the server. The Service Consumer sends an
application queries to the COSEP. After the Service
Providers and Service Consumer identify available

services from COSEP, the Service Consumer
communicates with Service Providers directly through the
peer-to-peer communication. The service mediator is a
middleware system that identifies service providers and
service consumers like a network server and shall be
divided into four layers (Fig. 1): An application layer, a
service provisioning layer, a context awareness layer, and
a physical layer.

Physical Layer

Service provisioning
Layer

Context Management
Layer

Application Layer

RFID
Sensors

Networks
Service
Devices

User
Profile

Context
Manager

Service
Discovery

Context
Databases

Service
Databases

Service
Composer

Service
Designer

Service Query
Analyzer

Transaction
Databases

Service
Agents

Ontology with
Data Mining

Application Programming Interfaces

Service
Evaluation

Service
Execution

Physical Layer

Service provisioning
Layer

Context Management
Layer

Application Layer

RFID
Sensors

Networks
Service
Devices

User
Profile

Context
Manager

Service
Discovery

Context
Databases

Service
Databases

Service
Composer

Service
Designer

Service Query
Analyzer

Transaction
Databases

Service
Agents

Ontology with
Data Mining

Application Programming Interfaces

Service
Evaluation

Service
Execution

Fig. 1. Components of service provisioning middleware system at
COSEP

Service
Consumer

Service
Provider

COSEP
Server

P1

P2P Communication

Re
gi
st
er

 s
er

vic
e

Provide a list of

service
Service request

Server

Pr
ov

id
e

in
fo

rm
at
io
n

of
 s
er

vic
e

re
qu

es
t

Name Server

Internet

Service
Consumer

Service
Provider

COSEP
Server

P1P1

P2P Communication

Re
gi
st
er

 s
er

vic
e

Provide a list of

service
Service request

Server

Pr
ov

id
e

in
fo

rm
at
io
n

of
 s
er

vic
e

re
qu

es
t

Name Server

Internet

 Fig. 2. Service provisioning platform

First, the physical layer represents a federation of
physical computing devices and sensors such as RFID
sensor, mobile and online networks, databases, service
devices (PC, notebook, printer, WiBro phone, DMB, etc.)
and user profiles. Second, the context management layer is
responsible for gathering, processing, representing context
information from hardware and software sensors at the
physical layer. It also classifies this information and stores
into the context databases, where the context information
needs to be structured according to the application
conceptual model. Thus, the context management layer
consists of a context manager and context databases. Third,
the service provisioning layer is responsible for analyzing,
discovering, composing, executing the requested services
and caching the serviced results. It also includes service

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

113

agents for automatically designing, registering, and
gathering the services, in addition to storing requested
queries into transactional databases for service usage
history and analyzing them. Fourth, the application layer
works as the application programming interfaces (API)
between service providers and service consumers and
embodies a generalization of application results.

“Present lecture
note today”

Query
Analyzer

Service
Evaluator

1) User requests a service

Search Basic
Services

Service
Discovery

Service
Executer6) executes a service

Data Mining
Engine

Service Composer

Ontology DB

Ontology
Engine

Add new
Composed Services

Found

Not found

2) discovers a service

3) If does not exist,
compose services.

3-1) If a service not exists in
basic service databases

5) evaluate selected
services

Composed
services

3-2) generates a composed
services

Service
Databases

Transaction
Databases

Fig. 3. A process of handling a query for the service provisioning layer

Fig. 3 shows a process of handling a query for the
service provisioning layer at COSEP. In Fig. 3, when a
user requests a service query, the Query Analyzer parses
and stores it into the Transactional Databases as the
service historical information. The Service Discovery
receives the parsing query from the Query Analyzer and
discovers available resource types for the user request
from the Service Databases. If the available services exist
as basic components on the Service Databases, they are
passed into the Service Evaluation; otherwise, the Service
Composer builds a new complex service based on context
information and registers it into the Transactional
Databases as well. Upon composing a complicate service,
we use the context information such as location, time,
network, databases, devices, and user’s preference. Upon
building a new service, the Service Composer uses an
Ontology Engine with data mining function. After
discovering the services, the Service Evaluation examines
whether the service semantics is compatible with the user
request and it is an optimal service or not. Then, the
evaluated services are executed immediately.

4. Service Composition Using Ontology
Engine with Data Mining

This section presents a service composition technique for
context-aware service provisioning middleware system.
The Service Composer builds new services based on
context information for users and registers them into the
Transactional Databases. The Service Composer also
consists of an ontology engine, a data mining engine and

ontology databases. The Ontology Engine dynamically
composes complex services by using predefined rules in
ontology. For transactions, the Data Mining Engine
describes the discovered usage patterns for services and
store the usage association rules into the Ontology
Databases. For the detailed information on the Ontology
Engine, we describe below.

4.1 The Ontology Engine

The Ontology Engine composes new complex services by
using predefined rules in ontology. For example, Fig. 4
shows an example of Ontology Engine at the context-
aware service provisioning middleware system.

…

…

…

…

…

Search location
of print

Printer 10 printingAdm×Room A -1×

Search location
of print

Printer 2 printingAdmUserARoom A -2×

Computer Power
On

Search location
of print

Service 2

Ramp Turn On×UserBRoom A -3×

Printer 1 printing××Room A -1×

Service 1UserLevelUserIDLocationTime

…

…

…

…

…

…

Search location
of print

Printer 10 printingAdm×Room A -1×

Search location
of print

Printer 2 printingAdmUserARoom A -2×

Computer Power
On

Search location
of print

Service 2

Ramp Turn On×UserBRoom A -3×

Printer 1 printing××Room A -1×

Service 1UserLevelUserIDLocationTime

…

Fig. 4. Example of service composition using an ontology engine at
COSEP

For a user, available services depend on his or her
location, identifier, level, and etc. If with no level, a man
is located at a room A-1 in Fig. 4, then he can use Printer
1. On the other hand, with an administration level a man
can use “Printer 10.” To explain a service composition,
assume that a service consumer A is located at room A-1
and has an administration level. When the service
consumer requests a printing service, COSEP identifies
user’s context information and discover an optimal service
like “Printer 10 printing and search location of printer in
Fig. 4.” After that, a user A can use “Printer 10.” Like this,
the Ontology Engine only uses registered services and
thus we need a Data Mining Engine for the sake of
composing a new service at COSEP.

When a consumer requests a print service, a service
composition should be processed as an event driven
diagram of service provisioning protocol, as shown in Fig.
5. When a service consumer requests a query, COSEP
receives context information from the Context Manager.
The Service Discovery at COSEP discovers available
resource types from the Service Databases. If the Service
Discovery cannot find it in Service Databases, the Service
Composer composes new complex services by the
Ontology Engine and Data Mining Engine, and registers it
to the Ontology Databases. Then the query will be
evaluated and executed immediately.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

114

Service

Consumer

Service
Discovery

Ontology
Engine

serviceQuery

sendContext information

Service Evaluation & Execution

Service Evaluation
& Execution

COSEP

Context
Manger

Service
Databases

searchService

foundService

notFoundService

searchService

composedService

Service Evaluation & Execution

requestContextinformation

Fig. 5. An event diagram of service provisioning for a service request

4.2 The Ontology Engine with Data Mining

Data Mining refers to extracting or “mining” knowledge
from large amounts of data [21, 23]. Data mining is also
named “Knowledge mining from data.” Data mining
technique is used to describe patterns discovered through
mining. For our ubiquitous computing environments,
when a service consumer requests a query to COSEP, the
query is stored into the Transaction Databases as service
usage historical data. The Data Mining Engine discovers
an association rule from the Transaction Databases and
registers it at the Ontology Engine as a new complex
service. When a service consumer comes back home, for
example, he or she turns on lamps and watches TV
everyday. These are stored into the Transaction Databases
as historical data. Then, the Data Mining Engine
periodically extracts some knowledge from the
Transaction Databases. Consequently, two services,
turning on lamps and then watching TV, will be composed
as a new service for the service consumer and the new
service is registered in the Ontology Engine. The Ontology
Engine with data mining provides primitive services as
well as complex services through service composition
against the context information. Fig. 6 shows an algorithm
of service composition using Apriori algorithm for data
mining.

In Fig. 6, there are two input parameters: one is the
Transaction Databases (TDB) that stores all the service
queries; another is a Minimum Support Count,
MIN_SUPPORT_COUNT. The support count is the
number of transactions that contain the service queries.
The number of transactions required to satisfy minimum
support is referred to as the minimum support count. The
output is a new composed service, named
ComposedServices. At step 2, the algorithm begins to find
service composition rules for each service query on
Transaction Databases. At steps 3 to 4, the algorithm

discovers new composed services using the apriori_gen(),
Apriori algorithm, and then determines whether the
composed service exist in the Ontology Databases or not.
At step 5, if new, then it is added to the Ontology
Databases. In this step, the Ontology Engine should be
rebuilt by adding new composition rules. For each query
in the Transaction Databases, the above processes will
continue.

Procedure Service Composition
Input: Transactional Databases (TDB); MIN_SUPPORT_COUNT
Output: ComposedServices
1 initialize ComposedServices;
2 For each transaction TDBt∈
3 ComposedServices = apriori_gen(t, MIN_SUPPORT_COUNT);
 // build a composed service using Apriori Algorithm
4 If ComposedServices is not found in OntologyDatabases then
 // determine if they are existing composition services
5 add ComposedServices to OntologyDatabases;
6 End if
7 End for

Fig. 6. Service composition using an Apriori algorithm

For example, assume that service consumers A and B
use different services at home in the evening. When a
service consumer comes back home, a userA turns on
lamps and watches TV everyday and a userB turns on
lamps and listens to music. In these cases, the Data Mining
Engine analyzes the service usage patterns for each user.
For each user, new composed services are added to the
Ontology Engine again, as shown in Fig. 7. Consequently,
the Ontology Engine provides dynamic service
composition for user queries in real-time, and the Data
Mining Engine builds new complex services.

…TV Turn OnRamp Turn On×UserARoom Bpm
7:00

…Computer Power
On

Ramp Turn On×UserBRoom A -3×

…

…

…

…

…

Search location
of print

Print10 printingAdm×Room A -1×

Search location
of print

Print2 printingAdmUserARoom A -2×

Radio Turn On

Search location
of print

Service 2

Ramp Turn On×UserBRoom Bpm
7:00

Print1 printing××Room A -1×

Service 1UserLevelUserIDLocationTime

…TV Turn OnRamp Turn On×UserARoom Bpm
7:00

…Computer Power
On

Ramp Turn On×UserBRoom A -3×

…

…

…

…

…

Search location
of print

Print10 printingAdm×Room A -1×

Search location
of print

Print2 printingAdmUserARoom A -2×

Radio Turn On

Search location
of print

Service 2

Ramp Turn On×UserBRoom Bpm
7:00

Print1 printing××Room A -1×

Service 1UserLevelUserIDLocationTime

…

Fig. 7. An additional service composition through data mining

5. Experiments

In this section, we describe simulation environments,
experiment the performance of ontology engine with data

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

115

mining and analyze the performance of enhanced service
composition through simulation results. In our
experiments, we used Intel Pentium 4 2.8 GHz with 1
gigabytes RAM, 160 gigabytes HDD and Window XP.
We have implemented a Service Composition using
Eclipse editor in Java. We implement an Apriori algorithm
that searches suitable association rules using support count
and confidence.

5.1 Simulation Data

For our experiments, we used 30 primitive services that
have 101 through 130 identifiers in Service Databases.
Initially, the Ontology Databases stores the static primitive
services. The CreateOntology class randomly selects the
primitive services of from two to five and then composes
them. In our simulation, there are 100 service
compositions in Ontology Databases. Table 1 illustrates
some possible service compositions for Ontology
Databases. Transaction databases stores the service usage
history information at a timestamp. For transaction
databases, each transaction is built by the primitive
services of two through five from the PrimitiveService
Databases. For our transaction data, the primitive services
101 through 110 occurs very often, the primitive services
111 through 120 occurs medium, and the primitive
services 121 through 130 occurs at rare intervals. For the
above transactional data, we give different frequencies for
primitive services, because it can increase the probability
of service composition by data mining later. For our
simulation, the number of transaction data is limited to
10,000 and its timestamp is classified by five groups.
Table 2 illustrates some transaction data.

Table 1. Service composition in Ontology databases

Ontology ID PrimitiveServices

1 106 113 127
2 117 119 129
3 108 112 114 115
4 113 120 128 129
5 101 129
6 101 121
7 116 121
8 129 130
9 103 105 113 117

Table 2. Transaction data at timestamp 1
TransactionID PrimitiveServices Timestamps

1 107 109 117 1
2 101 1
3 105 109 1
4 107 110 116 120 125 1
5 106 107 120 1
6 101 106 115 1
7 102 105 120 1

8 109 117 118 1
9 101 105 1

5.2 Simulation Results

For our experiments, we measure the number of service
composition by using the Ontology Engine with data
mining. First, we measure the number of service
compositions at single time. During the time, we examine
the number of services composed by the Ontology Engine
and the Data Mining Engine, respectively. Second, we
measure the number of service compositions, depending
on the number of transaction over time. After storing each
transaction, the Data Mining Engine builds new service
composition by analyzing the service history data.

(1) The number of services composed at single time

For our experiments, assume that we fix the number of
transactions to 10,000. We only extract application
services composed by the Data Mining Engine except the
primitive services in Ontology databases. Fig. 8 illustrates
the number of service composition generated by different
engines such as the Ontology Engine, the Data Mining
Engine, and the Ontology Engine with Data Mining. There
are 100 service compositions by the Ontology Engine.
This is the same as the number of predefined service
compositions. The number of service composition
generated by the Data Mining Engine is 210 and the total
services composed by the Ontology Engine with Data
Mining are 310. Notice that our approach (i.e. the
Ontology Engine with Data Mining) enhances the service
compositions about two times. Consequently, we believe
that combining the Ontology Engine with the Data Mining
Engine results in better service provision for users.

The number of services composed at single time

0

50

100

150

200

250

300

350

Ontology Data Mining Ontology with Data

Mining

c
o
m

p
o
s
e
d
 s

e
rv

ic
e
s
 n

u
m

b
e
r

Fig. 8. The number of composed services at single time

(2) The number of service composition over time
In this simulation, we analyze transaction data over time.

The number of transaction increase 2000 at each
timestamp. Notice that service compositions using Data
mining method increase every timestamp in Fig. 9. Like

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

116

the above experiment (1), we only extract the service
composition built by the Data Mining Engine except the
primitive services in the Ontology Databases. The more
the number of transaction exists, the more the service
compositions generate. For our experiment, notice that our
approach enhances the ratio of service compositions two
times.

Service compostition number in length of time

0

50

100

150

200

250

300

350

Ts
ta

m
p 1

Ts
ta

m
p 2

Ts
ta

m
p 3

Ts
ta

m
p 4

Ts
ta

m
p 5

c
o
m

p
o
s
e
d
 s

e
rv

ic
e
 n

u
m

b
e
r

Ontology

Data Mining

Ontology with
Data Mining

Fig. 9 The number of service composition over time

6. Conclusions

When users want to have services correctly in their
surrounding circumstance in ubiquitous computing
environment, it is very important to discover and compose
primitive services according to the context information.
However, previous works focused on only service
discovery for user queries and lacked the consideration of
context information. They also did not use the service
history information on service composition. In this paper,
we present a framework for a service provisioning
middleware system that can discover and provide dynamic
services against the context information. We also present a
service composition method using the service history
information and an Ontology Engine with data mining
function. The Ontology Engine uses registered service
compositions and provide the dynamic service
composition for user queries. The Data Mining Engine
also builds new composed services using the service
history information. Thus, we combine the Ontology
Engine with Data Mining Engine. For above two
experiments, we make sure that our approach enhances the
ratio of service compositions. In the future, we will
integrate QoS-aware service composition with the current
service provisioning framework.

Acknowledgments.

This work was supported by the research grant of the
Chungbuk National University in 2006.

References
[1] S.raya K. Mostefaoui and Beat Hirsbrunner: Context Aware

Service Provisioning. Proceedings of The IEEE/ACS
International Conference on Pervasive Services (2004)71–
80

[2] Dipanjan Chakraborty, Yelena Yesha and Anupam Joshi: A
Distributed Service Composition Protocol for Pervasive
Environments. Wireless Communication and Networking
Conference, Vol. 4. IEEE (2004) 2575–2580

[3] SUN Microsystems.: Jini: Architectural Overview.
Technical White Paper (1999)

[4] Microsoft Corporation: Understanding Universal Plug and
Play: a White Paper. Microsoft (2000)

[5] Guttman, E., Perkins, C., Veizades, J. and Day M.: Service
Location Protocol. Version 2 RFC2608 (1999)

[6] Salutation Consortium: Salutation Architecture
Specification Version 2.1. Salutation (1999)

[7] Bluetooth Specification Part E: Service Discovery Protocol.
http://www.bluetooth.com (1999)

[8] V. Sundramoorthy, Hans Scholten, Pierre Jansen and Piter
Hartel.: Service Discovery at Home. Proceedings of the
2003 Joint Conference of the Fourth International
Conference on Information, Communications and Signal
Processing and the Fourth Pacific Rim Conference on
Multimedia, Volume 3. (2003) 1929–1933

[9] Michiharu Takemoto, Tetsuya Oh-ishi, Tetsuya Iwata, Yoji
Yamato and Yohei Tanaka.: A service-Composition and
Service-Emergence Framework for Ubiquitous-Computing
Environments. Proceedings of the 2004 International
Symposium on Applications and the Internet Workshops
(2004) 313–318

[10] Michiharu Takemoto, Hiiroshi Sunaga, Kenichiro Tanaka,
Hiroaki Matsumura and Eiji Shinohara: The Ubiquitous
Service-Oriented Network(USON): An Approach for a
Ubiquitous World based on P2P Technology. Proceeding of
the second International Conference on Peer-to-Peer
Computing IEEE (2002)

[11] Qun Ni: Service Composition in Ontology enabled Service
Oriented Architecture for Pervasive Computing. Workshop
on Ubiquitous Computing and e-Research (2005)

[12] Keita Fujii and Tatsuya Suda: Dynamic Service
Composition Using Semantic Information (2004)

[13] HAVi Consortium: HAVi Specification V1.0. (2000)
[14] Antonio Corradi, Rebecca Montanari and Daniela Tibaldi:

Context-Based Access Control for Ubiquitous Service
provisioning. Computer Software and Applications
Conference, vol. 1 (2004) 444–451

[15] Choonhwa Lee and Sumi Helal: Context Attributes: An
Approach to Enable Context-Awareness for Service
Discovery. Symposium on Applications and the Internet
(2003) 22–30

[16] Samir Chamri-Doudane and Nazim Agoulmine:
Hierarchical Policy Based Management Architecture to
Support the Deployment and the Discovery of Services in
Ubiquitous Networks. The 29th Annual IEEE International
Conference on Local Computer Networks (2004) 126–133

[17] S. Maffioletti, S. kouadri Mostefaoui and B. Hirsbrunner.:
Automatic Resource and Service Management for
Ubiquitous Computing Environments. Proceedings of the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

117

Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops (2004) 219–223

[18] Dipanjan Chakraborty, Anupam Joshi, YElena Yesha and
Tim Finin: GSD: A novel group-based service Discovery
Protocol for MANETS. In IEEE conference on Mobile and
Wireless Communication Networks, Stockholm, Sweden
(2002)

[19] Keita Fujii and Tatsuya Suda: Component Service Model
with Semantics (CoSMoS): A New Component Model for
Dynamic Service Composition. Proceedings of the 2004
International Symposium on Applications and the Onternet
Workshops (SAINTW’04) (2004)

[20] Keita Fujii and Tatsuya Suda: Semantic-Based Dynamic
Service Composition. IEEE Journal on selected areas in
Communications, Vol. 23, no.12 (2005) 2361–2372

[21] Nam Shic Jang, Seong Wan Hong, Dai Ho Jang: Data
Mining. Dachung Midia (1999) 19–47

[22] Jiawei Han and Micheline Kamber: Data Mining: Concepts
and Techniques. Morgan Kaufmann (2001)

[23] Nikola Milanovic and Miroslaw Malek: Current Solutions
for Web Service Composition. IEEE Internet Computing,
Vol. 8, Issue 6. (2004) 51–59

[24] Sun Young Lee, Byong Cheol Shin, Jong Yun Lee, Jeong
Suk Bae, Gyoung Cheol Shin: A Framework for Service
Provisioning in Ubiquitous Computing Environment.
Proceedings of the 32ed KISS Fall Conference, Vol. 32,
No.2 (I). The Korea Information Science Society (2005)
604–606

Sun Young Lee received the B.S. and
M.S. degrees in Electrical Engineering
from Chungbuk National University in
2001 and 2005, respectively. She is now a
candidate for the PhD in the department of
Computer Education at Chungbuk National
University. Her research interest includes
databases, ubiquitous computing and
bioinformatics.

Jong-Yun Lee received the BS and MS
degrees in Computer Engineering from
Chungbuk National University in 1985 and
1987, respectively and the PhD degree in
Computer Science from Chungbuk National
University, South Korea in 1999. He
worked as a research/project leader in
Software Research and Development

Institute of Hyundai Electronics Industrial Company Ltd. and
Hyundai Information Technologies Company Ltd. in South
Korea from 1990 to 1996. Also he worked with Bit Computer
Cooperation in 1989. He had worked for the department of
Information and Communication Engineering at Samcheok
National University as an assistant professor from March 1999 to
February 2003. After that, he is an associate professor in the
department of Computer Education of Chungbuk National
University in South Korea. His current research interests include
temporal databases, spatio-temporal databases, sensor data, u-
learning, and especially query processing and optimization

technologies in databases. He is a member of the IEEE, Korea
Information Science Society, Multimedia Society, and served an
international journal INFORMATION as an editorial board
member in 2004 and Korea Information Processing Society as a
journal editorial member since 2003.

Byung Il Lee received the B.S. deg
ree in Computer Science from Hanbat Nati
onal University in 1996 and the M.S. degre
e in Computer Engineering from Chungbuk
National University in 1998. He worked in
Computer laboratory of Korea National Un
iversity of Education from 2001 to 2004. H
e is now a candidate for the PhD in the dep
artment of Computer Engineering at Chung

buk National University. His research interest includes data mini
ng, bioinformatics and multi sequence alignment.

