
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

163

Manuscript received September 5, 2006.
Manuscript revised September 25 , 2006.

Design of Software Security Verification with Formal
Method Tools

Seung-Ju Jang†, Jungwoo Ryoo†† and ChangYeol Lee†

†University of Dongeui, ††University of Penn State

Summary
Formal methods ensure the stability and reliability of soft-ware

systems by using mathematical principles and proving
conformance to a given set of requirements. The stable and
reliable operation of software is especially important for system
applications dealing with security. Although very effective in
identifying a non-conformance in security requirements, formal
methods typically involve a steep learning curve before full
adoption. Automated tools can be used to alleviate difficulties
associated with formal methods. An observation is made that the
existing attempts to apply formal methods to check conformance
to security requirements, have not efficiently taken advantage of
such tools. Therefore, this paper proposes a novel methodology
to leverage well-known formal method tools to verify how
closely a security software product satisfies its requirements.
More specifically, this paper formally verifies an Access Control
System (ACS) using RoZ and Z/EVES, two of the many
verification tools available for ensuring the integrity of software
applications. For this, a UML model of ACS with Z annotations
is first created. Next, the model is transformed into a Z
specification which is, in turn, verified by the Z/EVES prover.
Using this process, one can also find security vulnerabilities
created during a development process. Index Terms—formal
methods, formal specification, formal verification, software
security verification, RoZ, Z/EVES
Key words:
Software Security, Verification, Formal Method Tools,
RoZ.

Introduction

Formal methods can provide mathematical
specifications for security software. Their inherent
preciseness (1) re-moves ambiguity (2) allows one to
examine inconsistencies, and (3) guarantees the stability of
a system to be implemented. A set of tools can improve
the efficiency of formal specifications efforts by
automating certain aspects of them such as analyzing the
semantics. When not followed by a verification process, a
specification alone is insufficient to ensure the run-time
stability of a software system. Tools supporting formal
verification include SPIN [1], SLAM [2], Symbolic
Method Verifier (SMV) [3], Z/EVES [4], etc.

This paper proposes a novel methodology that verifies
the stability of security software. To offer a concrete
example, An Access Control System (ACS) is used as a

case study. We specify our ACS model in Z and use an
automatic translation tool that generates Z schema
skeletons corresponding to a UML class diagram created
by Rational Rose. The transformation process is not
entirely automated since one still needs to annotate a class
diagram to fill in some Z-specific details. Once a Z
specification is produced, a theorem prover for Z, called
Z/EVES is used to formally analyze the semantics of our
ACS example and verify its validity. Through this exercise,
we demonstrate how one can use our formal specification
and verification methodology to develop a vulnerability-
free security software system.

The organization of this paper is as follows. Section II
discusses related research on formal methods and tools
supporting software verification. Section III explains our
methodology. Finally, section IV rounds out this paper
with some concluding remarks.

2. RELATED RESEARCH

Formal methods are based on mathematics and logic,

and used for specifying and verifying both hardware and
software systems. One can minimize the ambiguity and
uncertainty inherent in natural language specifications by
describing systems and their salient features using
mathematical notations and logical expressions. Once
specified formally, a design can be mathematically
verified against user requirements. After this verification
process, an implementation of a complex system becomes
much more credible.

 Formal methods are further categorized into formal
specification and formal verification. Formal specification
describes requirements for a system, its operational
environment, and design using mathematical logic.
Requirements and design specifications are two different
forms of formal specification. As its name suggests, a
requirements specification defines what a system is
expected to do while a design specification rigorously
explains how a system needs to be built. Formal
verification proves completeness or the absence of self-
contradictions, and checks whether a design specification
satisfies all the requirements by using proof methods
available in mathematics and logic.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

164

There exist many software verification tools. For
example, SPIN is an open-source application that can be
used for the formal verification of distributed systems and
communication protocols for their correctness and
reliability [5], [1]. The on the fly feature of SPIN avoids
the use of a pre-built verification plan and improves
memory performance. SPIN models the behavior of a
given system using automata in a language called
PROMELA (PROtocol MEta LAnguage). In PROMELA,
a system is represented by parallel processes
communicating and synchronizing with one another
through established channels. The creators of SPIN
developed FeaVer to improve precision and automate
source code verification. FeaVer was originally used to
check the correctness of telephone call processing code
“against a database of formally specified logical
correctness requirements” [6].

SLAM is an on-going, software verification tool project
run by Microsoft. Targeted mainly for C programs, SLAM
does not require any human intervention in extracting
models. Instead, it automatically extracts a Boolean
program abstracted from a C code implementation and
verifies it [2].

SMV verifies a Computational Tree Logic (CTL)
specification of software system properties. CTL is a
temporal logic based on finite state machines. SMV can
specify a system as a synchronous Mealy machine or an
asynchronous network. Data types supported by SMV are
finite (for instance, Boolean, scalar, fixed arrays, etc) since
the tool is designed for finite state machine models. Static
and structured data types can also be handled by SMV [3].

Statechart is a graphical language for specifying
reactive systems. It introduces, to a state transition
diagram, the concepts of hierarchy, concurrency, and
communication. A hierarchy in Statechart allows states to
have their sub-states, similarly with the relationship
between trees and their sub-trees. Concurrency provides
states with parallelism. Two or more parallel components
can constitute a state. Communica-tion reflects multiple
system components exchanging data via broadcasting [7].

Specification and Description Language (SDL) is
another language targeted for specifying distributed and
reactive sys-tems (as in telecommunications systems).
SDL is standardized by International Telecommunications
Union (ITU) as Recommendation Z.100. SDL is a multi-
purpose language capable of graphical
representation/editing, syntactic/semantic error detection,
C source code generation, and various types of simulation.
SDL can accurately describe functional protocol behaviors
by offering structural concepts, design optimization,
flexibility of implementation, and techniques to increase
mutual understanding between designers. In addition, it
features a system analysis ability during a design phase [8].

Security Protocol Engineering and Analysis Resource
(SPEAR) is a security protocol development tool. The tool
comes with a Graphical User Interface (GUI) that
incorporates Message Sequence Charts (MSCs). Once a
protocol design is complete, SPEAR can automatically
generate Java source code [9].

The Vienna Development Method (VDM) is a set of
formal software specification and development techniques.
It is composed of (1) a specification language referred to
as VDM-SL, (2) refinement rules that create traceability
among requirements, design, and source code, and (3) a
proof theory by which the correctness of the design and
implementation can be verified. The IFAD VDM-SL
Toolbox is a VDM-based development environment
supporting extensive software verification [10].

Although providingmechanical inspections and user-
friendly presentation of proofs, Protocol Verification
System (PVS) is not as mature as other well-known
verification tools. PVS focuses on creating human
readable specifications of domainspecific and mission-
critical systems. PVS consists of a specification language
and a theorem prover [11], [12].

3. METHODOLOGY FOR SECURITY
SOFTWARE VERIFICATION

In this section, we discuss our formal method-based
methodology to specify and verify security software.
Figure 1 shows the overall process and artifacts involved
in using our methodology.

Note that one can take advantage of automated code
generation tools such as SPEAR and VDL-SL Toolbox
(discussed in section II) to develop security software. If
this is the case, a formal design specification for a desired
application needs to be fed into the tool before the
automatic code generation.

As depicted in figure 1, it is also a probable scenario for
one to begin the verification process with a legacy
software application. Out of the existing code, a formal
design specification can be extracted. Here the use of a
formal method is necessary if a reverse engineering tool
helps the code extraction effort.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

165

Fig. 1. Security software specification and verification based on the
proposed

The security of the code is then verified by a formal
verification tool that analyzes the correctness of the
derived design specification.

If flaws are found during the verification step, changes
are made in the formal specification, and the
corresponding, revised code is either automatically (when
using a code generation tool) or manually generated,
which will be scrutinized again by the verification tool.
This cycle continues until there is no more error. As a
result, developers can be sure that they have reliable
software satisfying all the security requirements at the end
of this iterative process.

In the following sub-sections, we demonstrate, by
example, how to conduct the iterative verification steps
explained so far in the context of security software (more
specifically, ACS).We assume the existence of legacy
code in our example.

A. Creating a UML model from the existing source code

We first use the reverse engineering feature of Rational
Rose C++ (version 4.0) to extract a UML model. Rational
Rose C++ has a stand-alone C++ code analyzer program.
The automatically generated models represent both logical
and physical aspects of the source code. Figure 2
summarizes the step-by-step process for reverse
engineering in Rational Rose C++.

B. Transforming a UML model into a Z specification

Once the UML model is available, one can transform it
into a Z specification. Z is a formal specification language
based on the set theory [13]. Rational Rose can do the

conversion with the aid of a RoZ script. RoZ (pronounced
as “Rosettee”) can be integrated into the Rational Rose
environment, “translate the structure of UML class
diagrams into Z specification skeletons, and fill the Z
specification with several annotations of the class
diagram” [14]. Shown below (figure 3) is a sample UML
model
(a portion of an ACS design), which we will use to explain
how this transformation occurs.

Fig. 2. Extracting a UML model from source code using the C++ analyzer

Fig. 3. A partial UML model for an ACS

In the model, each person can be related to only one

unique group. Additional restrictions for the relationship
(Person-GroupRel) can be enforced to improve
security,
which include:

1. Every person has at least one telephone number.
2. A card number is a unique identifier for a person.
3. For a given group, everyone in it has the same prefix.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

166

Using the above restrictions, each class in the UML
model(figure 3) must be annotated with Z notations before
the model can be turned into a Z specification.

For example, the Person class needs to be annotated

with the following constraint specified in Z.

∀p1�p2 : ��rso�|p1 6= p2@ (1)
p1�car� �umb�r 6= p2�car� �umb�r

Equation (1) states that people with two different card

num-bers cannot be the same person. That is, two people
can never have the same card number. Therefore, this
constraint is the Z equivalence to the rule 2: a card number
is a unique identifier for a person.

While the constraint in equation (1) is applied to a class
itself, the attributes of the class are sometimes subject to
one or more Z annotations. For instance, to enforce the
rule 1 (every person has at least one telephone number),
the telephone attribute of the Person class needs to
be annotated with equation (2) shown below.

\begin{zed}
[NAME,TEL]\also
DIGIT8 == 0 \upto 99999999
\end{zed}

\begin{zed}
[GROUPCODE,GROUPNAME]
\end{zed}

\begin{zed}
[PREFIX]
\end{zed}

\begin{axdef}
prefix : TEL \surj PREFIX
\end{axdef}

Fig. 4. Type file definitions

t�l�pho�� 6= □ (2)
For the third rule, the relevant Z constraint is expressed

by equation (4).

∀p1�p2 : ��rso�| (3)

�roupOf��rso�(p1) = �roupOf��rso�(p2)@

∀t1 : p1�t�l�pho��@∀t2 : p2�t�l�pho��@

 pr�f��(t1) = pr�f��(t2)

Although RoZ can automatically generate a Z
specification, the resulting specification is not perfect.
This implies that it is often necessary to add additional
constraints, types, and properties to the machine-generated
version.

For example, data types used in the Z annotations
(NAME, TEL, DIGIT8, GROUPCODE, and GROUPNAME)
must be de-fined separately in the form of a Z type file
(figure 4).

To generate a correct and complete Z specification, the
following conditions are to be satisfied:

• each attribute of a class shall have a type associated

with it,
• each operation shall have at least one salient feature,

and
• rules for relations shall be specified.

C. Verification of the Z specification

The Z specification of the source code enables one to
verify whether the source code fulfills all the security
requirements. The Z/EVES [4] tool can be used for this
purpose since it can check the consistency of the
specification as well as prove theorems mapped to a set of
original requirements.

Although most of these theorems require manual
creation, RoZ can help automate the generation of some
rudimentary theorems related to the base (or basic)
operations of a class, which include attribute modifications
and the construction/destruct-tion of objects. RoZ can
produce the base operations without any human
intervention.

In order to utilize this feature of RoZ, the Z type
definitions discussed in section B should address guard
conditions that can be tied to relevant (security)
requirements. For instance, based on one of the guard
conditions, RoZ can develop a theorem representing a
precondition for an operation called PERSONChangeTel
as shown below.

\begin{theorem}{PERSONChangeTel_Pre}
\forall PERSON
; newtel? : \finset TEL
| newtel? \neq \emptyset
@ \pre PERSONChangeTel

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

167

\end{theorem}

The theorem states that the input for the operation
(namely, newtel) belongs to a finite set whose type is
TEL, and the input is not optional. Z/EVES takes this
theorem and proves it against the Z specification prepared
earlier.

IV. CONCLUSION

Many tools are available for software verification. Due
to their complexity, a majority of these tools involve a
steep learning curve. This paper picks Z/EVES as its
formal verification tool of choice. The main objective here
is verifying whether an implementation conforms to its
original requirements. For this, the source code is reverse-
engineered into a UML model which is, in turn,
transformed into a Z specification. Using a set of theorem
proving facilities in Z/EVES, one can compare the
extracted Z specification and the formal requirements
specification produced when the software was first
developed. One of the main contribution of this paper is
showing the feasibility of utilizing software verification
tools to prove the reliability and dependability of software.

References
[1] G. J. Holzmann, The SPIN Model Checker-Primer and

Reference Manual Addison-Wesley Professional, Sept. 2003.
[2] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in Proc.

the 13th Conference on Computer Aided Verification
(CAV’01), July 18–22, 2001. [Online]. Available:
http://research.microsoft.com/slam/

[3] Specification and Verification Center, “The SMV system,”
2006.Available:http://www.cs.cmu.edu/_modelcheck/smv.ht
ml.

[4] M. Saaltink, “The Z/EVES system,” in Proc. the 10th
International Conference of Z Users (ZUM ’97). Springer-
Verlag, Apr. 3–4, 1997, pp. 72–85. [Online]. Available:
http://citeseer.ist.psu.edu/saaltink97zeves.html

[5] G. J. Holzmann, “The model checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23, no. 5, May
1997.

[6] Lucent Technologies, “The FeaVer feature verification
system,” 2006. [Online]. Available: http://cm.bell-
labs.com/cm/cs/what/feaver/

[7] D. Harel and A. Naamad, “The STATEMATE semantics of
statecharts,” ACM Transactions on Software Engineering and
Methodology, vol. 5, no. 4, pp. 293 – 333, Oct. 1996.

[8] SDL Forum Society, “What is SDL?” 2006. [Online].
Available: http://www.sdl-forum.org/SDL/index.htm

[9] J. P. Bekmann, P. de Goede, and A. C. M. Hutchison,
“SPEAR: a security protocol engineering and analysis
resource,” in Proc. DIMACS Workshop on Design and
Formal Verification of Security Protocols, Sept. 3–5, 1997.

[10] J. Fitzgerald, “Information on VDM and VDM++,” Jan.
2005. [Online]. Available: http://www.csr.ncl.ac.uk/vdm/

[11] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A
tutorial introduction to PVS,” in Proc. Workshop on
Industrial-Strength Formal Speci-fication Techniques, Apr.
5–8, 1995.

[12] S. Owre, N. Shankar, and J. M. Rushby, User Guide for the
PVS Specification and Verification System. CSL, 1995.
[Online]. Available:
http://citeseer.ist.psu.edu/owre93user.html

[13] A. Diller, Z: an Introduction to Formal Methods, 2nd ed.
John Wiley & Sons, 1994.

[14] Y. Ledru, “Using Jaza to animate RoZ specifications
of UML class diagrams,” in Proc. the 16th
International Conference of Z Users (ZUM ’06).
IEEE, Apr. 2006

Seung-Ju, Jang received a B.Sc. degree in
Computer Science and Statistics, and M.Sc.
degree, and his Ph.D. in Computer
Engineering, all from Busan National
University, in 1985, 1991, and 1996,
respectively. He is a member of IEEE and
ACM. He has been an associate Professor
in the Department of Computer
Engineering at Dongeui University since
1996. He was a member of

ETRI(Electronic and Telecommunication Research Institute) in
Daejon, Korea, from 1987 to 1996, and developed the National
Administration Multiprocessor Minicomputer during those years.
His current research interests include fault-tolerant computing
systems, distributed systems in the UNIX Operating Systems,
multimedia operating systems, security system, and parallel
algorithms.

Jungwoo Ryoo is an Assistant Professor
in Information Sciences and Technology
at Penn State Altoona, Pennsylvania. His
main research interests include software
engineering, computer networking and
telecommunications, and information
assurance. More specifically, he is
interested in software architecture,
Architecture Description Languages

(ADL), object-oriented software development, formal methods,
requirements engineering, network management, internet
security, and e-government. He has a significant industry
experience in architecting and implementing software for large-
scale network management systems. He received his Ph.D. in
Computer Science from the University of Kansas in 2005.

ChangYeol, Lee received a B.Sc. degree
and M.Sc. degree from Korea University,
and his Ph.D. from University Paris VII
in 1985, 1991, and 1997, respectively.
He has been an assistant professor in the
department of computer engineering at
Dongeui University since 2000. He was a
member of ETRI(Electronic and
Telecommunication Research Institute)
in Korea, from 1987 to 1994, and

developed AI applications during those years. His current
research interests include the digital rights management.

