
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

187

Multiplication and Error Free Implementation of
H.264 like 4x4 DCT/Quan_IQuan/IDCT using

Algebraic Integer Encoding

Mohammad Norouzi

Mechatronics Research Lab
(MRL), Qazvin, Iran

Karim Mohammadi

Iran University of Science &
Tech (IUST), Tehran, Iran

Mohammad Mahdy Azadfar

Iran Telecom Research
Center(ITRC), Tehran, Iran

Summary

This paper presents a novel error-free (infinite-precision)
algorithm for the fast implementation of H.264 like 4×4
DCT/Quan_IQuan/IDCT based on algebraic integer-encoding
scheme.
This encoding technique eliminates the requirement to
approximate the transform matrix elements by obtaining their
exact representation. The proposed algorithm has regular
structure and simulation results shows reducing computing
complexity with enhanced quality simultaneously. Furthermore
it is multiplication free and suitable for the high speed
implementation with a fully pipelined systolic architecture.

Key words:
H.264, Video Coding, DCT, Algebraic Integer

1. Introduction

 The recently approved digital video standard known as
H.264 promises to be an excellent video format for use
with a large range of applications. Real-time
encoding/decoding is a main requirement for adoption of
the standard to rich its goal. In the initial H.264 standard,
which was completed in May 2003, to simplify the
implementation it use an approximated integer 4×4
transform which helps reduce blocking and ringing
artifacts. Also a scaling multiplication (part of transform)
is integrated into the quantizer, reducing the total number
of multiplication. But for each 4x4 transform 16 number
of 16 bit multiplication is needed. And the transform isn't
a real 4x4 DCT. [1]
This paper presents a novel error-free (infinite-perception)
algorithm for the fast implementation of H.264 like 4x4
Transform/Quantization and their reverse action based on
algebraic integer-encoding scheme which is suitable for
the implementation with a fully pipelined systolic
architecture. Software solutions for the DCT are widely
used, but for high data rate application, VLSI hardware
implementations are still preferred.
For completeness, the 4x4 Discrete Cosine Transform
(DCT) operates on X, a block of 4x4 samples and creates

Y, a 4x4 block of coefficients. The action of DCT (and
its reverse, the IDCT) can be described in terms of a
transform matrix A. The forward DCT of a 4x4 sample
block is given by:

TAXAY = (1)
And the reverse DCT (IDCT) by:

YAAX T= (2)
Where X is a 4x4 matrix of samples, Y is a matrix of
coefficients and A is a 4x4 transform matrix.
The elements of A are:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
=

cbbc
aaaa
bccb

aaaa

A (3)

2
1

=a , ⎟
⎠
⎞

⎜
⎝
⎛=

8
cos

2
1 πb , ⎟

⎠
⎞

⎜
⎝
⎛=

8
3cos

2
1 πc

The matrix multiplication of (1) can be factorized to the
following equivalent form:

() f
T ECXCY ⊗= (4)

Where:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

dd

dd
C

11
1111
11

1111

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

22

22

22

22

babbab
abaaba
babbab
abaaba

E f

TCXCW = is a 'core' 2D transform. E is a matrix of

scaling factors and the symbol ⊗ indicates that each
element of W is multiplied by the scaling factor in the
same position in matrix E (scalar multiplication rather
than matrix multiplication). The constants a and b are
as before and d is bc / . In the H.264 to simplify the
implementation of the transform, d is approximated by

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

188

0.5. In order to ensure that the transform reminds
orthogonal, b also need to be modified so that: [1]

2
1

=ha ,
5
2

=hb ,
2
1

=hd

Thus this transform is an approximated to the 4x4 DCT
because of the changes to factors d and b , so the result
of the H.264 transform will not be identical to the 4x4
DCT.
The post-scaling operation fE⊗ is absorbed into the
quantization process but still 16 number 16-bit
multiplications for each 4x4 block is needed. The post-
scaling and quantization formulas are shown in Equations
5-7.

()6/15 QPfloorqbits += (5)

() qbitsfMFWZ ijij >>+= . (6)

() ()ijij WsignZsign = (7)

Where QP is a quantization parameter that enables the
encoder to accurately and flexibly control the trade-off
between bit rate and quality. It can take any integer value
from 0 up to 51. ijZ is an element in the quantized

transform coefficients matrix. MF is a multiplication
factor that depends on ()6modQPm = and the

position ()ji, of the element in the matrix. The >>
indicates a binary shift right. In the reference model [13]
software, f is 3/2qbits for Intra blocks or 6/2qbits for
Inter blocks. [1]

2. Algebraic Integer Encoding

Algebraic integers are defined by real numbers that are
roots of monic polynomials with integer coefficients [9].

As an example, let
j

e 16
2π

ω = denote a primitive 16th
root of unity over the ring of complex numbers. Then ω
is a root of the equation 018 =+x . If ω is adjoined to
the rational numbers, then the associated ring of algebraic
integers is denoted by []ωZ . The ring []ωZ can be
regarded as consisting of polynomials in ω of degree 7
with integer coefficients. The elements of []ωZ are
added and multiplied as polynomials, except that the rule

18 −=ω is used in the product to reduce the degree of
powers of ω to below 8. For an integer, M , []MZ ω is
used to denote the elements of with coefficients between

2
M

− and
2
M

 . In summary, algebraic integers of an

extension of degree n can be assumed to be of the
form:

111100 ... −−+++ nnaaa ωωω (8)

Where, { }110 ,...,, −nωωω is called the algebraic integer

basis and the coefficients ia are integers.
The idea of using algebraic integers in DSP applications
was first explored by Cozzens and Finkelstein [5]. The
V. S. Dimitrov and G. A. Jullien group was the first
which introduced algebraic integer coding to provide
low complexity error-free computation of the DCT and
IDCT. [11]
The elements of the transform matrix for the DCT/IDCT

are real numbers of the form
N

n
2

cos π
, where n is an

integer. Rather than applying the classical procedure of
using approximation to these elements, the algebraic
integer encoding scheme processes number of this form
using exact representation. There have been several
previous publications on algebraic integer encoding
schemes [3,4,9]. If we denote

22
8

cos2 +=⎟
⎠
⎞

⎜
⎝
⎛=
πz (9)

Then z is root of the polynomial
() 24 24 +−= xxxF and the elements of ()xF have

a polynomial form. Consider the polynomial expansion:

() ∑
=

=
3

0i

i
i zazf (10)

Where ia are integers. Definitely, z , that is

22 + corresponds to the following particular
choice ia : ()0,0,1,0
Therefore, we have an exact code for z . For the other
elements consider these intermediate

)
8

3cos(2'),
8

cos(2',
2
1' ππ

=== cba

Then:
''2 1 bab −= , ''2 1 cac −= (11)

With these intermediate definitions we can represent
rest of elements exactly as combinations of four small
integers ia too. Table 1 provides the corresponding
coefficients.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

189

Table 1: the exact representation of the cosines participating in the 4 x 4

DCT
a3 a2a1 a0

0 0.50 -1 a'

0 0 1 0 b'

1 0 -3 0 c'

0 1 0 -3 d

3. Algorithm Derivation

It has been pointed out previously, the most critical
problem for algebraic integer DCT and IDCT
implementation is the correct choice of 1D and 2D
algorithms. [3] The 2D algorithm proposed by Cho-Lee is
good candidate for algebraic integer implementation. [4]
The main reason is that it uses only one portion of 1D
DCTs with remainder of the algorithm a traditional
butterfly structure only. The proposed algorithm has
butterfly structure too which fully uses the symmetry
present in the transform matrix. It is error-free up until the
final reconstruction step and needs no multiplication
which is very suitable from VSLI view point.
Remind the core transform of equation (4):

TCXCW = (12)
Consider:

21 dCCC += (13)
Where:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
=

0110
1111
1001

1111

1C

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

1001
0000
0110
0000

2C
 (14)

Now assume:
)()(2121

TT
a dCCdCCW +×+= (15)

TXCCE 11=
The matrix multiplication of (15) can be factorized to the
following equivalent form:

HKEhddkEWa ++=++= 2 (16)

Where E , k and h are 4x4 matrixes with integer
elements:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

2224

4244

00
0000

00
0000

EE

EE
h (17)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
−

−−−−−
−

=

244223224421

3234

442243422441

1214

00

00

EEEEEE
EE

EEEEEE
EE

k

Assume:

XCB 1= (18)
Let us now consider a 4 input 4 output butterfly
graph ()aBFg . Figure 1 illustrates the ()aBFg
structure and shows how we can compute elements
()41113121 ,,, BBBB of matrix B from the elements

()31214111 ,,, XXXX of matrix X as input samples.

Fig. 1 Butterfly Graph ()aBFg .

If we define aBF as a function which is determined

with aBFg graph, then we can compute B and E as
bellow:

(B21, B31, B11, B41) = BFa (X11, X41, X21, X31)
(B23, B33, B13, B43) = BFa (X13, X43, X23, X33)
(B22, B32, B12, B42) = BFa (X12, X42, X22, X32)
(B24, B34, B14, B44) = BFa (X14, X44, X24, X34)

(E12, E13, E11, E14) = BFa (B11, B14, B12, B13)
(E32, E33, E31, E34) = BFa (B31, B34, B32, B33)
(E22, E23, E21, E24) = BFa (B21, B24, B22, B23)
(E42, E43, E41, E44) = BFa (B41, B44, B42, B43)

(19)

After computing E , the next step is applying d to
network. So suppose gBFd signal flow graph that has

been shown in Fig2 and assume like aBFg it determine

BFd function.

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

190

Fig. 2 gBFd Signal Flow Graph.

With this definition, mixed components of K and H are
computed as bellow:

(H44, K24, K42, H22) = BFd (E22, E44)
(-H42, K44, K22, H24) = BFd (E24, -E42) (20)

The rest components of matrixes K and H computed
with direct applying of d to correspond output in
graph E .

4. Final Reconstruction Step (SFG)

Up to this point, we have computed the matrixes ,E ,h
and k without error and multiplication operation. In
order to computing the core transform ()W we need

applying 8 coefficients ()3, 2 −= zdd to the network.
The final reconstruction depends on the precision used to

represent 22 +=z . Since the final result is in an
error free format, we can easily estimate the precision we
need to guarantee sufficient accuracy. If the input and
output data are 8-bits maximum, then the representation
of z as 953 2222 −−− +−−=z is sufficient. [3] Here
we can use Horner's Rule to further simplify the FRS.
()
()() 0123

3
3

2
2

1
10

azazaza
zazazaazf

+++=
+++=

 (21)

But since for computing d only 2z is needed, we can
represent d with good precision as:

7641 22221 −−−− −−−−=d (22)

Here the post-scaling and quantization operation ()fE⊗
is absorbed into the quantization process too
(Multiplication Factor Matrix, MF). Since operations are
scalar multiplication rather than matrix multiplication,
tables for multiplication and scaling factors
()VMF & [1] can be replaced with correspond tables 2
and 3 with good precision.
(Error < 0.2%)

5. Simulation and Results

In order to fair compression, we implemented the
traditional algorithm with similar butterfly structure too.
But since anyone components of scaling matrixes fE

and iE isn't zero [1], so the correspond graph hBF has
8 adder that has been shown in Fig 3.

Fig. 3 hBF graph for traditional algorithm.

Note that it has 8 adder, while aBFg has 6 one.

The complete processes of both algorithms have brought
in table 4. Due to this table, in step 3 of new approach,
f is cancelled and computational complexity

comparison is presented in table 5.

Table 5: Comparisons for Computing Complexity
Method Multiplication

(16 bit)
Additions

H.264 32 144
Algebraic 0 333

Also table 6 shows a measure of image reconstruction
quality, Peak Signal-Noise Ratio (PSNR) for 4 images
shown in Fig 4.

Table 6: Quality Measurement, PSNR (dB) with QP=10
Algebraic H.264 Picture

52.5594 49.0578 Girl

51.8868 48.8580 Nature

52.7856 49.3277 Bird

52.2872 48.8693 Horse

6. Conclusion

In this paper, we have introduced a novel approach for
Multiplication and Error Free Implementation of
Transform and Quantization blocks like H.264 using an
error free algebraic integer representation of basis
functions.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

191

Simulation results show less computational complexity
with better quality performance. The main advantages of
the method proposed are:
1) It is error-free up until the final reconstruction; 2) It
needs no multiplication, which is very suitable from VLSI
view point;

3) It is like Chen’s 1D algorithm and suitable for the
implementation with a fully pipelined systolic
architecture and can be combined with many already
existing algorithms for DCT and IDCT

Table 2: Multiplication Factors ()aMF in Algebraic method

MFa

QP=5

MFa

QP=4

MFa

QP=3

MFa

QP=2

MFa

QP=1

MFa

QP=0

Position

2-2-2-4+2-6-2-8 2-2 2-2+2-5+2-8 2-2+2-4-2-8 2-1-2-3-2-7-2-8 2-1-2-3+2-6+2-7 (0,0), (2,0), (0,2), (2,2)

2-2+2-6-2-8 2-2+2-4+2-6-2-9 2-2+2-3-2-9 2-1-2-3+2-5-2-8 2-1-2-5+2-7-2-9 2-1+2-5-2-7 (1,1), (1,3), (3,1), (3,3)

2-2+2-4+2-5-2-9 2-1-2-4-2-7-2-9 2-1-2-6+2-8 2-1+2-5-2-7+2-9 2-1+2-3-2-8 1-2-1-2-4-2-8 Other

Table 3: Scaling Factors ()aV in Algebraic method

Va

QP=5

Va

QP=4

Va

QP=3

Va

QP=2

Va

QP=1

Va

QP=0

Position

2-2+2-4 2-1 2-4+2-5+2-3 2-3+2-4-2-6 2-3-2-5-2-6 2-3+2-5 (0,0), (2,0), (0,2), (2,2)

2-1+2-3-2-5+2-4 2-2+2-4+2-6-2-9 2-2+2-8-2-5 2-2-2-6 2-2-2-5+2-7-2-9 2-2+2-5-2-6 (1,1), (1,3), (3,1), (3,3)

2-1+2-5+2-9 2-1-2-4-2-7-2-9 2-1-2-3+2-9 2-1+2-3-2-5+2-8 2-2+ 2-4-2-6-2-8 2-2-2-6 Other

Table 4: Complete Processes for H.264 & Algebraic Integer
Note f is cancelled in step 3 of new approach

Algebraic scheme H.264 step

W=CaXCa T W=CfXCf T 1

qbits=floor(QP/6) qbits=15+floor(QP/6) 2

aza = [abs (W)⊗MFa] >> qbits az = [abs (W)⊗MF+f] >> qbits 3

Za=round(aza)⊗sign(Wa) Z=round(az)⊗sign(W) 4

W'a=Z⊗Va×2floor(QP/6) W'=Z⊗V×2floor(QP/6) 5

Xr=round(Ca
T W'a Ca) Xr=round(Ci

T W' Ci) / 64 6

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.9B, September 2006

192

Fig 4. Experimented Figures

7. References

[1] I. E. G. Richardson, H.264 and MPEG-4 Video

Compression: Video Coding for Next-generation
Multimedia, John Wiley & Sons Ltd., Sussex, England,
December 2003.

[2] “ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC,” Draft Text

of Final Draft International Standard for Advanced Video
Coding, [Online]. Available:
http://www.chiariglione.org/mpeg/working_documents.htm
, March 2003.

[3] V. S. Dimitrov, G. A. Jullien and W. C. Miller, “A New

DCT Algorithm Based on Encoding Algebraic Integers”,
IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 1377-1380, 1998.

[4] Minyi Fu; V.S. Dimitrov, V.S. and G.A. Jullien, "An

Efficient Technique for Error-free Algebraic-integer
Encoding for High Performance Implementation of the
DCT and IDCT", in Proc. IEEE International Symposium
on Circuits and Systems, Sydney Australia, May 2001, pp.
906-909.

[5] J. H. Cozzens and L. A. Finkelstein, “Computing the

Discrete Fourier Transform using Residue Number Systems
in a Ring of Algebraic Integers”, IEEE Transactions on
Information Theory, vol. 31, pp. 580-588, 1985.

[6] V. Dimitrov and G. A. Jullien, “Multidimensional

Algebraic Integer Encoding for High Performance
Implementation of the DCT and IDCT”, IEE Electronics
Letters, vol. 29, no. 7, pp. 602-603, 2003.

[7] Khan Wahid, Vassil Dimitrov and Graham Jullien, “Error-

Free Computation of 8x8 2-D DCT and IDCT using Two-
Dimensional Algebraic Integer Quantization”, Proceedings
of the 17th IEEE Symposium on Computer Arithmetic
(ARITH’05), 1063-6889/05 © 2005 IEEE

[8] V. Dimitrov and R. Baghaie, "Computing discrete Hartley

transform using algebraic integers," in Proceedings of the
33rd Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, USA, vol. 2, pp. 1351-
1355, October 1999.

[9] K. A. Wahid, V. S. Dimitrov and G. A. Jullien, "Error-

Free Arithmetic for Discrete Wavelet Transforms using
Algebraic Integers" Proceedings of the 16th IEEE
Symposium on Computer Arithmetic (ARITH'03) 1063-
6889/03 (C) 2003

[10] Yeonsik Jeong, Imgeun Lee, Taekhyun Yun, Gooman

Park and Kyu Tae Park, "A Fast Algorithm Suitable
for DCT Implementation with Integer Multiplication",
IEEE TENCON - Digital Signal Processing
Applications, pp. 784 – 787, 1996

[11] Richard A. Games, Daniel Moulin, Sean D. O'Neil,

and Joseph J. Rushanan, "ALGEBRAIC-INTEGER
QUANTIZATION AND RESIDUE NUMBER
SYSTEM PROCESSING" CH267S2/89/ 0000-0948,
pp. 948-951, 1989 IEEE

[12] R. Baghaie and V. Dimitrov, “Systolic Implementation

of Real-valued Discrete transforms via Algebraic
Integer Quantization”, An International Journal on
Computers and Mathematics with Applications, vol.
41, pp. 1403-1416, 2001.

[13] H.264 Reference Software Version JM6.1d,

http://bs.hhi.de/~suehring/tml/, March 2003.

