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Summary 
 
This paper presents a novel error-free (infinite-precision) 
algorithm for the fast implementation of H.264 like 4×4 
DCT/Quan_IQuan/IDCT based on algebraic integer-encoding 
scheme. 
This encoding technique eliminates the requirement to 
approximate the transform matrix elements by obtaining their 
exact representation. The proposed algorithm has regular 
structure and simulation results shows reducing computing 
complexity with enhanced quality simultaneously. Furthermore 
it is multiplication free and suitable for the high speed 
implementation with a fully pipelined systolic architecture.  
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1.  Introduction   
 
     The recently approved digital video standard known as 
H.264 promises to be an excellent video format for use 
with a large range of applications. Real-time 
encoding/decoding is a main requirement for adoption of 
the standard to rich its goal. In the initial H.264 standard, 
which was completed in May 2003, to simplify the 
implementation it use an approximated integer 4×4 
transform which helps reduce blocking and ringing 
artifacts. Also a scaling multiplication (part of transform) 
is integrated into the quantizer, reducing the total number 
of multiplication. But for each 4x4 transform 16 number 
of 16 bit multiplication is needed. And the transform isn't 
a real 4x4 DCT. [1] 
This paper presents a novel error-free (infinite-perception) 
algorithm for the fast implementation of H.264 like 4x4 
Transform/Quantization and their reverse action based on 
algebraic integer-encoding scheme which is suitable for 
the implementation with a fully pipelined systolic 
architecture. Software solutions for the DCT are widely 
used, but for high data rate application, VLSI hardware 
implementations are still preferred. 
For completeness, the 4x4 Discrete Cosine Transform 
(DCT) operates on X, a block of 4x4 samples and creates 

Y, a 4x4 block of coefficients. The action of DCT (and 
its reverse, the IDCT) can be described in terms of a 
transform matrix A. The forward DCT of a 4x4 sample 
block is given by: 

TAXAY =     (1) 
And the reverse DCT (IDCT) by: 

YAAX T=     (2) 
Where X is a 4x4 matrix of samples, Y is a matrix of 
coefficients and A is a 4x4 transform matrix. 
The elements of A  are: 
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The matrix multiplication of (1) can be factorized to the 
following equivalent form: 

( ) f
T ECXCY ⊗=    (4) 

Where: 
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TCXCW = is a 'core' 2D transform. E is a matrix of 

scaling factors and the symbol ⊗  indicates that each 
element of W  is multiplied by the scaling factor in the 
same position in matrix E  (scalar multiplication rather 
than matrix multiplication). The constants a  and b  are 
as before and d  is bc / . In the H.264 to simplify the 
implementation of the transform, d  is approximated by 
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0.5. In order to ensure that the transform reminds 
orthogonal, b  also need to be modified so that: [1] 

2
1

=ha , 
5
2

=hb , 
2
1

=hd  

Thus this transform is an approximated to the 4x4 DCT 
because of the changes to factors d  and b , so the result 
of the H.264 transform will not be identical to the 4x4 
DCT. 
The post-scaling operation fE⊗  is absorbed into the 
quantization process but still 16 number 16-bit 
multiplications for each 4x4 block is needed. The post-
scaling and quantization formulas are shown in Equations 
5-7. 
 

( )6/15 QPfloorqbits +=   (5) 

( ) qbitsfMFWZ ijij >>+= .   (6) 

( ) ( )ijij WsignZsign =    (7) 
 
Where QP  is a quantization parameter that enables the 
encoder to accurately and flexibly control the trade-off 
between bit rate and quality. It can take any integer value 
from 0 up to 51. ijZ  is an element in the quantized 

transform coefficients matrix. MF  is a multiplication 
factor that depends on ( )6modQPm =  and the 

position ( )ji,  of the element in the matrix. The >>  
indicates a binary shift right. In the reference model [13] 
software, f  is 3/2qbits  for Intra blocks or 6/2qbits  for 
Inter blocks. [1] 
 
2. Algebraic Integer Encoding 
 
Algebraic integers are defined by real numbers that are 
roots of monic polynomials with integer coefficients [9]. 

As an example, let 
j

e 16
2π

ω =  denote a primitive 16th 
root of unity over the ring of complex numbers. Then ω  
is a root of the equation 018 =+x . If ω  is adjoined to 
the rational numbers, then the associated ring of algebraic 
integers is denoted by [ ]ωZ  . The ring [ ]ωZ  can be 
regarded as consisting of polynomials in ω  of degree 7 
with integer coefficients. The elements of [ ]ωZ  are 
added and multiplied as polynomials, except that the rule 

18 −=ω  is used in the product to reduce the degree of 
powers of ω  to below 8. For an integer, M , [ ]MZ ω  is 
used to denote the elements of with coefficients between 

2
M

−  and 
2
M

 . In summary, algebraic integers of an 

extension of degree n  can be assumed to be of the 
form: 

111100 ... −−+++ nnaaa ωωω   (8) 
 
Where, { }110 ,...,, −nωωω  is called the algebraic integer 

basis and the coefficients ia  are integers. 
The idea of using algebraic integers in DSP applications 
was first explored by Cozzens and Finkelstein [5]. The 
V. S. Dimitrov and G. A. Jullien group was the first 
which introduced algebraic integer coding to provide 
low complexity error-free computation of the DCT and 
IDCT. [11] 
The elements of the transform matrix for the DCT/IDCT 

are real numbers of the form 
N

n
2

cos π
, where n  is an 

integer. Rather than applying the classical procedure of 
using approximation to these elements, the algebraic 
integer encoding scheme processes number of this form 
using exact representation. There have been several 
previous publications on algebraic integer encoding 
schemes [3,4,9]. If we denote 
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Then z  is root of the polynomial 
( ) 24 24 +−= xxxF  and the elements of ( )xF  have 

a polynomial form. Consider the polynomial expansion: 
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Where ia  are integers. Definitely, z , that is 

22 +  corresponds to the following particular 
choice ia : ( )0,0,1,0   
Therefore, we have an exact code for z . For the other 
elements consider these intermediate 

)
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Then: 
''2 1 bab −=  , ''2 1 cac −=    (11) 

 
With these intermediate definitions we can represent 
rest of elements exactly as combinations of four small 
integers ia  too. Table 1 provides the corresponding 
coefficients. 
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Table 1: the exact representation of the cosines participating in the 4 x 4 

DCT 
a3 a2a1 a0  

0 0.50 -1 a' 

0 0 1 0 b' 

1 0 -3 0 c' 

0 1 0 -3 d 

 
 
3. Algorithm Derivation 
 
It has been pointed out previously, the most critical 
problem for algebraic integer DCT and IDCT 
implementation is the correct choice of 1D and 2D 
algorithms. [3] The 2D algorithm proposed by Cho-Lee is 
good candidate for algebraic integer implementation. [4] 
The main reason is that it uses only one portion of 1D 
DCTs with remainder of the algorithm a traditional 
butterfly structure only. The proposed algorithm has 
butterfly structure too which fully uses the symmetry 
present in the transform matrix. It is error-free up until the 
final reconstruction step and needs no multiplication 
which is very suitable from VSLI view point. 
Remind the core transform of equation (4): 

TCXCW =     (12) 
Consider: 

21 dCCC +=     (13) 
Where: 
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Now assume: 
)()( 2121

TT
a dCCdCCW +×+=  (15) 

TXCCE 11=  
The matrix multiplication of (15) can be factorized to the 
following equivalent form: 

HKEhddkEWa ++=++= 2  (16) 
 
Where E , k and h  are 4x4 matrixes with integer 
elements: 
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Assume: 

XCB 1=     (18) 
Let us now consider a 4 input 4 output butterfly 
graph ( )aBFg . Figure 1 illustrates the  ( )aBFg  
structure and shows how we can compute elements 
( )41113121 ,,, BBBB  of matrix B  from the elements 

( )31214111 ,,, XXXX  of matrix X  as input samples. 
 

 
Fig. 1 Butterfly Graph ( )aBFg . 

 
If we define  aBF  as a function which is determined 

with aBFg  graph, then we can compute B  and E  as 
bellow: 
 
(B21, B31, B11, B41) = BFa  (X11, X41, X21, X31) 
(B23, B33, B13, B43) = BFa  (X13, X43, X23, X33) 
(B22, B32, B12, B42) = BFa  (X12, X42, X22, X32) 
(B24, B34, B14, B44) = BFa  (X14, X44, X24, X34) 
      
(E12, E13, E11, E14) = BFa  (B11, B14, B12, B13) 
(E32, E33, E31, E34) = BFa  (B31, B34, B32, B33) 
(E22, E23, E21, E24) = BFa  (B21, B24, B22, B23) 
(E42, E43, E41, E44) = BFa  (B41, B44, B42, B43) 

(19) 
 

After computing E , the next step is applying d  to 
network. So suppose gBFd  signal flow graph that has 

been shown in Fig2 and assume like aBFg  it determine 

BFd  function. 
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Fig. 2 gBFd  Signal Flow Graph.  

 
With this definition, mixed components of K and H are 
computed as bellow: 
 
(H44, K24, K42, H22)  = BFd (E22, E44)        
(-H42, K44, K22, H24) = BFd (E24, -E42)         (20) 
 
The rest components of matrixes K and H computed 
with direct applying of d  to correspond output in 
graph E . 
 
4. Final Reconstruction Step (SFG) 
 
Up to this point, we have computed the matrixes ,E ,h  
and k  without error and multiplication operation. In 
order to computing the core transform ( )W  we need 

applying 8 coefficients ( )3, 2 −= zdd  to the network. 
The final reconstruction depends on the precision used to 

represent 22 +=z . Since the final result is in an 
error free format, we can easily estimate the precision we 
need to guarantee sufficient accuracy. If the input and 
output data are 8-bits maximum, then the representation 
of  z  as 953 2222 −−− +−−=z  is sufficient. [3] Here 
we can use Horner's Rule to further simplify the FRS. 
( )
( )( ) 0123

3
3

2
2

1
10

azazaza
zazazaazf

+++=
+++=

  (21) 

But since for computing d  only 2z  is needed, we can 
represent  d  with good precision as: 

7641 22221 −−−− −−−−=d   (22) 
 
Here the post-scaling and quantization operation ( )fE⊗  
is absorbed into the quantization process too 
(Multiplication Factor Matrix, MF ). Since operations are 
scalar multiplication rather than matrix multiplication, 
tables for multiplication and scaling factors 
( )VMF & [1] can be replaced with correspond tables 2 
and 3 with good precision. 
(Error < 0.2%) 
 

5. Simulation and Results 
 
In order to fair compression, we implemented the 
traditional algorithm with similar butterfly structure too. 
But since anyone components of scaling matrixes fE  

and iE  isn't zero [1], so the correspond graph hBF  has 
8 adder that has been shown in Fig 3. 
 

 
Fig.  3 hBF graph for traditional algorithm. 

Note that it has 8 adder, while aBFg  has 6 one. 
 
The complete processes of both algorithms have brought 
in table 4. Due to this table, in step 3 of new approach, 
f  is cancelled and computational complexity 

comparison is presented in table 5. 
 

Table 5: Comparisons for Computing Complexity 
Method Multiplication 

(16 bit) 
Additions

H.264 32 144 
Algebraic 0 333 

 
 
Also table 6 shows a measure of image reconstruction 
quality, Peak Signal-Noise Ratio (PSNR) for 4 images 
shown in Fig 4. 

Table 6: Quality Measurement, PSNR (dB) with QP=10 
Algebraic H.264 Picture 

52.5594 49.0578 Girl 

51.8868 48.8580 Nature 

52.7856 49.3277 Bird 

52.2872 48.8693 Horse 

 
6. Conclusion 
 
In this paper, we have introduced a novel approach for 
Multiplication and Error Free Implementation of 
Transform and Quantization blocks like H.264 using an 
error free algebraic integer representation of basis 
functions.  
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Simulation results show less computational complexity 
with better quality performance. The main advantages of 
the method proposed are:  
1) It is error-free up until the final reconstruction; 2) It 
needs no multiplication, which is very suitable from VLSI 
view point;  

3) It is like Chen’s 1D algorithm and suitable for the 
implementation with a fully pipelined systolic 
architecture and can be combined with many already 
existing algorithms for DCT and IDCT

Table 2: Multiplication Factors ( )aMF  in Algebraic method

MFa 

QP=5 

MFa 

QP=4 

MFa  

QP=3 

MFa 

QP=2 

MFa  

QP=1 

MFa  

QP=0 

Position 

2-2-2-4+2-6-2-8 2-2 2-2+2-5+2-8 2-2+2-4-2-8 2-1-2-3-2-7-2-8 2-1-2-3+2-6+2-7 (0,0), (2,0), (0,2), (2,2)

2-2+2-6-2-8 2-2+2-4+2-6-2-9 2-2+2-3-2-9 2-1-2-3+2-5-2-8 2-1-2-5+2-7-2-9 2-1+2-5-2-7 (1,1), (1,3), (3,1), (3,3)

2-2+2-4+2-5-2-9 2-1-2-4-2-7-2-9 2-1-2-6+2-8 2-1+2-5-2-7+2-9 2-1+2-3-2-8 1-2-1-2-4-2-8 Other 

 

Table 3: Scaling Factors ( )aV  in Algebraic method

Va 

QP=5 

Va  

QP=4 

Va  

QP=3 

Va  

QP=2 

Va  

QP=1 

Va  

QP=0 

Position 

2-2+2-4 2-1 2-4+2-5+2-3 2-3+2-4-2-6 2-3-2-5-2-6 2-3+2-5 (0,0), (2,0), (0,2), (2,2)

2-1+2-3-2-5+2-4 2-2+2-4+2-6-2-9 2-2+2-8-2-5 2-2-2-6 2-2-2-5+2-7-2-9 2-2+2-5-2-6 (1,1), (1,3), (3,1), (3,3)

2-1+2-5+2-9 2-1-2-4-2-7-2-9 2-1-2-3+2-9 2-1+2-3-2-5+2-8 2-2+ 2-4-2-6-2-8 2-2-2-6 Other 

 
  

Table 4: Complete Processes for H.264 & Algebraic Integer 
Note f  is cancelled in step 3 of new approach 

Algebraic scheme H.264 step 

W=CaXCa T W=CfXCf T 1 

qbits=floor(QP/6) qbits=15+floor(QP/6) 2 

aza = [abs (W)⊗MFa] >> qbits az = [abs (W)⊗MF+f] >> qbits 3 

Za=round(aza)⊗sign(Wa) Z=round(az)⊗sign(W) 4 

W'a=Z⊗Va×2floor(QP/6) W'=Z⊗V×2floor(QP/6) 5 

Xr=round(Ca
T W'a Ca ) Xr=round(Ci

T W' Ci ) / 64 6 
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Fig 4. Experimented Figures 
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