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Summary 

It is believed that there is a close correlation between the 
physical and mental activities of human body. These physical 
activities can be measured using various multimodal bio-signals 
employing either invasive or non-invasive sensors. In contrast, 
although mental activities have been modeled from various 
standpoints, they have been associated mostly with brain 
activities. We have focused on mapping physical multimodal 
bio-signals as time series data with mental states such as 
somnolence, fatigue, and concentration.  

We will discuss two mathematical data mining tools: (1) the 
interval cross-correlation coefficient; and (2) the interval cross- 
covariance function coefficient. Given a multimodal time series 
bio-signal data acquired at a given frequency using non-invasive 
sensors attached to a human volunteer, our methods aimed to 
predict the mental state of a human subject. The primary 
objective was to examine the feasibility of our methods in 
predicting the mental state of students during lessons in a 
university classroom. Previous attempts to predict mental states 
from bio-signals have mostly been based on 
electroencephalogram (EEG), electrocardiogram (ECG), or 
electrooculogram (EOG), but have not tried to combine them. 
However, it is often difficult to obtain stable EEG signals from 
students in a university classroom because of artifacts arising 
from body and eye movements. Based on this observation, we 
considered simultaneous multimodal bio-signals with their 
combination, and introduced interval cross- correlation 
coefficient and interval cross-covariance function coefficient as 
data mining tools for mapping the physical and mental states of 
the human body. We conducted experiments using subjects 
equipped with multiple sensors, and compared the results with 
the outputs of our data mining methods. Preliminary experiments 
show that our method produces reasonable results and allows us 
to control the experimental parameters to cope with individual 
variations. Our method is also applicable to monitoring personal 
health care, vehicle drivers, and individuals in business group 
meetings. 
Key words: 

time-series data analysis, multimodality, prediction, bio-
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Introduction 

Mining latent correlations from multimodal, streaming, time 
series bio-signal data is a relatively new field of research in 
science and engineering that includes many inherent multi-
disciplinary technical challenges. The first challenge is how to 
achieve a quick response, since bio-signal data are usually 

measured in real time, sometimes from many different sources 
(i.e., multimodality), obtained using a variety of sensor devices. 
The second challenge is how to remove noise and outlying data 
that could mislead the mining algorithms, and this requires an 
algorithm to be robust and accurate. This is a prerequisite, 
because noninvasive-type sensors are usually very sensitive to 
human movements, even if the subject moves only slightly 
during sensor monitoring. The third challenge is to align the 
different sources of bio-signal data, whose frequencies may 
differ from source to source, and whose data could be missing 
from time to time. The fourth challenge is how to acquire and 
manage the bio-signal data from a group of subjects equipped 
with sensor devices simultaneously and asynchronously. The 
fifth challenge, which is the most difficult, is to map a given 
mental state (such as “state of concentration”, “state of fatigue”, 
and “state of somnolence”) to one or more of the physical bio-
signals.  

Based on observations obtained from off-line measured time 
series bio-signal data, we will discuss the use of two algorithms 
to cope with some of the above challenges, and to attempt to lay 
the foundation for future study in this area of research. It should 
be borne in mind that there is not an established method of 
handling all the challenges mentioned above. 

In the following, we will briefly survey related work in 
Section 2. In Section 3, we will review and introduce 
mathematical tools that we used for mining the time series bio-
signal data. In Section 4, we describe our observations based on 
off-line measured bio-signal data, followed by our predictions of 
the state of concentration and the state of somnolence in Section 
5. A prototype smart classroom system, HIBALIS, is briefly 
described in Section 6, and our conclusions are given in Section 
7, along with a discussion of our approach and possible future 
research. 

2. Related Work 

Time series data analysis has a long history. Given the data for a 
time series, Auto-Regressive Moving Average (ARMA) models 
have been used extensively to predict what could happen next in 
meteorology, astronomy, geology, economy, and many other 
academic fields [1, 2]. Recently, emerging technologies and 
algorithms using time series data mining have been published in 
the fields of computer science and engineering, for example, in 
collecting time series data, and defining the similarities, 
clustering, and classification [3, 4, 5]. Lin et al. [6] classified 
time series data mining into three large tasks: (1) subsequence 
matching; (2) anomaly detection; and (3) time series motif 
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discovery. They also mentioned visualization aspects of time 
series data. 

However, there have been few approaches that have tried to 
understand the correlation between two or more time series (i.e., 
multimodal time series) obtained simultaneously. One example is 
described in a paper by Gruhl et al. [7] that addresses the 
correlation between reputation (as one time series data) written 
in as a Weblog (blog) on newly published books, and their sales 
trends (the other time series data) published on the Amazon.com 
website. They showed that there was a close correlation between 
the two time series. Once the reputation of a newly published 
book became established, its volume (as time series data) in the 
blog thread exhibited a sharp peak at a given time, and then, after 
a slight time delay, the book’s sales tended to increase. The 
corresponding sales rank (as time series data) tended to be 
depicted as a sharp peak a few days after the blog thread. Crone 
et al. [8] employed neural network predictions for inventory 
decisions. The basic idea was to forecast a one-step future data 
point using n preceding points. They stated that their method was 
analogous to that used in Auto-Regressive models. 

 

3. Interval Cross-correlation and Cross-
covariance 

Here, we assume that time series data are acquired as a set 
of (sampled) numerical data, and review the mathematical 
tools for analyzing multimodal, multivariate time series 
data: the sample cross covariance and sample cross 
correlation methods. Then we introduce the “interval 
cross-correlation coefficient” and “interval cross-
covariance function”. 
 

3.1 Sample Cross-Correlation 

Suppose two sets of n  time series data 1 , ..., nx x=x and 
1 , ..., ny y=y  are given. Then, sample cross-covariance is 

given as follows:  
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where ( )μ x  represents the mean of 1 , ..., nx x=x , and 
( )μ y  represents the mean of 1 , ..., ny y=y . Then, sample 

cross- correlation coefficient is given as follows: 
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The value of ( )xyr k  in the above equation ranges from –1 
to +1, and it varies with the integer k , which assumes 

values in the range [ ( 1), 1]n n− − − . The value of k  
corresponds to a discrete (sampled) time. For a given 
positive value of k , if the absolute value of ( )xyr k  is 
relatively large (e.g., >0.5), then the time series data 
denoted by x  has some correlation with another time 
series data denoted by y . Suppose that we have 
M different multimodal time series data, then the above 
equation represents a correlation matrix of size M M× , 
which makes it possible to perform multivariate analysis. 

3.2 Interval Cross-correlation Coefficient 

The value of ( )xyr k  not only depends on k , but also 
depends on n . If n is very large (e.g., 100,000), 
interactive analysis is less likely. Thus, we considered 
subdividing the entire set of sample data into smaller 
“intervals” of equal size m , as shown in Fig. 1. The 
problem of cross correlation among the multimodal bio-
signal time series data was then reduced to the same 
problem but with smaller sample sizes. For simplicity, in 
the ensuing discussion we assume that n pm= , where n  
is the total number of given time series data, p  is the 
number of intervals, and m  is the number of samples in 
each interval. 

 
Fig. 1 Time series bio-signal data can be subdivided into p intervals of 
m samples. 

Consider an arbitrary interval, [1, .., ]j p∈ , and a pair of 
sample time series data sub-sequence 1( ) , ...,j j

mj x x=x  
and 1( ) , ...,j j

mj y y=y . We define interval cross-correlation 
coefficient as shown in Equation (1). 

( )
( )

(0) (0)

j

xyj

xy
j j

xx yy

c k
r k

c c
=               (1) 

Equation (1) represents an M by M correlation matrix, 
assuming that we have M multimodal bio-signals, as 
depicted in Table 2 in Section 5.1. 

3.3 Interval Cross-covariance Function 

Here we introduce a mathematical tool which is similar 
to the “interval cross correlation” in that we are interested 
in a characteristic value in a specific “interval” (i.e., the 
local mental activity). Unlike measuring the correlation 
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between two bio-signal data per se, we define the j-th 
interval cross-covariance function as follows: 

( , , ; ) ( ( ) ( ( )) )
t t t t

j j

x y
t t

j j

x yx yF f g j t f t dt g t dtf g
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where ( )j

xf t  and ( )j

yg t represent functions of specific bio-
signals at the j-th interval, and tΔ  represents the length of the 
interval. It should be noted that ( )j

xf t  and ( )j

yg t may be 
functions of the same bio-signal. We then define j-th interval 
cross-covariance function coefficient as: 
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This coefficient is similar to the ordinary cross coefficient of 
two statistical variables, x and y, except that two functions are 
used instead of two variables (or bio-signals per se). For example, 
the interval cross-covariance function coefficient of EOG and 
EEG using low pass filters as their functions can be used to 
predict a complete period of sleep (i.e., non-REM sleep). 
However, we would expect that this value could also be used to 
predict the degree of somnolence, or the beginning of the state of 
somnolence. 

3.4 Down-sampling and Removal of Noise 

The interval subdivision technique described in the 
previous section enabled us to reduce the computation 
time for cross correlation between two time series bio-
signal data subsequences. However, in ideal conditions, 
the feasible online monitoring period of human sensor data 
is, at most, between 10 and 30 seconds for monitors (e.g., 
teachers) to provide feedback to the subjects (e.g., 
students). For example, to compute the cross correlation 
between two time series over a period of one minute is 
only possible after the lapse of another additional minute. 

Considering the above, the period for reporting analysis 
results is at least 30 seconds. Therefore, we assumed the 
interval period was approximately 30 seconds (at most), 
and computed the cross correlation between two different 
time series bio-signal data subsequences. The sampling 
rate of the sensor devices was 100 to 200 Hz, which 
depended on the particular sensor device used and the bio-
signal that we chose to measure. Thus, the volume of time 
series bio-signal data obtained within a period of 30 
seconds was 3,000 to 6,000 samples. Using Equation (1) 
to compute the cross correlation required us to compute 
the correlation between the current and the previous 30 
seconds data, as well as the correlation between the 
current and the next 20 seconds data, which amounted to 
6,000 to 12,000 computations. This was prohibitively 
large. Then we conducted down-sampling of the original 
data, such that the macroscopic behavior of each bio-
signal data was not lost. 

Fig. 2 shows EEG data of a subject during the first 10 
seconds of sampling. Fig. 2(a) shows the raw data 

measured at 200 Hz, Fig. 2(b) shows the one-tenth down-
sampled data, and Fig. 2(c) shows the one-twentieth 
down-sampled data. It is clear that one-twentieth down-
sampling could lose any macroscopic behavior, while one-
tenth down-sampling was able to keep the overall global 
behavior. From this experiment, we decided that the 
down-sampling rate would be one-tenth the original raw 
data rate. It should be noted that the original data may 
include noise and spikes. Thus, during the down-sampling 
process, we performed averaging using the standard 
Exponential Moving Average (EMA) technique [9] shown 
in Equation (3). 

ema[ ] [ ] (1 ) ema[ 1]i w data i w i= × + − × − ,    (4) 
where ema[ ]i  denotes the EMA value at time i , [ ]data i  
denotes the raw data at time i , and w  denotes the parameter 
weight. As w  approaches the value of 1.0, it begins to reflect 
the raw data more, while as w  approaches the value of 0.0, it 
begins to reflect the previous EMA value more. 

  
         (a)             (b) 

           
             (c) 
Fig. 2  EEG profiles of a subject in the first 10 seconds: 
(a) original raw data, (b) 1/10-th down-sampled data, and 
(c) 1/20-th down-sampled data. 
 

4. Observation from Off-line Measurement of 
Multimodal Bio-signal Data 

We conducted off-line recording and measurement of human 
bio-signal data from several subjects based on a specific agenda, 
as shown in Table 1, including relaxation, concentration (such as 
performing simple calculations and listening to English), and 
time spent watching videos, which lasted approximately one 
hour in total. 
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Table 1  Experimental agenda of the subjects. 

Start Time 
(minute) 

Duration 
(minute(s)) Contents 

0  3 Rest (relaxed) 
3 4 Calculation (addition) 
7 5 Rest and recovery 

12 6 Silent English translation 
18 4 Rest and recovery 
22 42 Video watching 

Fig. 3 shows the eight different multimodal bio-signals 
measured: EEG, α, β, δ, and θ waves, EOG, breathing 
(respiratory oscillation), and pulse waves (PW). The α, β, δ, and 
θ waves were calculated from the EEG data. As shown in the 
ellipses contained in Fig. 3, during intellectual activity, the δ 
wave signal decreased, while the breathing (respiratory 
oscillation) signal tended to have a relatively low amplitude, but 
be very regular. In contrast, during the relaxed state, both the δ 
wave and the breathing signals (respiratory oscillation) tended to 
be irregular, but their amplitudes increased compared to the state 
of intellectual activity. Note also that during intellectual activity, 
the EOG trace was intermittent, relatively regular, and positive 
values were dominant, but during the relaxed state, the EOG 
trace was relatively large and irregular, and both positive and 
negative values were observed.  

 

 

Fig. 3  Eight different multimodal bio-signals measured from a 
subject during the first 10 minutes.  

5. Predicting Mental States 

Based on the observations discussed in the previous section, we 
developed an algorithm to predict the mental state of several 
subjects from their multimodal bio-signals. Among the many 

combinations of two out of eight multimodal bio-signals, we 
chose the δ  wave and breathing (respiratory oscillation) 
signals, as discussed in the previous section. 

 

5.1 Predicting the State of Concentration Using 
Interval Cross-Correlation Coefficient 
 

In this section, we will describe a method for predicting 
the state of concentration using the interval cross-
correlation coefficient. The basic idea is as follows. If, for 
a given period, (within 30 seconds as described in Section 
3.4) with a one-tenth down-sampling of the time series, 
the absolute value of (or square magnitude of) the i-th 
interval cross correlation ( )i

xyr k  between two bio-signals 
is significantly larger than the j-th interval cross 
correlation ( )j

xyr k between the same two bio-signals, where 
i j≠ , then this can be utilized to predict mental activity. 
Among all the possible combinations of the eight bio-
signals shown in Table 2, we chose the δ wave and 
breathing (respiratory oscillation, ‘BR’ in Table 2) signal. 

Table 2 shows the “significance matrix”, where a “++” 
entry denotes a significant difference between the two bio-
signals during concentration and relaxation states, a “+” 
entry indicates the possible difference between the two 
bio-signals, while a “-” entry indicates no difference 
between the two bio-signals. The data in Table 2 was 
created by selecting three different pairs of intervals, each 
having a state where a subject was concentrating on 
something, and also having the state where a subject was 
relaxed. We then average these values, and found that 
either a (δ, BR) or a (BR, PW) pair showed a significant 
difference in their cross-correlation coefficients among all 
the combinations, where PW denotes a Pulse Wave. The 
(δ, θ) pair can also be used. We chose the (δ, BR) pair for 
our experiments to predict the state of concentration, since 
this pair exhibited a more significant difference than the 
(BR, PW) pair did. It is very interesting that this result 
coincides with the observations described in Section 3.4. 

 
Table 2 Significance matrix of interval cross-correlation coefficients, 
contrasting the state of concentration with the state of relaxation. 

EEG δ θ α β EOG BR PW 

EEG N/A - - - - - - - 

δ N/A + - - - ++ - 

θ N/A - - - - - 

α N/A - - - - 

β N/A - - - 

EOG N/A - - 

BR N/A ++ 

PW 

  

 

 

 

 

 

 N/A 

 
Fig. 4(a) shows the two ( )j

xyr k  curves between the 
δ wave and breathing (respiratory oscillation) signals, 
where the solid curve represents ( )j

xyr k  for the state of 
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relaxation starting from 20 minutes and ending at 20 
minutes and 30 seconds, while the dotted curve represents 

( )j

xyr k  for the state of concentration starting from 5 
minutes and ending at 5 minutes and 30 seconds. Note that 
using a one-tenth down-sampling rate in the data measured 
at 200 Hz, the number of samples (i.e., m in Fig. 1) was 
600. In Fig. 4(a), it is still rather difficult to see any 
difference between the two different states. Thus, we 
defined the “square magnitude” of ( )j

xyr k , as shown in Fig. 
4(b). Using this measure, it is easier to see that the two 
different states exhibit different “square magnitude” 
values in their “interval cross correlation” analysis. 

    
       (a) 

   
(b) 

  
      (c) 
Fig. 4  (a) A plot of the interval cross-correlation coefficient of the δ  
waves and breathing (respiratory oscillation) signals for two different 
intervals, where the solid curve denotes the relaxed state, and the dotted 
curve denotes the state of concentration while performing mental 
arithmetic (i.e., addition). (b) and (c) show the “square magnitude” of 
these interval cross-correlation coefficients, respectively. 

 
Fig. 4 shows a typical contrast between the state of 
concentration and the state of relaxation. This particular 
example used a time-sliced window of 30 seconds, and 
identified performing “mental arithmetic” as a typical 
example of an intellectual activity. Other choices, such as 
“Silent reading of English”, could also be detected, as 
listed in Table 1, which exhibited more or less similar 
behavior and exhibited similar graphical behavior. Based 
on these behaviors, we tentatively defined the state of 
concentration using the following formula: 

2

,(| ( ) | )
t t

j

b
t

r t dt
δ

η λ
+Δ

− <∫ ,     (5) 

where , ( )j

br t
δ

denotes the j-th interval cross correlation 
between the δ  wave and the breathing (respiratory 
oscillation) signals, and η  and λ  are nonnegative 
constants. If the left-hand side of the inequality in 
Equation (5) is denoted by ( , , , ; )R x y j tη Δ , then the state 
of concentration can be predicted if ( , , , ; )R x y j tη Δ is less 
than a pre-defined threshold, λ . Otherwise, we predict 
that the subject is in the state of relaxation. 
Formally, the “concentration detector” algorithm is given 
below: 
 
Algorithm Concentration-detector 
Let tΔ be the actual interval (e.g. 30 seconds) 

Let , ( )j

x yr t be defined as in Equation (1) 

Let x  be the δ wave 
Let y be the breathing signal (BR in Table 1) 
Initialize jSave as zero 
For t in timesteps do 

 /j t t= Δ⎢ ⎥⎣ ⎦  

 0.0R =  
 if ( j jSave== ) then 

     R += 
2

,| ( ) |j

x yr t η−  

 else do 
     jSave = j 
     if ( R λ< ) then 
         Mark the (j-1)-th interval as “Concentrated” 
     else  
         Mark the (j-1)-th interval as “Relaxed” 
 end do 
 endif 
 
 
Fixing tΔ  and λ  to predefined constants, and varying η  
between 0.0 and 0.1, we applied the above algorithm to 
two subjects. By utilizing a standard confusion matrix [10], 
which counted as True Positive (TP, predicted as a 
concentration that was a real subject concentrating), False 
Positive (FP), True Negative (TN, predicted as being 
relaxed, which was a real subject who was relaxed), or 
False Negative (FN), we obtained the resulting ROC curve 
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shown in Fig. 5. The correct answers were confirmed 
using both video observations (as shown in Fig. 6) and the 
answers to mental arithmetic problems (addition) from 
each subject. From the data in Fig. 5, it is interesting to 
note that Subject 2 exhibited an ideal ROC curve, while 
Subject 1 showed a plateau before reaching a TPR = 1.0. 
Since the ROC curve of a good classification model 
should be located as close as possible to the upper left 
corner of the diagram, our simple concentration detector 
algorithm was reasonably accurate for the given time 
series bio-signal data. The individual variations, especially 
visible in the ROC curve of Subject 1, can be interpreted 
as showing that several intervals corresponding to 
concentration and relaxation are intermediate states 
between concentration and relaxation 

       
Fig. 5: The concentration detector ROC curves of two subjects calculated 
by varying η  in Equation (5) between the values of 0.0 and 1.0. 

 

 

 

 

 

 

 

(a) (b) 

 

 

 

 

 

 

 

          (c)    (d) 

Fig. 6 Subject 1 in (a) a state of concentration and (b) a state of relaxation, 
and Subject 2 in (c) a state of concentration and (d) a state of relaxation. 

5.2 Predicting the State of Somnolence Using 
Interval Cross-Covariance Function 

 
In this section, we will describe a simple method for 

predicting the state of somnolence. Note that here we are 
interested in the onset or the degree of somnolence, and 
also in complete somnolence, which should be easier to 
detect (e.g., by video observation, as shown in Fig. 8(b)). 
The detection of the state of somnolence has been more 
extensively studied in many fields of science and 
engineering. For example, Fukami et al. [11] used an 
Auto-Regressive (AR) model, with α , δ , and θ  data to 
extract the characteristic patterns during sleep, and 
achieved a >80% success rate. Kameyama and Doi [12] 
employed a portable sensor to measure pulse waves 
obtained from the fingertips of subjects in order to extract 
fluctuations in the heartbeat rate. They attained a 75% 
success rate in identifying “shallow” and “deep” sleep. 
Telser et al. [13] described sleep stage transitions based on 
monitoring the heart rate variability (HRV), and succeeded 
in differentiating between REM sleep and NREM sleep to 
some extent. 

We had the simple idea of constructing a “somnolence 
detector” in employing the square magnitude of the 
interval cross correlation, similar to the process used in the 
“concentration detector” discussed earlier. However, as 
shown in Table 3, we examined every combination 
between the two bio-signals under three different 
conditions with different subjects at different time 
intervals, and found that there was no good detector that 
was positive (“+”) for all the three conditions.  

 
Table 3: The significance matrix of the square magnitude of the interval 
cross-correlation coefficient, contrasting the state of somnolence with the 
state of arousal. Three different pairs of intervals were examined, but it 
turned out that no combination could satisfy all three conditions. (Note: 
EEG column is omitted.) 

δ θ α β EOG BR PW 

EEG +,-,- -,-,- -,-,- -,-,- -,+,- -,+,- +,-,-

δ N/A -,-,- -,-,- -,-,- -,-,- -,-,- -,-,-

θ N/A -,-,- +,+,- +,-,- +,-,- -,-,-

α N/A -,-,- -,-,- -,-,- -,-,+

β N/A -,-,- -,-,- -,-,-

EOG N/A -,-,+ -,-,-

BR N/A +,+,-

PW 

 

 

 

 

 

 N/A 

 
Thus, we attempted to resolve this problem from a 

different standpoint. The data in Fig. 3 shows that the 
EOG values tend to be predominantly positive if the 
subject is in the state of concentration (e.g., staring at a 
monitor), whereas the EOG values tend to fluctuate 
between both positive and negative values when the 
subject is in the relaxed state. This phenomenon seems to 
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be more clearly followed in the state of somnolence, 
although the magnitude of the EOG values tends to 
decrease. Thus, we attempted to predict the sign of 
somnolence by applying the EOG values to Equation (2), 
as below:  

(| | | |) ( )
t t t t

t t

dt dtH G G G G
+Δ +Δ

− −≡ ∫ ∫ ,              (6) 

where 
( , , , ) = (EOG , )( ),jG t j Function tτ κ τ κ

( , , ) ( , ) ( ; | | )Function x LPF x Amplify x xτ κ τ κ= + > . 
( , )LPF x τ  is a low-pass filter, and τ is a control parameter. 

( ; | | )Amplify x x κ>  is an amplifier for the bio-signal data, 
x , whose absolute value exceeds the threshold, κ . By 
applying Equation (6) to Equation (3), we can obtain the 
main component of somnolence detector 
as (| ( ) |, ( ), , , ; )G x G x j tρ τ κ Δ . By analogy with Equation (5), 
we can formally define the somnolence detector as 
follows: 

2( (| ( ) |, ( ), , , ; ) )G x G x j tρ τ κ ζ μΔ − <        (7) 
If the left-hand side of Equation (7) is denoted by 

( , , , , , ; )Q x y j tτ κ ζ Δ , then the state of somnolence can be 
predicted if ( , , , , , ; )Q x y j tτ κ ζ Δ is less than a predefined 
threshold,μ . Otherwise, we predict that the subject is in 
the state of arousal.  
Formally, “somnolence” detection algorithm is as below: 
 
Algorithm Somnolence-detector 
Let tΔ be the actual interval (e.g. 30 seconds) 
Let ( ( ), ( ), ; )f x g y j tρ Δ be defined as in Equation (3) 

Let x  and y  be EOG 

Let ( )f x be a smoother (low pass filter and amplification) 

Let ( )g x be the absolute of ( )f x  
Initialize jSave as zero 
For t in timesteps do 

 /j t t= Δ⎢ ⎥⎣ ⎦  

 0.0Q =  

 if ( j jSave== ) then 

     Q += 
2

(| ( ) |, ( ), ; )G x G x j tρ ζΔ −  
 else do 
     jSave = j 
     if ( Q μ< ) then 
         Mark the (j-1)-th interval as “Somnolent” 
     else  
         Mark the (j-1)-th interval as “Awake” 
 end do 
 endif 
 

We conducted an experiment for identifying the state of 
somnolence or the state of arousal by taking the video of a 
subject while he was watching a TV program “Natural 
beauty of Japan” lasting approximately 30 minutes 

By selecting the interval to be 30 seconds, as discussed 
in Section 3, and by identifying the subject’s facial 
expression to see if they were awake or somnolent, we 

obtained a set of human-determined correct answers (i.e., 
either being awake or not) for each interval. Then we ran 
our method using Equation (6) by varyingτ , and obtained 
the results shown in Fig. 7. 

Fig. 7: The ROC curve of the somnolence detector calculated by 
varying τ andκ  in Equation (6) 

Fig. 8 shows the data obtained on Subject 1 while 
watching the TV program and moving between the state of 
arousal and the state of somnolence. Specifically, the 
horizontal axis denotes the time from the start of the TV 
program, and the vertical axis represents the “arousal 
level” (the inverse of the somnolence level) corresponding 
to the value of (| ( ) |, ( ), , , ; )G x G x j tρ τ κ Δ . The dotted curve 
shown in Fig. 8 shows the change in actual arousal level, 
while the solid curve was calculated using the somnolence 
detector algorithm. The correct answer was calculated by 
manually examining the subject’s face from a video clip 
and was identified frame by frame. Fig. 9(a) and 9(b) 
show snapshots obtained while the subject watched the 
TV program. In Fig. 9(a), Subject 1 was in the state of 
arousal, while in Fig. 9(b), Subject 1 was in the state of 
somnolence. Similarly, Fig. 9(c) and 9(d) show Subject 2 
is in the state of arousal and in the state of somnolence, 
respectively 

Fig. 8: The accuracy of our somnolence detector calculated by 
comparing the actual state of somnolence of Subject 1. The dotted curve 
is the actual arousal level, while the solid curve was calculated using the 
somnolence detector algorithm. The correct answer (dotted curve) was 
measured by manually examining records of the subject’s face (in mpeg 
format), and was identified frame by frame. 
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(c)           (d) 

Fig. 9 Subjects watching the TV program “The natural beauty of Japan”. 
Subject 1 in (a) a state of arousal and (b) a state of somnolence; Subject 2 
in (c) a state of arousal and (d) a state of somnolence. 

6 HIBALIS: Smart Classroom as an 
Application of Data Mining 

 
Toyohashi University of Technology (TUT) in Japan, has 
carried out an “Intelligent Human Sensing” project for 
several years as a 21st Century Center of Excellence 
(COE) project sponsored by the Japanese government. In 
this project, we are implementing a smart classroom 
called HIBALIS, where a lecturer and students can 
interact with each other, while the lecturer can monitor 
the mental state as well as observe physical bio-signals 
from sensor devices attached to each student in real time.  

Fig. 10 Components and data flow of HIBALIS, a smart 
classroom. 

Fig. 10 shows a diagram of the HIBALIS components, and 
Fig. 11 shows a demonstration lecture having five students 
(subjects) each sitting on a “smart chair” that is capable of 
sensing eight bio-signals simultaneously, including three EEGs, 
two EOGs, an ECG, and a breathing signal. The mining of 
groups of bio-signals is currently underway. 

 
 

 

 

 

 

 

 

 

 

Fig. 11 Lecture demonstration of HIBALIS, involving a smart classroom 
using five students as subjects sitting on smart chairs. 

 

7 Conclusions 
 
Given multimodal time series bio-signal data obtained 
from a variety of sensor devices, we developed two 
algorithms and associated data mining tools, i.e., the 
square magnitude of the interval cross-correlation 
coefficient and the square magnitude of the interval cross-
covariance function coefficient, to estimate the mental 
state of subjects, such as the state of concentration and the 
state of somnolence. 

The advantage of our method is that it is simple and 
straightforward, and it allows us to perform real-time 
decisions as to whether a subject is in the state of 
concentration or whether they are in a state of somnolence, 
by monitoring at intervals and by applying our data 
mining methods to each interval. In the experiments we 
conducted, we took the interval to be 30 seconds, which 
implies that we can obtain an answer every 30 seconds by 
continuously monitoring a subject’s bio-signals. The 
disadvantage of our method is that both the interval cross-
correlation coefficient and the interval cross-covariance 
function coefficient are susceptible to artifacts caused by 
quick movements by the subject, such as twitches and 
jerks. However, as far as our experiments go, the ROC 
curves of both our concentration detector and our 
somnolence detector showed a good performance level. 
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In the future, we would like to begin analyzing the bio-
signals of a group of subjects, and extend our method to 
analyzing the data from this group of subjects. 
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