
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

36

MOVING FROM AOP TO AOSD DESIGN LANGUAGE

Deepak Dahiya Rajinder K. Sachdeva

Abstract
This paper recapitulates the work and summarizes the
various stages of the research work carried out on
development of Aspect Oriented Software Development
Language (AOSDDL). It introduces the concept of
“aspect oriented programming” and outlines the general
path of research that has been taken. An analysis of the
evolution of object oriented design methodology shows
that the original object or class architecture was not
designed for the requirements of today’s enterprise wide
distributed environment. This paper outlines how the
novel paradigm proposed by aspect oriented design
language could advance the current design architecture
and overcome its main design flaws. A discussion of the
applications of aspect oriented programming and its
advantages highlights the potential beneficiaries of this
new design methodology, namely third party tool
developers, software developers, software vendors and
most importantly the end users.At the end, the paper
describes the main research challenges that are targeted
by this research effort Further, a series of conclusion
remarks summarizes what has been learnt from this work,
and how these experiences contribute to the wider field
of research.

1 Introduction

In the early days of computer science, developers wrote
programs by means of direct machine-level coding[1].
Unfortunately, programmers spent more time thinking
about a particular machine's instruction set than the
problem at hand. Slowly, we migrated to higher-level
languages that allowed some abstraction of the
underlying machine. Then came structured languages,
we could now decompose our problems in terms of the
procedures necessary to perform our tasks. However, as
complexity grew, we needed better techniques. Object-
oriented programming (OOP) let us view a system as a
set of collaborating objects. Classes allow us to hide
implementation details beneath interfaces. Polymorphism
provided a common behavior and interface for related
concepts, and allowed more specialized components to
change a particular behavior without needing access to
the implementation of base concepts.

Programming methodologies and languages define the
way we communicate with machines. Each new
methodology presents new ways to decompose
problems: machine code, machine-independent code,
procedures, classes, and so on. Each new methodology
allowed a more natural mapping of system requirements
to programming constructs. Evolution of these
programming methodologies let us create systems with
ever increasing complexity. The converse of this fact
may be equally true: we allowed the existence of ever
more complex systems because these techniques
permitted us to deal with that complexity.

There is a well documented problem in the software
engineering field relating to a structural mismatch
between the specification of requirements for software
systems and the specification of object-oriented software
systems. The structural mismatch happens because the
units of interest during the requirements phase (for
example, feature, service, capability, function etc.) are
different to the units of interest during object-oriented
design and implementation (for example, object, class,
method, etc.)[2]. The structural mismatch results in
support for a single requirement being scattered across
the design units and a single design unit supporting
multiple requirements - this in turn results in reduced
comprehensibility, traceability and reuse of design
models. Currently, OOP serves as the methodology of
choice for most new software development projects.
Indeed, OOP has shown its strength when it comes to
modeling common behavior. However, OOP does not
adequately address behaviors that span over many --
often unrelated -- modules. Separation of concerns is a
basic engineering principle that is also at the core of
object-oriented analysis and design methods in the
context of UML [3]. Separation of concerns can provide
many benefits: additive, rather than invasive, change;
improved comprehension and reduction of complexity;
adaptability, customizability, and reuse.

In contrast, AOP [4] methodology fills this void. AOP
quite possibly represents the next big step in the
evolution of programming methodologies. However, for
aspect-oriented software development (AOSD) [5] to
live up to being a software engineering paradigm, there
must be support for the separation of crosscutting
concerns across the development lifecycle including

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

37

traceability from one lifecycle phase to another.
Concerns that have a crosscutting impact on software
(such as distribution, persistence, etc.) present well-
documented difficulties for software development. Since
these difficulties are present throughout the development
lifecycle, they must be addressed across its entirety.

Although a lot has been done to study the aspect
oriented design approach in enterprise systems for
architecture and its implementation, work on a general-
purpose design language for aspect-oriented software
development is attracting a lot of attention. The
development of aspect oriented requirements gathering
approach, design notation and environment for
development of enterprise systems needs to be further
refined in the context of software applications and
industry.

This discussion has shown a range of design
methodologies related to object oriented and aspect
oriented software development that augment the current
software industry scene and practices. Ongoing efforts in
this area suggest that this trend of incorporating aspect
elements inside any object oriented software design is far
from over.

The majority of these designs are implemented as
individual ad-hoc extensions – all with the goal of
improving the software design to account for today’s
requirements such as logging, caching, persistence and
distribution. However, the fundamental problem, namely
that the programming methodology provides no
architectural support for flexible extensibility, remains.

The research work therefore investigates traceability
between developing a standard and general purpose
AOSD design language with existing UML features and
extensions to map AOSD design notations to AOP
language. The aim is to provide a uniform design
interface to add new extensions (for example, logging,
caching, security etc) with a view towards eventually
developing a standard design language for a broad range
of AOSD approaches – independent of the programming
language in hand.

2 Aspect Oriented Programming
And Design
A gap exists between requirements and design on one
hand, and between design and code on the other hand.
Aspect oriented programming (AOP) extended to the
modeling level where aspects could be explicitly
specified during the design process will make it
possible to weave these aspects into a final
implementation model. Another step could be extension
of AOP to the entire software development cycle. Each
aspect of design and implementation should be declared
during the design phase so that there is a clear

traceability from requirements through source code thus
using UML as the design language to provide an aspect-
oriented design environment.

The separation and encapsulation of crosscutting
concerns has been promoted as a means of addressing
these difficulties; the standard object-oriented paradigm
does not suffice. In order to overcome the difficulties for
crosscutting concerns throughout the lifecycle, an
approach is required that provides a means to separate
and encapsulate both the design and the code of
crosscutting behaviour. It is important to work towards a
general purpose AOSD design language that meets
certain goals including the following:

• Implementation language
independent: The final form of AOP
language may vary from that of any
current one. Thus, any design
language that simply mimics the
constructs of a particular AOP
language is liable to fail to achieve
implementation language
independence.

• Design-level composability: Design
level composability is a desirable
property for two reasons. First
designers may check the result of
composition prior to implementation,
for validation purposes. Second,
some projects will continue to
require the use of a non-aspect-
oriented implementation language
because of pragmatic constraints,
such as the presence of legacy code
written in languages without aspect-
oriented extensions; these projects
could still benefit from separating
the design of crosscutting concerns.

• Compatibility with existing design
approaches: An AOSD design-level
language should also build existing
design languages such as UML, to
provide a bridge from old techniques
to new, so that software engineering
realities such as incremental
adoption and legacy support are
possible.

The construction of complex, evolving software systems
requires a high-level design model. This model should be
made explicit, particularly the part of it that specifies the
principles and guidelines that are to govern the structure
of the system. In reality, however, implementators tend
to overlook the documented design models and
guidelines, causing the implemented system to diverge

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

38

from its model. Reasoning about a system whose models
and implementation diverge is error prone – the
knowledge we gain from these models is not of the
system itself, but of some fictious system, the system we
intended to build. The system’s comprehensibility is
impeded, and so using software engineering techniques
goes against our intended goals – quality, maintainability
and cost minimization. The essence of the problem of
implementing higher-level principles and guidelines lies
in their globality. These principles cannot be localized in
a single module, they must be observed everywhere in
the system, which means that they crosscut the system’s
architecture.

3 Why do we need Aspect
Oriented Design in Software
Development?

The identification of the mapping and influence of a
requirement level aspect promotes traceability of broadly
scoped requirements and constraints throughout system
development, maintenance and evolution. The improved
modularization and traceability obtained through early
separation of crosscutting concerns can play a central
role in building systems resilient to unanticipated
changes hence meeting the adaptability needs of volatile
domains such as banking, telecommunications and e-
commerce. These crosscutting concerns are responsible
for producing tangled representations that are difficult to
understand and maintain. Examples of such concerns at
the requirements level are compatibility, availability and
security requirements that cannot be encapsulated by a
use case and are typically spread across several of them.

With increasing support for aspects at the design and
implementation level, the inclusion of aspects as
fundamental modeling primitives at the requirements
level and identification of their mappings also helps to
ensure homogeneity in an aspect oriented software
development project.

The main drive behind aspect oriented design language
research is the idea of developing design constructs
(elements) that exhibit a degree of flexibility and
customizability that is only known from programmable
end systems. While new design language constructs
based on aspect oriented programming are being
designed they are still tied to a particular platform
whereby the vendor provides both the software tool and
the design language tool as a complete package with
additional proprietary tools. Thus, new design language
aspect constructs can only be tested or utilized to
individual specific requirements after the vendor has
released a software upgrade. The development of new
functionality is typically preceded by a long and
awkward standardization process. These different

paradigms have created an increasing gap between the
functions and capabilities of these constructs in an
aspect oriented development environment.

Reconsidering the system architecture of object oriented
software applications is therefore a crucial step in aspect
oriented software development.

4 Aspect Oriented Software
Development Design Language
AspectJ [6, 7, 8] is a popular and well established AOP
language that provides support for specifying and
composing crosscutting code into a core system. It
supports the AOP paradigm by providing a special unit,
called “aspect”, which encapsulates crosscutting code.
Other compositional implementation languages and
mechanisms also exist [9, 10]. At the design level, an
AOSD design language with extensions to UML [1, 11,
12, and 13] in its capabilities relating to decomposition
and modularization is required that would map to a
particular AOSD implementation. Further, a standard
AOSD design language must be capable of supporting
many of these aspect programming languages. A
graphical notation helps developers to design and
comprehend aspect-oriented programs. Further, it would
facilitate the perception of aspect-orientation. A design
notation helps developers to assess the crosscutting
effects of aspects on their base classes. Its application
carries over the advantages of aspect-orientation to the
design level and facilitates adaption and reuse of existing
design constructs.

5 Research Challenges

The advantages of a flexible and extensible aspect
oriented design language are expected to benefit the
software community at various levels.

The main aim of this work is to investigate flexible and
extensible mechanisms that enable dynamic introduction
of new functionality into an existing operational design.
This endeavor is pursued from the endpoint of the
programmer and the design team as both has a great
interest in implementation and / or processing of
individual elements.

The key challenge of this research work therefore is to
design a novel design language architecture that provides
the basis for flexible extensibility of design functionality.
In order to verify the practicality of this architecture,
prototyping an application according to the new design
elements will be a major part of this undertaking.

The challenges of the architectural design language are
as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

39

• Generic platform (not tied to a specific
application)
The design goal is to develop a generic
programmable design language platform to
support the diversity of today’s and future
design specifications. The idea is to replace the
numerous ad hoc approaches to provide specific
design elements inside the language that allows
users (such as programmers or systems analyst)
to extend the design capabilities in a uniform
way.
Unlike most existing design language
architectures, which are tied to a specific
application domain, the goal here is to start with
a requirement analysis of a wide range of
software applications and design specifications
in order to consider the multitude of
requirements in the architectural design.

• Modular component-based architecture
Another key objective is to design a design
language architecture that is truly component-
based taking advantage of component features
such as modularity, extensibility, and
reusability. The design elements can hence be
programmed into aspects or classes called
components. These components will typically
provide a new specification or simply extend an
existing specification.
The component architecture allows complex
technical and design specifications to be split
into simply and easy-to-develop functional
components. This ‘divide and conquer’
approach eases the design and development of
specifications. Moreover, it improves the
granularity of design specification extensibility
and reusability of components among
specifications.

• Compatibility and transparency
The introduction of aspect oriented
programming in current design methodologies,
such as object-oriented, depends largely on how
easily it can be integrated with existing
technologies. It is therefore a major objective to
design the design language architecture in a way
that enables seamless transitioning towards the
aspect based programming paradigm. Most
early design proposals, for example, did not
consider the crosscutting concerns, a vital
requirement, and hence, ended up with solutions
that rely on a design consisting only of objects
and classes. Such software systems are
obviously very hard to introduce in a distributed
environment where security, caching and
logging are major concerns. Consequently, an

important goal here is to design an aspect based
architecture that allows transparent, and hence
seamless, application of design elements to the
software components. No change to the domain
specific functional components, systems and
applications, or the intermediate modules that
are not directly involved should be required.
Such transparent solutions have the advantage
that a partial transitioning from object oriented
design to aspect oriented design – where the
common but the more important concerns reside
are most effective – is possible.

• Commercial feasibility
Another important factor for the success of
aspect oriented design language is its
commercial viability. Many great technologies
have failed in the past simply due to a weak
business model. As a result, this work focuses
on a solution that has evident beneficiaries and a
likely commercial perspective.

The challenge is to develop an active design
language that enables third party development
of aspect based software applications. Breaking
the tight coupling between the design language
and the software development environments
decouples the role of the systems analyst from
the software vendor and thus opens up a new
competitive market for third party aspect
oriented design software. This is particularly
promising as unhindered competition typically
maximizes the cost-performance ratio of
products and specifications.

6 Work Outline Summary

This paper introduced the concepts of aspect oriented
programming and software development. It outlines how
the new methodology has emerged from traditional
object oriented methodologies as a result of the growing
demands of today’s software practitioners and
applications. Furthermore, it provides the motivation for
this line of research along with the main research
challenges of this study. The remainder of this work is
outlined as follows:

Initial work dealt with a comprehensive overview of the
current state-of-the art in the field by introducing related
work that is or has been under investigation at other
research institutions and universities. A special focus is
placed on research into aspect oriented software design
methodologies and enabling technologies. This work
concludes with an overview of current work on aspect
oriented applications and design language specifications.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

40

Next, work continued with the requirements analysis for
aspect oriented systems. The requirements are derived
from past experiences in object oriented and aspect
oriented programming paradigms of working in the
software industry and academics and a thorough study
of related work as well as other influencing factors, for
example commercial aspects such as the deployment of
new technologies. From these general requirements a
subset of requirements that form the basis for the design
of the AOSDDL design language architecture and
implementation is drawn.

After analyzing the requirements, AOSDDL design
language notations are defined. This central part of the
research work describes in detail how AOSDDL
operates and how the component based design
architecture enables handling of crosscutting concerns
through flexible integration and extensibility of design
functionality. In addition to the basic language design,
special focus is placed on the following key aspects:
components, distribution and weaving.

Accordingly, as a next step was the ongoing
implementation efforts of developing prototype design
constructs of the AOSDDL design language architecture
will be described. Due to the considerable extent of the
AOSDDL architecture, this work initially focused
primarily on validating the key aspects of the design
through a ‘proof-of-concept’ implementation.

It continues with a qualitative and quantitative evaluation
of AOSDDL and its prototype implementation. It
evaluates how the AOSDDL architecture satisfies the
objectives and requirements identified in the previous
phase based on a case study and several example
applications.

Finally, the research work concludes by drawing together
the main arguments of this work and summarizing the
contributions that have been made. It also describes
future work that could be carried out based on this line of
research.

7 Contributions
Here we summarize the main contributions and
achievements of the research carried out as part of this
work.

The overall goal of this work, namely to design a aspect
oriented design language that enables flexible
extensibility of requirements and design functionality,
has been successfully fulfilled in the form of AOSDDL
structure. The validation of the architectural design with
respect to its feasibility and practicality has been
accomplished through prototype implementations of the
AOSDDL architecture.

• Natural Extension to UML

• CASE Tool Support
• Extension of Architectural framework for

design constructs
• Enforcing Architectural Regularities
• Commercial Viability
• Implementation Support
• Software Development

8 Future Scope of Work
Besides the ongoing development efforts to complete the
AOSDDL prototype implementation[10], further work in
this area focuses on using and extending the AOSDDL
notation architecture and prototype platform in order to
build and experiment with design language specifications.

The code generators, tool integration and notation
deployment and are few examples of ongoing research
that take advantage of the AOSDDL architecture and
platform.

9 Conclusion
Several conclusions can be drawn from the development
of AOSDDL:

Enforcing Architectural Regularities

The problems encountered were not as a result of an
incorrect AOP design concept or idea in general but a
consequence of its particular implementation. AspectJ
being the only implementation available that is widely in
use and is still undergoing changes. The language was
not designed for the purpose of regulating architectural
decisions and thus lacks sufficient tools to accommodate
this task. The various design considerations regarding
distributed architecture are possible with design
constructs of AOP but it is their realization that caused
difficulties.

AOSDDL Features

- An approach for high level architecture design,
called AOSDDL, has been developed to enable
separation of concerns at the design level of an
AO development process. Within this approach
it is assumed that the requirements have already
been defined and specified during previous
development stages.

- Since AOSDDL is UML conform, any CASE

tool that supports UML modeling can be used.

- Aspects and base elements are completely kept
apart; they are connected via a special language-
specific connector element that encapsulates the
underlying implementation technology. Any
desired AO technology can be supported; it is

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

41

just the connector’s syntax and semantics that
have to be specified.

- Both, aspects and base elements, can be reused
separately as the connector is the only
crosscutting, language-dependent part. This sort
of encapsulation offers a logical grouping of all
classes belonging to one concern and eases the
readability of design models as avoiding
graphical tangling.

- To offer low-level architecture design support, a

code generator needs to be developed to
improve productivity and reduce errors when
mapping model to code.

The work can be seen as a first step towards a simple and
powerful modeling approach that fosters support from
existing CASE tools since it is based on standard UML.
AOSDDL in combination with the code generator should
make AOSD more usable and more efficient for software
development. The assumptions about the usefulness of
the notation and the AO code generation have to be
proven in the near future when using it in business
development projects.

10 References

[1] Aspect Oriented Programming.
 http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-
aspect.html , 2003
[2] Object Management Group (OMG). Unified Modeling
Language Specification. Version 2.0, Mar. 2003.
[3] Rambaugh, Jacobson Booch, UML Reference Manual.
Addison-Wesley, 1998.
[4] Aspect-oriented programming: http://aosd.net
[5] Siobhan Clarke and Robert J. Walker. “ Towards a
Standard Design Language for AOSD,” ACM Proceedings on
Aspect Oriented Software Development, (April 2002), pp. 113-
119.
[6] G. Kiczales, E. Hilsdale, J. Hugunin, M.Kersten, J. Palm
and W. Griswold. “ An overview of AspectJ,” ECOOP
Proceedings (2001), pp. 327-353.
[7] Palo Alto Research Center. http://www.parc.com/, 2003

[8] The AspectJ Team. The AspectJ programming Guide.
http://www.eclipse.org/, 2006
[9] IBM Research. http://www.research.ibm.com/, 2003
[10] IBM alphaWorks.
http://www.alphaworks.ibm.com/tech/hyperj, 2003.
[11] Wai-Ming Ho, Jean-Marc Jezequel, Francois Pennaneac’h
and Noel Plouzeau. “A Toolkit for Weaving Aspect Oriented
UML Designs, “ ACM Proceedings on Aspect Oriented
Software Development, (April 2002), pp. 99-105.
[12] Awais Rashid, Ana Moreira and Joao Araujo.
“Modularisation and Composition of Aspectual Requirements,”
ACM Proceedings on Aspect Oriented Software Development,
(2003), pp. 11- 20.

[13] Mika Katara, Shmuel Katz. “ Architectural Views of
Aspects, “ ACM Proceedings on Aspect Oriented Software
Development, (2003), pp. 1- 10.

