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Abstract 
 Since Magneto-rheological (MR) suspension has nonlin-
earity and time-delay, the application of linear feedback 
strategy has been limited. This paper addresses the prob-
lem of control of MR suspension with time-delay when 
transient dynamics are present. An adaptive fuzzy-neural 
network control (FNNC) scheme for the transient course 
is proposed using fuzzy logic control and artificial neural 
network methodologies. To attenuate the adverse effects 
of time-delay on control performance, a prediction neural 
network (PNN) is established. Then, through a numerical 
example of a quarter car model and a real road test with a 
bump input, the comparison is made between passive 
suspension and semi-active suspension. The results show 
that the MR vehicle with FNNC strategy can depress the 
peak acceleration and shorten the setting time, and the 
effect of time-delay can be attenuated. The results of road 
test with the similarity of numerical study verify the 
feasibility of the control strategy. 

1   Introduction 

Recently, semi-active vehicle suspension with MR damp-
ers has attracted more attention for its ability to improve 
the ride comfort of a ground vehicle [1]. However, MR 
suspension system always exhibits nonlinearity and time-
delay like other semi-active suspension [2]. The MR 
damper’s control forces are calculated according to the last 
response of vehicle in the traditional time-history analysis 
method, an inherent time-delay problem lies in the tradi-
tional method. Some studies have already shown the im-
portance of solving the time-delay in control systems [3]. 
When MR vehicle runs across a bump, one may feel vio-
lent jerk. The time span of vehicle running across the 
bump is so short that it is necessary to consider the adverse 
effect of time-delay on control performance. Therefore, a 
prediction neural network (PNN) is adopted in this paper 
to solve the problem. Due to the nonlinearity and uncer-
tainty of MR suspension, some intelligent control strate-
gies have been used to control the semi-active system [4]. 

Among them, the adaptive fuzzy-neural network control 
(FNNC) strategy has attracted increasing attention essen-
tially because it can provide a powerful learning technique 
for complex unknown plants to perform complex tasks in 
highly nonlinear dynamical environment, and can also 
have available quantitative knowledge from repetitive 
adjustment of the system with better performance than 
those of fuzzy control with constant rules bases [5], [6]. 
Hence, the FNNC strategy is also proposed to control MR 
suspension system. The organization of this paper is as 
follows: first, a quarter car nonlinear model with time-
delay was constructed; next, adaptive FNNC for MR sus-
pension system with time-delay is designed and a time-
delay compensator which is realized by PNN model is 
designed for overcoming the effects of time-delay in the 
closed-loop system; then the simulation is performed 
based on it; finally, the real road test is carried out to ver-
ify the actual control effectiveness. 

2 A Quarter Car Nonlinear Model with Time-
delay 

 
 
 
 
 
 
 
 
 

Fig. 1.  Quarter car model 

In studying dynamic systems, the terminology sprung and 
unsprung bodies are often used in dynamics literature to 
the two bodies of a quarter car model. Fig.1 shows an 
automobile nonlinear model using MR suspension system 
with time-delay. Where, the sprung body represented by 
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sm , and unsprung body denoted by um , are connected 
together by a linear spring and nonlinear MR damper with 
time-delay. The unsprung body is connected to a movable 
base. Then the dynamic equations can be written: 
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If new state variables are defined as: 
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where 1x  is the displacement of suspension, 2x is the abso-
lute velocity of sprung mass, 3x  the tire deflection and 4x  
is the absolute velocity of unprung mass.  
Then Equations (1)-(2) is formulated in a standard state 
space form without time-delay as: 

••

++= wLBuAxx  (3) 

Where u is the control damping force of MR damper, 
which is composed of velocity damping force and Cou-
lomb friction [7]. 

MRe FVCu +−=  (4) 

Where eC  is damping coefficient, MRF is controllable 
damping force and V is velocity of piston. 

If considering the time-delay of MR suspension system, 
the control force is )('

dttuu −= , dt is time-delay. 
Then Equation (3) can be written: 

••

+−+= wLttBuAxx d )(  (5) 

3 Adaptive Fuzzy-neural Network Controller 
Design Considering the Time-delay of MR 
Suspension System 

A schematic of the adaptive fuzzy-neural control system 
with time-delay compensation is shown in Fig.2. The con-
troller consists of two parts. One is the FNNC, which cal-
culates the control force according to error and the change 
of the error, the other is the PNN, which is the neural net-
work model of the predictor for the MR suspension with-
out time-delay. The MR suspension with time-delay is 
expressed as sesG τ−)( . )(sG  is a transfer  

 
 
 
 
 
 
 
 
 
Fig.2 Fuzzy-neural network control system with time-
delay compensator 
function which can be transformed through Equation (3) , 
and the input is control damping force of MR damper, the 
output is vertical vibration acceleration of car body, the 
disturbance is road input. 

3.1 FNNC Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Neural network model of FNNC 

As shown in Fig.3, the FNNC system is characterized by 
premise and consequence. The premise consists of two 
layers, the first layer is the fuzzy input linguistic vector 

Tee ),( Δ  and the second is to fuzz the input linguistic 
vector, which contains 14 neurons corresponding to 14 
fuzzy sets of two linguistic variables. Seven fuzzy sets of 
one input linguistic variable are 

},,,,,,{ PBPMPSZENSNMNB . The Gaussian 
membership functions with equal width intervals of the 
means are thus proposed to eliminate the sharp boundary 
and are defined: 
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In which, 7=l , kz  and kσ  are the mean and variance of 
the Kth Gaussian membership function )(zkμ , respec-
tively. 
The third layer contains 49 neurons to realize fuzzy rea-
soning. The output from the FNNC system in the last layer 
can be expressed as: 
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Where 49=nR  and )()( 21 eAeA iii Δ∗∏=μ  
Weights of the last layer are tuned by back propagation 
algorithm. The error between expected output )(tyd and 
actual output )(ty  with time-delay is: 

∑ −= 2))()((
2
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Then weights modified as: 
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In which η  and ξ  are learning factor and momentum 
factor and 
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To achieve good control performance, a simulink model is 
formulated based on the equation (5) with a bump input, 
which is acquired by measuring the real bump road signal, 
and used in the teaching signal generation. The genetic 
algorithm is adopted to search out the best control force 
for the MR damper that minimizes the fitness function (10). 
The control rules and the shape of each input/output mem-
bership function are tuned by learning from the teaching 
signal generated by the genetic algorithm. A trade-off is 
assumed between ride comfort and stability of the car body 
to choose an ideal control force. A reasonable fitness func-
tion is selected as follows: 
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Where a represents the weighting factor, T is simulation 
time. 

3.2 Time-delay Compensation 

The principle of the compensator PNN in Fig.4 is based on 
the smith predictor [8]. PNN can be realized using a back 
propagation network with four layers and nodes N1-N2-
N3-N4 (In this paper, N1=4, N2=8, N3=8, N4=1). The 
mapping relationship of the model is described as: 
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Where m and n denote the orders of MR suspension sys-
tem, and defining: 
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Fig.4. Neural network model of PNN 

The activation functions in the last three layers of the PNN 
are respectively: 
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The output of conventional control system with the time-
delay dt  is 
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The output without time-delay is: 
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Where }{1 •−L is the inverse Laplace transform. 
The predicted value of the output of the MR suspension 

system without time-delay is given by the neural network 
model PNN and used to realize a compensating control. 
The PNN network is trained by the sequence of the input-
output samples. Using the same mapping network as (7), 
we can obtain the predicted value of the output without 
time-delay as follows: 
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The compensating error is 

)1()1(
_

+−+= tytye τ  (18)

Off-line and on-line learning algorithms can be used to 
modify the weights of PNN network. The off-line learning 
results of the PNN can be used as a reference model of 
MR suspension system. The weights of PNN are modified 
by the index (18) using the principle of error gradient 
descent. The learning algorithms for the PNN are de-
scribed in the following: 
If defining 
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Then weights of PNN can be modified as: 
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In which, )3,2,1(, =∈ igh ii  are learning factors and 
momentum factors respectively. 

4 Simulation 

The nominal parameters for these simulations are 
ks=15000N/m, kt=116900N/m, mu=25.9Kg, 
ms=264.2Kg,cs=1000Ns/m. These parameters used in the 
simulation of the genetic algorithm are population 
size=100, mutation probability=0.2, crossover probabil-
ity=0.1. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.  Acceleration time history of car body 
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The simulation result is shown in Fig.5. It can be seen that 
MR suspension employing FNNC with PNN or FNNC 
without PNN reduces the vertical vibration acceleration 
and adjusting time of car body compared to the passive 
suspension. The adjusting time of two strategies is almost 
the same. However, the peak value of FNNC with PNN is 
smaller than that of FNNC without PNN, which indicates 
that FNNC with PNN achieves better performance than 
FNNC without PNN. 

5 Road Test 

 
 
 
 
 
 
 
 
 

Fig.6.  Real time control system  

To verify the actual control performance, the control sys-
tem based on dSPACE, which consists of DS1005 PPC 
board, DS2002 multi-Channel A/D Board and DS2102 
high-resolution D/A Board, is fabricated in Fig.6. Mazda 
323 is selected as experimental car. Four MR shock ab-
sorbers are used to replace the passive ones. Four acceler-
ometers are placed on carriage’s foursquare floor to record 
the vertical accelerate signal of sprung mass. Other four 
accelerometers are placed on two axis of vehicle to record 
the vertical acceleration signal of unsprung mass. Every 
seat has a passenger to simulate the condition of full load. 
The test car is driven straight down an arc road with the 
same dimension of the simulation at speed (20km/h). The 
experimental result is shown in Fig.7. Some similar con-
clusions with that of the simulation can be drawn. MR 
suspension using FNNC with or without PNN can both 
depress the vibration of car body and reduces the peak 
acceleration and shorten adjusting time. The FNNC with 
PNN is more effective than the FNNC without PNN in 
improving the ride comfort. Due to model error of simpli-
fication, it can also be seen that the experimental data is 
smaller than the simulated, and experimental arc road is 
superposed on random road. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 

 

Fig.7.  Acceleration time history of car body 

6 Conclusion 

The MR suspension with time-delay is proposed and stud-
ied. For vibration control of the MR suspension system, a 
FNNC is designed. Time-delay of MR suspension is com-
pensated by PNN. The performances of the suspension 
system under bump input are evaluated through computer 
simulation and road test. Both the result of simulation and 
that of road test show that the MR suspension system us-
ing FNNC can substantially reduce vertical peak accelera-
tion of car body, shorten adjusting time and improve ride 
comfort. The MR suspension system using FNNC with 
PNN can achieve better control performance than that 
using FNNC without PNN. 
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