
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

72

An Incident Response Support System

 Gianluca Capuzzi,† Egidio Cardinale††, Ivan Di Pietro††† and Luca Spalazzi††††,

Università Politecnica delle Marche, Via Brecce Bianche, 1, Ancona, 60131, Italy

Summary
Computer and network security can be improved by three
kinds of tools: tools for intrusion prevention, tools for
intrusion detection, and tools for incident response. Many
systems have been proposed and developed for the first two
kinds of tools. Concerning the third, as far as we know, the
response plan is still left to the security manager: no
automatic tools have been developed. Indeed, even if there
exist forensic analysis, data recovery, and system upgrading
tools, we do not yet have a comprehensive tool which
includes log correlation, attack classification, and response
plan generation. Our work deals with a Case-Based
Reasoning system (called IRSS) that classifies attacks,
looks in a case base for past attacks similar to the current
one (according to given similarity metrics), and reuses the
past response plans (adapted to the current attack) in order
to restore normal conditions and improve network security.
This paper provides an overview of the system and primarly
focuses on the incident retrieval (attack classification)
phase.

Key words:
IDS, Network Security, Attack Recognition.

Introduction

Computer and network security can be improved by three
kinds of tools: tools dealing with prevention (e.g., firewall),
tools dealing with detection (e.g., intrusion detection
systems - IDS), tools dealing with response. Many systems
have been proposed and developed for the first two kinds of
tools. Concerning the third one, there are a lot of tools that a
security manager can use for incident response: tools for
recovering compromised data (e.g., back-up tools), tools for
upgrading system security (e.g., patch management tools,
intrusion prevention systems), tools for removing the attack
(e.g., system management tools, anti-viruses). Nevertheless,
as far as we know, no automatic tools for planning a
response and for coordinating all the previous tools have
been proposed. Which, when, and how the previous tools
must be used to respond to an attack is still left to the
security manager’s past experience. The related work on
this topic is still limited to the definition of criteria and
policies that must be applied by security managers (e.g., see
[5]). Therefore, the aim of our work is focused on tools for
incident response planning. Incident response can be
defined as the

detection and the identification of an attack to a computer
system, the implementation of appropriate responsive
actions until normal conditions have been restored.
Therefore, the tool we propose (that we call Incident
Response Support System - IRSS) must be integrated with
other tools dealing with security as firewalls, IDSs, (web,
ssh, ...) servers, and so on.
First of all, let us define some concepts we use in the rest of
the paper: An event is a detectable atomic action performed
by an attacker against a given target; e.g., a TCP SYN
packet sent to a host. An attack is a sequence of events; e.g.,
a SYN Flooding (sending a great number of packets to a
single port). In our approach, the incident response can be
planned in three distinct phases. The first phase deals with
intrusion detection. This means collecting data from several
sensors on the network and on computers, e.g., log files of
operating systems and system servers, firewalls, (network-,
host-, application-based) IDSs. The second phase deals
with incident assessment (alarm correlation). This means
correlating all the data collected in the previous phase to the
end of providing an attack description in terms of sequence
of events as complete as possible. The third phase deals
with planning a response to attacks. These plans must
contain the following kinds of action:

•Actions for collecting more data about attacks. This
implies the possibility of managing sub-goals and
corresponding sub-plans (hierarchical planning).

• Actions for restoring normal conditions (e.g., for
recovering the compromised data).

• Actions for improving the security level of the system
(e.g., feedback to firewalls, NIDS, and HIDS, feedback to
security manager, patch management, and so on).

• Actions for communicating with all the involved parties
in order to inform them of the attack.

In our approach, the response planning can be
accomplished by means of case-based reasoning. In the
case memory we have the past attacks and their
corresponding response plans. This allows us to have a tool
capable of reacting based on previous experience,
eventually modifying previous plans, and learning new
response plans to even new kinds of attacks. The
architecture of IRSS has been proposed in [20].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

73

Fig. 1 The architecture of the IRSS.

This paper principally focuses on the incident retrieval
phase of the case-based reasoner and on the experimental
result about this phase. Indeed, this is the part of the system
that search in the case memory for the closest past case to
the current sequence of correlated events. This part is
obviously useful for finding a response plan that can be
used, after an appropriate adaptation, for responding to the
current attack, but it is very important for recognizing the
kind of attack (attack classification), as well. The paper is
structured as follows. Section 2 provides a system overview
and the related work. The case memory is described in
Section 3. The next sections deal with the specific modules
of IRSS: namely, Section 4 deals with Incident Assessment
and Response Retrieval, Section 5 with Response
Adaptation, Execution and Retainment. In Section 6, we
report some experimental results. Some Conclusions are
drawn in Section 7.

2. System Overview

Case-based reasoning and planning is known to be
extremely useful in exploiting past experience in several
application domains (e.g., see [1], especially in the
diagnosis and the management of different kinds of
emergency [2; 3; 12; 10; 13]. For instance, [2] deals with
alarm correlation, but these are fault alarms, not intrusion
alarms, and the goal is to obtain a fault tolerant network, not
a secure network. As far as we know, only a few examples
of CBR applied to network and computer security. All these
examples concern the application of CBR to intrusion
detection (see [6; 19]). We have just an example of
application of CBR to incident response [Nick et al., 2003].
There the goal is to improve detection and to avoid the need
of frequently updating the database of known attacks. The
internal structure of IRSS is depicted in Figure 1 and
follows the standard structure of a case-based reasoner (e.g.,
see [1]). IRSS includes a case base which contains a set of
past incidents (attacks) with their responses (plans). Attacks
are represented as event sequences and response plans are
represented as partially ordered sets of actions (for our
experiments we use Linux scripts). IRSS senses by means
of so called agents log data from operating systems, web

servers, IDSs, and firewalls. These data must be normalized
by agents since each log file has its own format.
Furthermore, they must be also filtered by agents, since log
files of an operating system or a web server contain attack
alarms as well as data that do not concern attacks. This is a
standard practice for secure systems [4], therefore we do
not further describe it. All the data collected by agents are
sent to the incident assessment

Event Type Sensor Source Target
One to many
horizontal scan NIDS2 207.46.176.50 172.16.113.84:80
WEB-CGI redirect
access NIDS1 207.46.176.50 172.16.113.84:80
WEB-CGI redirect
access NIDS1 207.46.176.50 172.16.113.84:80

Fig. 2 An example of attack.

module. This module is in fact a log correlator. Namely, it is
a tool that correlates alarms in order to find a sequence of
events representing the same attacks. Alarm correlation is
not new and several approaches have been proposed:
statistic correlation [11], Bayesian correlation [18],
correlation based on pattern matching [17]. Because of this
module is based on the work described in [17], we refer the
reader to [17] for a detailed description. After that, for each
sequence of correleted events is computed the sum of the
entropy of all the events in the sequence. Only the
sequences with an entropy greater than a given threshold
are considered real attacks. This step aims to avoid to
respond to very common and not significative sequences as
sequences of portscanning or ping. The sequences that are
considered real attacks must be compared with the
description of past attacks in order to retrieve the most
similar past attack of the current one, and reuse the
corresponding past response plan (after an appropriate
adaptation). This phase is called Response Retrieval. We
use four similarity metrics. Two of them are simple but
effective similarity metrics based on pattern-matching. The
other ones are based on the entropy of attacks. The response
retrieval module selects the top ranked case with a
similarity greater than a given threshold. The Response
Adaptation tries to adapt the retrieved response (plan) to the
current incident. Notice that, the adaptation process can not
be completely automatic. Indeed, the security manager
must have the possibility to validate the plan and eventually
to modify it, when it is needed. The Response Execution
subsystem is devoted to execute the adapted and validaded
plan, monitor its execution, and receive the feedback from
the security manager (that evaluates the execution). Finally,
the Response Retainment module decides whether the
executed response must be retained (and thus the case
base must be updated) depending on the received feedback.
Notice that in this way, IRSS learns new responses to new
kinds of attack.

Sensor 1

Sensor 2

Sensor n

…

Incident
assesment

Response
retrieval

Response
adaptation

Response
execution

Response
retain

Case
memory

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

74

3. Case Memory

A case consists of a pair: attack (i.e., a sequence of events),
response (i.e., a partially ordered set of actions). The
outcome of the Incident Assessment module should be a
sequence of concrete events. For example, Figure 2 reports
an example of attack to a Web Server. It consists of three
events: the detection of the horizontal scanning, and the
detection of two web server attempts. For each event, the
report of the current attack includes: attack source and
target IP addresses, timestamp, and event descriptions (i.e.,
the event type). Nevertheless, we cannot use attacks as they
are, but we must use their abstractions.

ID Event Type Sensor Source Target PLAN
One to many horizontal
scan NIDS2 int/ext any:any
One to many horizontal
scan NIDS2 int/ext any:any

Info FTP bad Login NIDS2 int ftpserver:ftpport

Case
1

Info FTP bad Login NIDS2 int ftpserver:ftpport

Plan1

WEB-CGI redirect
access NIDS1 ext any:any
WEB-CGI redirect
access NIDS1 ext any:any
WEB-CGI redirect
access NIDS1 ext ftpserver:ftpport

Case
2

WEB-CGI redirect
access NIDS1 ext ftpserver:ftpport

Plan2

One to many horizontal
scan NIDS1 int/ext any:any

WEB-MISC/doc/access NIDS1 int/ext any:any

WEB-MISC/doc/access NIDS1 int/ext ftpserver:ftpport

Case
3

WEB-MISC/doc/access NIDS1 int/ext ftpserver:ftpport

Plan3

Many to one NIDS2 int/ext any:any

SNMP Request udp NIDS2 int/ext any:any

SNMP Request udp NIDS2 int/ext any:any

Case
4

SNMP Request udp NIDS2 int/ext any:any

Plan4

Figure 3: A fragment of the Case Memory.

Therefore, the Incident Assessment transforms a concrete
attack in an abstract attack before it sends the attack to the
Response Retrieval module. Consider an example, let us
suppose that in the past we had an event of the kind Apache
exploit with a given IP number (say 172.16.113.84) as target
address. Let us suppose that the current event is an Apache
exploit on a different IP number (say 192.168.0.3). It seems
quite natural to consider these two events similar (they have
the same event type) and to reuse the past response, even if
these two events are not identical (they have a different
target). Event abstraction is the tool to find similarities
without taking into account irrelevant details. In short, it
consists of substituting some values as source and target
with their type and some values as start and end time with a
partial order relation. For example, if the IP number

172.16.113.84 is the address of a web server, we can
substitute the number with the keyword webserver. Formally,
let e = < event_type, source, target, start, end > be an event,
then Abs(e) = < event_type, source type, target type, ., .> is
the abstraction of e, Type(e) = event type is the event type
of e, and T (e) = start is used to define the order relation. Let
I = (e1, . . . , en) be an attack, then Abs(I) = <
Abs(e1), . . . ,Abs(en) > is the corresponding abstraction of I
and Type(I) = < Type(e1), . . . , Type(en) > the
corresponding sequence of event types of I. In fact, attacks
in the case memory are abstract attacks (e.g., see Figure 3).
To abstract cases, we used a set of pairs, which associate a
description of hosts and servers in the network with their IP
addresses. In fact, these pairs represent the network
configuration and are stored in a configuration file.

4. Response Retrieval

The Incident Assessment output is a list of abstract attacks.
This list contains noise, i.e., non-relevant attacks. These
attacks must be removed from the list. Therefore, we use a
filter before the retrieval module. This filter is based on the
well-known notion of Information Entropy. Indeed, an
event that occurs frequently (e.g. an ICMP echo request)
usually is not really dangerous and, thus, its detection
provides us a little information. Therefore, for each event
type t, we compute the probability p(t) (based on the
occurring frequency) that such a type of event occurs and,
thus, we can compute its entropy as follows:

wt = - log2 p(t) (1)

When we detect a sequence composed only by non-relevant
events, we are not facing a real dangerous attack. Therefore,
for each sequence of events I = < e1, ..., en > we can
compute its entropy as follows:

The filter eliminates all the attacks I such that H(I) <
threshold. Now, the Response Retrieval has to retrieve past
attacks similar to the attack that passed the filter. Response
retrieval can be achieved by means of four different
similarity functions. They are defined as follows:

Definition 1 Let Ic = < ec,1, . . . , ec,n > be the current
attack,let Ik = <ek,1, . . . , ek,n> be the attack of the k-th
case in the case memory, let Type(Ic) and Type(Ik) be the
sequence of event types of Ic and Ik, respectively. Let

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

75

 be the number of how many times t occurs in in
Type(Ic) (Type(Ik)). Let

be boolean functions that are true when Ic (Ik
respectively)has at least an event whose event type is t. Let
wt the entropy of the event type t. Then:

(3)

 .
(4)

(5)

(6)

F1(Ic, Ik) counts how many abstract events Ic shares with
Ik. This number is normalized with respect to the number
of events of Ic, the current incident. On the other hand,
F2(Ic, Ik) counts the number of event types shared by Ic
and Ik. In other words, it considers one event per type. For
example, let Type(Ic) = <A,B,B,C> the current incident
and Type(Ik) = <A,B,C,D> the k − th incident in the Case
Memory, where A,B,C,D are the event types of the
corresponding events. If we apply F1, we obtain as result
0.75; otherwise, applying F2 we obtain 1. This is due to
the fact that it counts each event type once. Notice that, F3
(F4) is similar to F1 (F2), but it also take into account the
entropy of each event type. As a consequence, these
functions have a discriminating power better than F1 and
F2.

Definition 2 Let Ic be the current incident, let
KB={I1, . . . , Ih} be a set of past incidents, then
Simx(Ic,KB) = KB is the most similar past incident of
Ic (according to the similarity function Fx(., .)), and it is
defined as follows:

 (7)

According to this definition, the procedure to find the most
similar past incident is based on pattern matching. When a
new attack occurs, the pattern abstracted by this attack (i.e.,
the abstract sequence of events) is compared with patterns
in the case memory (the abstract sequence of past events)
until a match is found. Consider the attack reported in
Figure 2 and the case memory depicted in Figure 3. Let us
suppose to use F1(., .) as similarity function, then we obtain
that F1(Ic,Case1) = 0.33, F1(Ic,Case2) = 0.66, F1(Ic,Case3) =
0.33, and F1(Ic,Case4) = 0. Therefore, we select the incident
Case2 as the most similar of the current one. On the other
hand, applying F2(., .), we obtain F2(Ic,Case1) = 0.5,
F2(Ic,Case2) = 0.5, F2(Ic,Case3) = 0.5, and F2(Ic,Case4) = 0
Finally, let us suppose that the entropy of the first and
second event type of Figure 2 are 1 and 4, respectively.
Applying the other retrieval functions, we obtain
F3(Ic,Case1) = 0.11, F3(Ic,Case2) = 0.89, F3(Ic,Case3) =
0.11, and F3(Ic,Case4) = 0 and F4(Ic,Case1) = 0.2,
F4(Ic,Case2) = 0.8, F4(Ic,Case3) = 0.2, and F4(Ic,Case4) = 0.

5 Response Adaptation, Execution and
Retainment

After Response Retrieval, we have the most similar past
incident of the current incident. As a consequence, we have
that the response to the past incident can be used (after an
appropriate adaptation) for the current incident, as well.
The system uses two different plan representations: the
representation of the current response, i.e., the
representation for the plan that is developed in response to
the current attack; and the representation of the past
response, i.e., the representation for the plan stored in the
case memory. A past response plan consists of a partially
ordered sequence of action types (e.g., see below the
response plan of incident Case2 in Figure 3).

Firewall block <IPaddress>
Send mail to <webmaster>
Update <webserver>
Firewall unblock <IPaddress>

Each action type denotes a set of actions with the same goal
but that can be applied to different software platforms (i.e.,
actions for collecting data, for restoring normal conditions,
for improving security, for communicating). Therefore,
IRSS has an action table where for each action type we
have a set of possible concrete actions, i.e. actions that can
be automatically executed. For each concrete action, we
have a set of preconditions hat must be true in order to
apply that action. For example, the action type Firewall block
hIPaddressi of the previous example has the following set of
concrete actions:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

76

access-list filterlist deny ip <IPaddress> any,
iptables -I FORWARD -i eth0 -s <IPaddress> -j REJECT.

The latter requires as precondition that the target of the
attack is protected by a firewall Iptables. The current
response plan consists of a partially ordered sequence of
concrete actions, that is a script that can be immediately
executed. As a consequence, the adaptation process must be
accomplished in two steps. The first step has the goal of
making concrete the action types. This means that for each
action type in the past plan, the adaptation module looks at
the action table for the corresponding set of concrete
actions. For each concrete action, the module evaluates the
preconditions and selects a concrete action with true
preconditions. This concrete action substitutes the
corresponding action type in the plan. At the end of this step,
we have a plan with only concrete actions. The second step
has the goal of substituting the abstract parameters with
their current values. For instance, keywords like webserver
in attributes source and target with current IP addresses and
port numbers. The final result is a concrete plan that can be
executed. In other words, a past plan represents the
response strategy for all the attacks that are similar each
others, the concrete plan represents the actions that must be
executed to respond to the current attack. After that, the
response plan is submitted to the security manager to be
validated. Therefore, according to our approach, even if
IRSS suggests a response plan, it will be the security
manager (i.e., who has the legal responsibility of the
system) to have the final decision. Notice that, this is the
approach used in several diagnosis/recovery systems (e.g.,
in medicine [13], in fire emergency [3]). A validated plan is
thus executed. After its execution, the security manager can
evaluate the results and decide whether this plan must be
retained. Case retainment consists of storing the abstract
version of the current incident and a plan obtained
substituting concrete actions and current parameters with
the corresponding action types and abstract parameters. Let
us consider our example, the case retrieved is Case2; this
attack is a sequence of events generated when attempts are
made to gain unauthorized access to a CGI application
running on a WEB Server. Some applications do not
perform strict checks when validating the credentials of a
client host requiring the services of a server. This can lead
to unauthorized access and possibly gain the privileges of
the administrator. The corrective action is the response plan
associated to Case2 and reported above. The first and the
last actions break the connection to the attacker to limit
damages. The first instruction consists of blocking the
connection to the attacker to limit damages until the
security level is improved. The connection is unblocked in
the last action. The second instruction consists of informing
(e.g., sending an e-mail or a SMS via the GSM system) the
web master and/or all the people to which concern the
incident. The third instruction consists of eliminating the
vulnerability. This means installing patches or up dating the
systems (e.g., operating systems, security systems, etc.).

The past plan reported above must be adapted to the current
incident, therefore the adaptation module apply the
previously described method. As a consequence of the fact
that the web server is Apache, the firewall is Iptables, and
the operating system is Linux, the adaptation module
selects the concrete actions. Furthermore, the abstract
parameters of the past plan must be substituted with the
current parameters of the current case (e.g., the IP address
172.16.113.84:80). The result of the adaptation process is
reported below.

iptables -I FORWARD -i eth0 -s 172.16.113.84 -j REJECT
mail > webmaster@mail.it < attackfile
apt-get update Apache
apt-get upgrade Apache
iptables -D FORWARD -i eth0 -s 172.16.113.84 -j REJECT

Now the security manager has to validate the plan and
eventually modify it. After that he/she can execute the plan.

6. Experimental Results

We performed a set of experiments to evaluate the
effectiveness of IRSS in classifying and retrieving attacks.
We measured the effectiveness with two well known
indices as recall, and precision. They measure the system
capability of recognizing the right attacks and, thus, finding
the most appropriate responses (among all the responses in
the case base).

 (8)

 (9)

Recall is the ratio between the number of attacks that have
been correctly recognized (||A||) and the number of attacks
that should have been recognized (||B||). Precision is the
ratio between kAk and the number of all the retrieved (||C||).
We used the DARPA Data Sets [MIT Lincoln Laboratory,
1999], a standard for experimenting computer and network
security tools. They consist of 125,950 log messages
gathered by different kinds of sensor in two weeks, installed
on a test network. During this period, the system has been
attacked several times (||B|| = 53). Some of these attacks are
repeated. We used these data as input of IRSS. Initially, the
case memory was empty. Everytime a new attack has been
detected, its description is used as input of the retrieval
module. If a past case with a similarity greater than a given
threshold has been retrieved, the counter of the retrieved
attacks (||C||) is improved. If it has been recognized as the
right attack, the counter of the recognized attack (||A||) is
improved, as well. When no similar attacks were retrieved
in the case memory, the current attack has been retained.
We repeated these experiments for each similarity metric
presented in Section 4 and with two different thresholds

Recall

Precision

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

77

(0.6 and 0.7). The results of our experiments are very
promising and are reported in Table 1. We have the best
results with the similarity metric F4. We have also obtained
good performances. Indeed, the fourth column of Table 1
reports the time the retrievalmodule needed for classifying
all the 53 attacks. Our results are influenced by the number
and the goodness of the sensors. Hence, as future work, we
think to experiment IRSS with a greater number of sensors.
Similarity Threshold Recall Precision Time

F1 0.7 54.72% 93.55% 49sec
F2 0.7 77.36% 95.35% 44sec
F3 0.7 56.60% 93.75% 111sec
F4 0.7 81.13% 93.48% 95sec
… 0.6 84.90% 91.84%

Tab. 1 Experimental results

7. Conclusions

Our work deals with a system to support the incident
response activities of a security manager. Even if there exist
a lot of tools to use for incident response, they usually are
focused on specific activities. Which activities, when, and
how we have to do is left to security manager’s experience
and to specific documentation about practices [5].
Furthermore, according to international security standards
[8], each security manager has to define the security
procedures that must be applied inside the company.
Therefore, in our opinion, an automatic tool that suggests
response plans depending on attacks goes towards the
definition of such procedures. Obviously, these
procedures must be defined according to the previous
experience and must be adapted when new kinds of attacks
are detected. Indeed, as can be noticed in the DARPA
experiments [14], it is infrequent to have twice the same
attack, but it is very common to have several “similar"
attacks. These three characteristics (experience based
reasoning, similarity based retrieval and learning) are
typical of case based reasoning. For this reason, we based
IRSS on CBR. Usually, in AI planning, there is a neat
distinction between the role played by the user and the role
of the planner. Indeed, usually, the user is who submits the
goal to the planner, the environment sets the initial
conditions, and the planner is the system that finds the
solution. This approach can not be followed in the incident
response domain. As a matter of fact, we must consider
incident response as a joint, human and machine, planning
process [3]. All these characteristics allow the system to be
able to learn new responses (even for new kind of attacks)
from its experience and to be improved by the evaluation of
the security manager. The definition and implementation of
this tool is our long term research goal. Currently, we have
developed a first prototype and we have experimented the
retrieval phase with the DARPA Data Set. In this paper, we
report the results of these experiments. From these
experiments, we have two first important results. First of all,

it arises that case-based reasoning can be used to classify
attacks: this is a good result. Second, we obtained an
experimental evidence (see Table 1) of the intuitive notion
that the most important event is that with the greatest
entropy. This can be used to furtherly improve all the
algorithms used in IRSS. As a future work, we have also
planned to experiment the Response Adaptation and
Response Retainment models, as well.

References

[1] A. Aamodt and E. Plaza. Case-Based Reasoning:
Foundational Issues, Methodological Variations, and
System Approaches. AI Communications, 7(1):39–59,
1994.

[2] N. Amani, M. Fathi, and M. Dehghan.A Case-Based
Reasoning Method for Alarm Filtering and Correlation in
Telecommunication Networks. In Proceedings of the
Electrical and Computer Engineering, pages 2182–2186,
Canada, May 2005.

[3] P. Avesani, A. Perini, and F. Ricci. Interactive
case-based planning for forest fire management. Applied
Intelligence, 13(1):41–57, 2000.

[4] Computer Associates CA. Security Command Center,
2005.
http://www3.ca.com/Solutions/ProductsAZ.aspxhttp://ww
w3.ca.com/Solutions/ProductsAZ.aspx.

[5] CERT Coordination Center. Responding to Intrusions,
2001.
http://www.cert.org/securityimprovement/modules/m06.ht
ml.

[6] M. Esmaili, R. Safavi-Naini, B. Balachandran, and J.
Pieprzyk. Case-Based Reasoning for Intrusion Detection.
In Proceedings of the 12th Annual Computer Security
Applications Conference, pages 214–223, December 1996.

[7] A. Hätälä, C. Särs, R. Addams- Morning, and T.
Virtanen. Event Data Exchange and Intrusion Alert
Correlation in Heterogeneous Networks. In Proceedings of
8th Colloquium for Information Systems Security
Education,West Point NY, June 2004.

[8] International Organization for Standardization.
ISO17799/BS7799, 2002.
http://www.iso17799software.com/http://www.iso17799so
ftware.com/.

[9] J. A. Iyer and P. Bhattacharyya. Using Semantic
Information to Improve Case Retrieval in Case-Based
Reasoning Systems. In Proceedings of International
Conference on the Convergence of Knowledge, Culture,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

78

Language and Information Technologies, Alexandria,
Egypt, December 2003.

[10] J. W. Chung J. Yun, S. Ahn. Fault diagnosis and
recovery scheme for web server using case-based
reasoning. In ICON ’00: Proceedings of the 8th IEEE
International Conference on Networks, page 495,
Washington, DC, USA, 2000. IEEE Computer Society.

[11] C. Kruegel and G. Vigna. Anomaly Detection
ofWeb-based Attacks. In Proceedings of the 10th ACM
Conference on Computer and communications security,
pages 251–261,Washington D.C., October 2003. ACM
Press.

[12] L. Lewis. A Case-Based Reasoning Approachto the
Management of Faults in Communications Networks. In
Proceedings of the 12th Annual Joint Conference of the
IEEE Computer and Communications Societies, volume 3,
pages 2191–2204,March 2003.

[13] B. Lòpez and E. Plaza. Case-based planning for
medical diagnosis. In ISMIS ’93: Proceedings of the 7th
International Symposium on Methodologies for Intelligent
Systems, pages 96–105, London, UK, 1993.
Springer-Verlag.

[14] DARPA MIT Lincoln Laboratory. DARPA Intrusion
Detection EvaluationData Sets, 1999.
http://www.ll.mit.edu/IST/ideval/index.html

[15] M. Nick, B. Snoek, and T. Willrich. Supporting the IT
Security of eServices with CBR-Based
ExperienceManagement. In Proceedings of 5th

International Conference on Case-Based Reasoning
Research and Development (ICCBR 2003), volume 2698,
Trondheim Norway, June 2003.

[16] Sankar K. Pal and Simon S. K. Shiu. Foundations of
Soft Cased-Based Reasoning. Wiley, 2004.

[17] F. Valeur, G. Vigna, C. Kruegel, and R. Kemmerer. A
Comprehensive Approach to Intrusion Detection Alert
Correlation. IEEE Transaction on Dependable and Secure
Computer, 1(3):146–169, July– September 2004.

 [18] Y. S. Wu, B. Foo, Y. Mei, and S. Bagchi.
Collaborative Intrusion Detection System (CIDS): A
Framework for Accurate and Efficient IDS. In Proceedings
of the 19th Annual Security Applications Conference, pages
234–244. IEEE Computer Society, 2003.

[19] E. Yilmaz, S. Stoecklin, and D. G. Schwartz. Toward
a Generic Case-Based Reasoning Framework Using
Adaptive Software Architectures. In IKE, pages 512–514,
Las Vegas, Nevada, June 2003.

[20] G. Capuzzi, L. Spalazzi,F.Pagliarecci,``IRSS: An
Incident Response Support System'', in CTS Workshop on
Collaboration and Security (COLSEC'06)}, Las Vegas,
Nevada, May 14-17, USA, IEEE Computer Society Press,
Los Alamitos CA, USA, 2006.

Luca Spalazzi is associate
professor at the Università
Polietcnica delle Marche. He
received the M.S. in Electronic
Engineering and the Ph.D in
Artificial Intelligent Systems from
the University of Ancona, Italy in
1989 and 1994, respectively. He has

worked as consultant at the Istituto di Ricerca Scientifica
e Tecnologica (IRST), Trento, Italy. He was a visiting
scholar at the Australian Artificial Intelligence Institute
(AAII), Carlton, Vic., Australia and at the Computer
Science Department, Stanford University, California. His
present research areas include Computer and Network
Security, Case-based Reasoning, and Multi-agent Systems.

Gianluca Capuzzi is a Ph.D student
at the Università Politecnica delle
Marche. He received the M.S. In
Electronic Engineering from the
Università Politecnica delle Marche
in 2004. His reserach areas include
Computer and Network Security and
Case-based Reasoning. He was a
visiting scholar at the SRI

International, Menlo Park, California.

Egidio Cardinale is a Ph.D student at the Università

Politecnica delle Marche. He received
the M.S. In Electronic Engineering
from the Università Politecnica delle
Marche in 2005. His reserach areas
include Computer and Network
Security and Case-based Reasoning.

Ivan Di Pietro is a Ph.D student at
the Università Politecnica delle
Marche. He received the M.S. and
the B.S. in Computer Engineering
from the Università Politecnica
delle Marche, in 2006 and 2004,
respectively. His reserach areas
include Computer and Network
Security and Case-based Reasoning.

