
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

83

Manuscript received September 5, 2006.
Manuscript revised October 25, 2006.

High Performance Pattern Matching Algorithm for Network
Security

Yang Wang and Hidetsune Kobayashi

Graduate School of Science and Technology, Nihon University, Tokyo, Japan

Summary
Many network security applications rely on pattern matching to
extract the threat from network traffic. The increase in network
speed and traffic may make existing algorithms to become a
performance bottleneck. Therefore, it is very necessary to
develop faster and more efficient pattern matching algorithms in
order to overcome the troubles on performance. In this paper, we
present a new pattern matching algorithm. The improved
algorithm and its working process are described in detail.
Together with a new concept of reference point, a two-
dimensional array redesigned based on novel generated rules in
the pre-processing phase, endorse the algorithm a better
performance and more efficient. The algorithm also passed tests
and is validated. Our experimental results, the average
performance of English text and network traffic can be improved
up to 24% ~ 31% compared to Boyer-Moore algorithm.
Key words:
pattern matching, Boyer-Moore algorithm, network security,
network intrusion detection

Introduction

Network security applications such as firewall, Network
Intrusion Detection Systems (NIDS), virus scan software,
anti-spam software, are endeavored to detect such attempts
by monitoring incoming traffic for suspicious contents.
They use a set of signatures (or rules) and report offending
packets to the administrators for further actions. Since
firewall and quality-of-service (Qos) applications examine
multiple fields in the packet header, many firewall rules
only have to check roughly 128 bits within the first 40
bytes of a packet header. On the other hand, signature-
based NIDSs, such as Snort [8] and Bro [9], identify threat
by testing network packets against rules that specify
conditions for both the packet header and content. These
applications often rely on pattern matching techniques.

While the pattern matching algorithms are applied to
network security, such NIDSs, the speed of pattern
matching usually becomes a bottleneck. Previous research
results suggest that in the performance of NIDSs, 30% of
total processing time is spent on pattern matching [1],
especially in the cases like Web-intensive traffic, this
percentage raises up to 80% [2]. The increase in network
speed from Mbps to Gbps poses new challenges to

existing network security applications designed for 100
Mbps. Along with the improvement of network
technology presses forward, Gigabit and 10 Gigabit
Ethernet is becoming a popular network environment.
Most of the existing algorithms are not suitable for new
generations of network security applications. In order to
protect such environment, one of approach is to improve
the performance of signatures detection engine by
increasing the efficiency of pattern matching algorithm.

The rest of the paper is organized as follows. Section 2 is
contributed to the characterization of the place of pattern
matching in network security such as NIDS and discussion
relevant prior works in pattern matching algorithm. We
discuss our new algorithm in Section 3. Evaluation of the
results of our techniques can be found in Section 4. Our
contributions are summarized in Section 5.

2. Related Works

Pattern matching is one of the most important areas which
have been studied in computer science [11]. In a standard
formulation of the problem, we are given a pattern and a
text and it is required to find all occurrences of the pattern
in the text. If more than one search strings are matched
against the input string simultaneously, it is called multiple
pattern matching. Otherwise, it is called single pattern
matching. Only single pattern matching algorithm will be
referred in this paper [3].

Since the publication of the Boyer-Moore (BM) [5] and
Knuth- Morris-Pratt (KMP) [6] algorithm, several
hundreds of papers have been published dealing with
exact pattern matching. The obtained algorithms include
several non-trivial ones, notably the KMP left-to-right
pattern matching algorithm and simplified variants of the
BM right-to-left pattern matching algorithm [7].

The KMP algorithm, stated in terms of the Brute-Force
algorithm, reduces the number of times it compares each
character in the text to a character in the pattern. If
properly implemented, the KMP algorithm only looks
though each character in the text once.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

84

The BM algorithm is a rather famous pattern matching that
is quite fast in practice. It is widely known as the best
average-case performance of any known algorithm. The
algorithm scans the characters of the pattern from right to
left beginning with the rightmost one. In case of a
mismatch it uses two pre-computed heuristics to shift the
window to the right. These two heuristics are called bad-
character-shift and good-suffix [7]. Both heuristic are
triggered on a mismatch. The first heuristic works as
follows: if the mismatching character appears in the search
string, the search string is shifted so that the mismatching
character is aligned with the rightmost position at which
the mismatching character appears in the search string. If
the mismatching character does not appear in the search
string, the search string is shifted so that the first character
of the pattern is one position past the mismatching
character in the input. The second heuristic is also
triggered on a mismatch. If the mismatch occurs in the
middle of the search string, then there is a non-empty
suffix that matches. The heuristic then shifts the search
string to the next occurrence of the suffix in the string.
This algorithm strives to completely ignore as many
characters in the text as possible.

ExB [12] and E2xB [13] are pattern matching algorithms
designed for providing quick negatives when the search
pattern does not exist in the network traffic. The main
notion of E2xB is the same as ExB. Once new network
traffic arrives, the traffic is reprocessed to construct an
occurrence bitmap to record the occurrence of distinct
characters within the traffic. They identify the patterns
individually to check if any characters appear in the
pattern but not in the network traffic. If such characters do
exist so the pattern is skipped since matching is impossible.
Otherwise, the Boyer–Moore algorithm is called to search
the pattern in the given traffic.

Boyer-Moore-Horspool [4] algorithm is one simplification
of the BM algorithm. As we know, the bad-character shift
used in the BM algorithm is not very efficient for small
alphabets, but when the alphabet is large comparing with
the length of the pattern, as it is often the case with the
ASCII table and ordinary searches made under a text
editor, it becomes very useful. Using it alone produces a
very efficient algorithm in practice. Horspool proposed to
use only the bad-character heuristic and the order in which
the text character comparisons are performed is irrelevant.
So the BMH algorithm is more efficient implementation.
Some of today’s security systems such as Snort, execute a
fast string search on the associated pattern using the BM
algorithm [10].

About string length of Snort pattern, M. Aldwairi et al
[15] suggest that the average string length is 14 bytes and
the majority of the strings are shorter than 26 bytes; it is

also clear that there is a non-negligible number of strings
longer the 40 bytes. In this paper, we propose a new
method to improve the average performance of BM
algorithm. The basic idea is to utilize two consecutive
characters for the reference point instead of one character
as in BM and BMH algorithm, because the case of two
consecutive characters in a pattern is far less possible than
one character in it when the pattern is relatively small. We
will discuss it in detail.

3. New Pattern Matching Algorithm

A new pattern matching algorithm is presented here. Core
part of the algorithm is described briefly as followings.

Pattern Matching Algorithm

begin

1 for (each char1 Σ) do

2 for(each char2 Σ) do next[char1,char2]←m+2;

3 for (each char1 Σ) do next[char1,pattern[0]]←m+1;

4 for (i=0 to m-2) do next[pattern[i],pattern[i+1]]←m-i;

5 j←0;

6 while(j<=n) do begin

7 i←m-1;

8 while(i>=0 and pattern[i]=text[i+j]) do i←i-1;

9 if (i<0) then output(match at location j);

10 if (text[j+m-1,j+m]=pattern[m-2,m-1]) then j←j+1;

11 else j←j+next[text[j+m],text[j+m+1]];

end while

end

Fig.1 The core part of our algorithm

Where, Σ is the character set of text and pattern. text is the
text string of length n. pattern is the pattern string of
length m. NEXT is a two-dimensional array. i and j are
pointers of the pattern string and text string respectively.
Our pattern matching algorithm can be divided into two
parts: preprocessing phase and search phase. Step 1 to step
4 above is called as preprocessing phase. Step 5 to step 11
is called as searching phase. The task of preprocessing
phase is to generate a two-dimensional array NEXT. Array

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

85

NEXT in our algorithm is very important, which will
decide how to move to a proper position for next search.
One good design of array NEXT will bring better
performance for whole pattern matching algorithm. The
position of No.m+1 and No.m+2 characters in text string
is assigned as the reference point. Array NEXT can be
generated according to the following rules:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+
+=

=−
=+

=

otherwise 2
1]s-pattern[mchar2

and s]-pattern[mchar1 if
]0[pattern char2 if 1

]2,1[

m

im
m

charcharNEXT

Fig.2 The rules of NEXT array

After array NEXT is generated, the values of array NEXT
will be invariable during searching process. Above rules
are very clear and simple, so algorithm generated array
NEXT is very simple too.

During the searching phase, the comparison is performed
from right to left and when the position on the text factor
text[j .. j+m-1] and a mismatch occurs between pattern[i]
and text[i+j] while pattern[i..m－1]= text[i+j..j+m-1] the
NEXT is performed for text characters text[j+m] and
text[j+m+1].

When the pattern is relatively small, the case of two
consecutive characters in a pattern is far less possible than
one character in it, so the shift value can be much greater
than that of in BM algorithm. For example, shift value
(NEXT array) of pattern gcag in BM algorithm in Table 1,
and in our algorithm in Table 2.

Table 1: Shift value in BM algorithm
char a c g
Shift value 1 2 3

Table 2: Shift value our algorithm
char1

char2 a c g
a 6 6 2
c 3 6 6
g 4 5 5

The example of improved array of new algorithm is shown
in Table 2. At each check point, if a mismatching occurs,
then the two consecutive characters next to the last

character of current comparing window will be used to
execute next matching.

Fig.3 is an example of pattern matching for the new
algorithm. In preprocessing phase, a shift table will be
generated as Table 2. In the first attempt, mismatching
character in substring is found during search phase. Then
character ‘a’ and ‘c’ are treated as a reference point.
According to the Table 2, the shift value of characters ‘ac’
is 6, which means the next matching will happen at right
shift 6 characters. We can see in the next attempt, the
matching will be finished successfully.

Fig.3 The example for the new algorithm

4. Performance Test and Evaluation

We evaluated the performance algorithm using various
text strings and pattern strings. The results are presented as
followings.

4.1 Experiments in Worst Case

Text string gcatcgcagagagtatacagtacg and gcagagag, a
pair of well-known and commonly used samples for
comparing and evaluating different pattern matching
algorithms, are adopted in the performance test [7]. Since
they great relativity between above text and pattern
samples, the test results may be have the worst. We tested
the attempt numbers of BM and our algorithm using the
strings g, gc, gca, gcag, gcaga, gcagag, gcagaga,
gcagagag. Corresponding character numbers of these
pattern strings are from 1 to 8 respectively. Fig.4 shows
that in some cases, the attempt numbers of the new
algorithm are greater than that of BM algorithm, although
they are 10% less in a general average. In such case, the
new algorithm can not show its advantage.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

86

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Pattern length

A
tt

e
m

p
t

n
u
m

b
e
rs

BM Algorithm

Our Algorithm

Fig.4 Attempt numbers for worst case

4.2 Experiments in English Text

We ran experiments on an English text “Snort is an open
source network intrusion prevention and detection system
utilizing a rule-driven language, which combines the
benefits of signature, protocol and anomaly based
inspection methods.”. We searched for short to long
patterns in this text and compared the attempt numbers of
BM and our algorithm. Test results are shown in Fig.5.
The attempt numbers of our algorithm are decreased by
13%～50%(31% as average) comparing to those of BM
algorithm in this case.

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Pattern length

A
tt

e
m

pt
 n

u
m

be
rs

BM Algorithm

Our Algorithm

Fig.5 Attempt numbers for English text

4.3 Experiments in Network Traffic

The network traffic from the 2000 DARPA Intrusion
Detection Data Sets [14], the inside Tcpdump file of
Scenario Two which has a size of 66,110,361 byte, are
selected. We randomly selected the pattern strings length

arranged from 1 to 122 from Snort rules distributed in Aug.
9, 2006. The results are shown in Fig.6.

0

1

2

3

4

5

1 12 23 34 45 56 67 78 89 100 111 122

Pattern length

A
tt

e
m

pt
 n

u
m

be
rs

 (
m

ill
io

n
)

BM Algorithm

Our Algorithm

Fig.6 Attempt numbers for network traffic

The improvement in real traffic is shown in Fig.7,
comparing to BM algorithm we can see a 24% average
improvement of our algorithm.

0

10

20

30

40

50

60

70

1 12 23 34 45 56 67 78 89 100 111 122

Pattern length

Im
pr

o
ve

m
e
n
t

o
f

pe
rf

o
rm

an
c
e
 (

 %
)

Fig.7 Improvement of our algorithm

5. Conclusions

We presented a novel pattern matching algorithm and
evaluated its performance by using diverse text strings and
various set of pattern strings. The testing results of English
text and network traffic show an improvement of 24%～
31% in average comparing to the case of BM algorithm .
The new algorithm is a variant of BM algorithm and has
been greatly improved. A two-dimensional array in the
preprocessing phase is redesigned. The concept of
reference point, makes the algorithm to have better
performance and more efficient. It provides another option
for network security applications, not only for Intrusion

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

87

Detection System, but also for other security applications
such as virus scanning, firewalls, and layer seven switches.

Acknowledgments

The authors thank the anonymous reviewers for providing
constructive comments and suggestions on this paper.

References
[1] M. Fisk and G. Varghese: An analysis of fast string

matching applied to content-based forwarding and intrusion
detection. Technical Report CS2001-0670 (updated version),
2002.

[2] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos:
Generating realistic workloads for network intrusion
detection systems. In ACM Workloads on software and
Performance, 2004.

[3] M. Crochemore, C. Hancart: Pattern Matching in
Algorithms and Theory of Computation Handbook. CRC
Press Inc., Bocaaton, FL. 1999.

[4] R. N. Horspool: Practical fast searching in strings. Software
– Practice & Experience, 10(6):501-506, 1980.

[5] R. S. Boyer and J. S. Moore: A fast string searching
algorithm. Communications of the ACM, vol. 20, no. 10,
pp.762-772, 1977.

[6] Beate Commentz, Walter: A string matching algorithm fast
on the average. Proc. 6th International Colloquium on
Automata, Languages and Programming, vol. 71 of Lecture
Notes in Computer Science, pp. 118-132, 1979.

[7] C.Charras, T.Lecroq: Exact String Matching Algrothms.
http://www-igm.univ-mlv.fr/~lecroq/string.

[8] Snort, http://www.snort.org
[9] V. Paxson: Bro: A System for Detecting Network Intruders

in Real-Time. Proc. of the 7th USENIX Security
Symposium, 1998.

[10] Stephen Gossin, et al: Pattern Matching in Snort.
http://www.sporksoft.com/~njones/notes/CSE202/project.pd
f , 2002.

[11] W. F. Smyth: Computing Pattern in Strings. Pearson
Addison Wesley, 2003.

[12] E.P. Markatos, S. Antonatos, M. Polychronakis, and K.G.
Anagnostakis: ExB: Exclusion Based signature Matching
for Intrusion Detection. In Proc. of Communications and
Computer Networks, MIT, USA, 2002.

[13] K. G. Anagnostakis, S. Antonatos, E. P. Markatos, M.
Polychronakis: E2XB:A domain-specific string matching
algorithm for intrusion detection. Proc. of the 18th IFIP
International Information Security, 2003.

[14] Stolfo SJ, Fan W, Lee W, Prodromidis A, Chan PK: Cost-
Based modeling for fraud and intrusion detection: Results
from the JAM project. In: Proc. of the 2000 DARPA
Information Survivability Conf. and Exposition. 2000.

[15] Monther Aldwairi, Thomas Conte, Paul D. Franzon:
Configurable string matching hardware for speeding up
intrusion detection. SIGARCH Computer Architecture
News 33(1): 99-107. 2005.

Yang Wang received the M.Sc.
degree in Computer Science from Graduate
School of Science and Technology, Nihon
University in 2004. He has been received the
Ph.D. course in Computer Science at the
Graduate School of Science and Technology,
Nihon University, Tokyo, Japan from 2004.
His main research interests are in the areas of
intrusion detection, network security, and

wireless sensor network.

Hidetsune Kobayashi received the M.Sc.
degree in Mathematics from Kyoto
University. He also received Doctor from
Nihon University. He is a professor of Nihon
University. His research interest is computer
mathematics.

