
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

121

Test Design and Optimization for Multiple Core Systems-
On-a-Chip using Genetic Algorithm

 1P. SAKTHIVEL and 2P. NARAYANASAMY

1Ramanujan Computing Centre, Anna University, Chennai – 600 025, INDIA

2Department of Computer Science and Engineering, Anna University, Chennai – 600 025, INDIA

Abstract
Core based design has become the de-facto

design style for many VLSI design houses, as it
facilitates design reuse, import of specialized
expertise from external vendors and leads to a
more streamlined design flow. Pre-designed
cores and reusable modules are popularly used in
the design of large and complex Systems-on-a-
Chip (SOC). Embedded cores such as processors,
custom application-specific integrated circuits
(ASIC), and memories are being used to provide
SOC solutions to complex integrated circuit
design problems. Traditional approaches for
testing core-based SOCs completely rely on
additional test structures such as boundary scan
or test bus for test-data transfers to and from the
core under test (CUT). Available techniques for
testing of core-based SOCs do not provide a
systematic means for synthesizing low-overhead
test architectures and compact test solutions. Test
application time and core accessibility are two
major issues in SOC Testing. The test
application time must be minimized, and a test
access mechanism (TAM) must be developed to
transport test data to and from the cores. While
many different formulations of the embedded
core test-scheduling problem (ECTSP) have been
proposed in test literature recently, a single
unified presentation of ECTSP in terms of
conventional scheduling patterns has been
lacking. In this paper, Integrated framework for
the design of SOC test solutions, which includes
a set of algorithms for early design space
exploration as well as extensive optimization for
the final solution is proposed. The framework
deals with test scheduling, test access mechanism

design, test sets selection, and test resource
placement. An approach to solve the problems of
Test Scheduling and Test Access Mechanism
partition for SOC based on Genetic Algorithm
(GA) is presented and the results are compared
with other approaches already existing. The
results of GA based approach are shown to be
superior to the heuristic approaches proposed in
the literature.

Key-Words: - Integrated Circuit, Genetic Algorithm,
System-on-Chip, Pre-Designed Core, Test Vector,
Test Access Mechanism, Application Specific
Integrated Circuit, Benchmark Circuit.

1 Introduction

Asynchronous design offers a solution to the
interconnect problems faced by system-on-chip
designers [1], but their adoption has been held back
by a lack of methodology and support for post-
fabrication testing. Interest in asynchronous circuit
design is increasing due to its promise of efficient
design [3]. The quiescent nature of asynchronous
circuits allows them to remain in a stable state until
necessary wire transitions trigger an event to occur
[29].
 Very Large Scale Integrated (VLSI) circuits
designed using modern Computer Aided Design
(CAD) tools are becoming faster and larger,
incorporating millions of smaller transistors on a chip
[2]. VLSI designs can be divided into two major
classes: Synchronous and Asynchronous circuits.
Synchronous circuits use global clock signals that are
distributed throughout their sub-circuits to ensure
correct timing and to synchronize their data
processing mechanisms [28, 30,]. Asynchronous

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

122

circuits contain no global clocks. Their operation is
controlled by locally generated signals [26].
Asynchronous circuits [22] have many potential
advantages over their synchronous equivalents
including lower latency, low power consumption, and
lower electromagnetic interference [22]. However,
their acceptance into industry has been slow, which
may be due to a number of reasons.
 Recent advances in Integrated Circuit (IC)
design methods and manufacturing technologies have
led to the integration of a complete system onto a
single IC, called system-on-chip (SOC). These
system chips offer advantages such as higher
performances, lower power consumption, and
decreased size and weight, when compared to their
traditional multichip equivalents. SOC technology is
the packaging of all the necessary electronic circuits
and parts for a System on a single integrated circuit
generally known as a Microchip [10]. SOC
technology is used in small, increasingly complex
consumer electronic devices. Some such devices have
more processing power and memory than a typical
computer. Many such chips are designed by
embedding large reusable building blocks, commonly
called cores. Such a design reuse approach speeds up
the design process, and allows import of external
design expertise. The design of asynchronous circuits
has been attracting more interest recently, as clock
distribution on a large die becomes increasingly
difficult.
 The ITRS road map [22] predicts that as a
solution to the clock distribution problem, Globally
Asynchronous Locally Synchronous (GALS) system
will become mainstream in the near future. In a
GALS system, a number of synchronous islands of
logic communicate asynchronously using a suitable
interconnect. Unfortunately, the testability of
asynchronous systems is considered to be one of their
major drawbacks.
 The increased system complexity leads to high-
test data volumes, which means long testing times.
The testing of SOC is a crucial and time-consuming
problem [7] due to the increasing design complexity.
Therefore it is important to provide the test designer
with support to develop an efficient test solution.
Testing SOC becomes an increasing challenge [10] as
these devices become more complex. An SOC design
is typically built block by block. Efficient testing is
also best done by block by block. Recently, pre-
designed cores are also used in the SOCs [12].
Traditionally, the chips are tested before they are

integrated into a system; the interconnections are
tested separately in system test when fault-free chips
are already integrated. For system chips, on the other
hand, testing of cores and interconnections is
performed in a single system test step. Test access
becomes also a problem for system chips since the
cores are not directly accessible via chip inputs and
outputs. Testing individual circuits, individual blocks
and individual cores has established technologies.
But, available techniques for testing of core-based
SOC do not provide a systematic means of
synthesizing low overhead test architectures and
compact test solutions [14].
 Embedded cores such as processors, custom
application specific integrated circuits, and memories
are increasingly being used to provide SOC solutions
to complex integrated circuit design problems [16].
The advances in design methodologies and
semiconductor process technologies have led to the
development of systems with excessive functionality
implemented on a single chip [14].
 In a core based design approach, a set of cores
(predefined and pre-verified design modules) is
integrated into a system using user defined logic and
interconnections. In this way, complex systems can
be efficiently developed [18]. However, the
complexity in the system leads to high-test data
volumes and design and optimization of test solution
are a must for any test. Hence the following
independent problems [14] might be considered:

• How to design an infrastructure for the
transportation of test data in the system.

• How to design a test schedule to minimize
test time, considering test conflicts and
power constraints.

The testable units in an SOC design are the cores, the
User Defined Logic (UDL) and the interconnections.
The cores are usually delivered with predefined test
methods and test sets, while the test sets for UDL and
interconnections are to be generated prior to test
scheduling and Test Access Mechanism (TAM)
Design. The workflow when developing an SOC test
solution can mainly be divided into two consecutive
parts: an early design space exploration followed by
an extensive optimization of the final solution.
During the process, conflicts and limitations must be
carefully considered. For instance, tests may be in
conflict with each other due to the sharing of test
resources and power consumption must be controlled.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

123

Otherwise the system may be damaged during test.
Furthermore, test resources such as external testers
support a limited number of scan-chains and have a
limited test memory, which also introduce constraints
[11].
 Research has been going on in developing
techniques for test scheduling, test access mechanism
design and testability analysis. In this paper, we
propose a new technique using Genetic Algorithm for
optimizing the test vector for Globally Asynchronous
Locally Synchronous SOC with the objective to
minimize the test application time. The aim of our
approach is to reduce the gap between the design
space exploration and the extensive optimization that
is to produce a high quality solution in respect of test
time and test access mechanism at a relatively low
computational cost.
 The rest of the paper is organized as follows:
The works related to our approach and various issues
related to SOC testing and test scheduling techniques
are discussed in section 2; Test vector optimization
and test scheduling framework based on genetic
algorithm is presented in section 3; the characteristics
of four ITC-02 SOC benchmark circuits are given in
section 4; experimental results for the four
benchmark SOC circuits are presented in section 5
and section 6 looks at the conclusion.

2 SOC Test Scheduling Techniques and
the Related Works
The basic problem in test scheduling is to assign a
start time for all tests. In order to minimize the test
application time, tests are scheduled as concurrent as
possible; however, various types of constraints must
be considered. A test to be scheduled consists of a set
of test vectors produced or stored at a test source. The
test response from the test is evaluated at a test sink
[7]. When applying a test, a test conflict may occur,
which must be considered during the scheduling
process. For instance, often a testable unit is tested by
several test sets. If several tests are used for a testable
unit, only one test can be applied to the testable unit
at a time [13].
 Zorian et al [5] proposed a test scheduling
technique for fully BISTed systems where test time is
minimized while power constraint is considered. The
tests are scheduled in sessions where tests at cores
placed physically close to each other are grouped in
the same test session. In a fully BISTed system [17,

25], each core has its dedicated test source and test
sink; and there might not be any conflicts among tests
[9]. However, in general, conflicts among tests may
occur.
 Peng et al [7] proposed a test scheduling
technique where test time is minimized for systems
with test conflicts. For Core Based Systems a test
scheduling technique is proposed by Chakraborthy et
al [19]. Choudhary et al [11] proposed an analytic test
scheduling technique where test conflicts and power
constraints are considered. Iyengar and Chakrabarty
[6] proposed a pre-emptive test scheduling technique
where the test for a testable unit may be interrupted
and resumed later.
 The test-application time can be minimized by
scheduling the execution of the test sets as
concurrently as possible [2]. The basic idea in test
scheduling is to determine when each test set should
be executed and the main objective is to minimize the
test application time.
 The scheduling techniques can be classified into
the following scheme [4]:

• No partitioned testing
• Partitioned testing with run to completion,

and
• Partitioned testing.

2.1 SOC Testing
Integration of a complex system that until recently
consisted of multiple Integrated Circuits onto a single
Integrated Circuit is known as System-on- Chip [6].
The shrinking of silicon technology leads to an
increase in the number of transistors on a chip. This
increases the number of faults and test vectors that in
turn leads to a serious increase in test time. Test time
reduction is one of the research challenges [8, 21] in
the SOC design paradigm. The most important issues
in the SOC Testing are as follows [10]:

• Controlling the whole process of SOC
Testing.

• Testing the User Defined Logic and
Interconnections.

• Testing cores with different functionalities
coming from different vendors.

• Accessing cores from the system’s primary
inputs and primary outputs.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

124

2.2 Test Access Mechanism
The test access mechanism (TAM) takes care of chip
test pattern transport. It can be used to transport test
stimuli from the test pattern source to the core under
test and to transport test responses from the core
under test to the test pattern sink. The TAM is, by
definition, implemented on chip [12, 23].
 The following are the four problems structured
in order of increasing complexity [4]:

• PW: Design a wrapper for a given core, such
that the core testing time is minimized, and
the TAM width required for the core is
minimized.

• PAW: Determine (i) an assignment of cores to
TAMs of given widths, and (ii) a wrapper
design for each core such that SOC testing
time is minimized.

• PPAW: Determine (i) a partition of the total
TAM width among the given number of
TAMs, (ii) an assignment of cores to TAMs
of given widths, and (iii) a wrapper design
for each core such that SOC testing time is
minimized.

• PNPAW: Determine (i) the number of TAMs
for the SOC, (ii) a partition of the total TAM
width among the given number of TAMs,
(iii) an assignment of cores to TAMs of given
widths, and (iv) a wrapper design for each
core such that SOC testing time is minimized.

The above problems are all NP – Hard problems.
Therefore, efficient heuristics and other techniques
are needed for large problem instances [14]. In this
work, we are presenting Genetic Algorithm based
approach [16] to effectively solve the problems
namely PAW and PPAW.

3 Test Vector Optimization Based on
Genetic Algorithm
Genetic Algorithms can effectively be used to solve
the search and optimization problems [27]. In this
section the genetic algorithm that is used for
generating test sequences for SOC is described [2, 4,
6, 8, 18]. First, the basic idea of the method is given.
Then we present the representation of test conditions
and the objective function and provide some insight
into the parameter settings of the genetic algorithm
[15, 20]. GAs consist of population of solutions
called chromosomes. Here the chromosomes are an

encoding of the solution to a given problem. The
algorithm proceeds in steps called generations.
During each generation, a new population of
individuals is created from the old by applying
genetic operators. Given old generation, new
generation is built from it, according to the following
operation given in section 3.1, 3.2 and 3.3 [22].

3.1 Selection
This operator selects the individuals from the old
generation. The fitness of an individual determines its
chances to reproduce. The individual with a better
performance possesses higher chances of getting
selected. For each parent, two elements are chosen
randomly. Only these elements are evaluated by the
objective function. The element with higher ranking
is selected. Thus, for the selection of two parents only
four elements are evaluated instead of the whole
population.

3.2 Crossover
This operator generates two new chromosomes from
the couple of selected chromosomes. A random point
on the chromosome also known as cross-site is
selected. Portions of individuals in a couple are
exchanged between themselves to form new
chromosomes as follows [24]:

for I = 1 to number of entries in the chromosome

 C1(I) = P1(I) if I <= cross-site
 = P2(I) if I > cross-site

 C2(I) = P2(I) if I <= cross-site
 = P1(I) if I > cross-site
3.2.1 1-Point Crossover
Construct two new elements C1 and C2 from two
parents P1 and P2, where P1 and P2 are split in two
parts at a cut position.

3.2.2 2-Point Crossover
Construct two new elements C1 and C2 from two
parents P1 and P2, where P1 and P2 are split in three
parts.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

125

3.2.3 Uniform Crossover
Construct two new elements C1 and C2 from two
parents P1 and P2, where for each position the value
is taken with a certain probability from P1 and P2
respectively.

3.2.4 Free Vertical Crossover
Construct two new elements C1 and C2 from two
parents P1 and P2. Determine for each test vector T
in two parts at its cut position. The first part of each
test vector of C1 is taken from P1 and the second part
is taken from P2.

3.3 Mutation
Construct one new element C from a parent P by
copying the whole element and changing a value at a
randomly chosen position.

3.3.1 2-Point Mutation
Perform Mutation two times on the same element.

3.3.2 Mutation with neighbor
Perform Mutation at two adjacent positions on the
same element.

3.4 Overview of the proposed method
The different steps of the proposed method are given
as follows [2]:

Genetic Algorithm Begin

1. Generate the initial population of
chromosomes, randomly.

2. Sort the initial population in ascending
order of the cost.

3. While there is no improvement in cost
function.

 Do Begin

Select first 20% chromosome as best
class.
Generate 40% chromosomes using
crossover operator.
Generate 40% chromosomes using
mutation operator

Sort this generation in ascending
order of the cost.

Do End
4. Genetic Algorithm End.

4 Characteristics of the SOCs

Table 1 lists the general characteristics of the SOCs
considered in our experiment [6]. This table is
organized as follows: Column 1 gives the names of
the SOCs. In column 2, the number of modules is
listed. Column 3 lists the number of design hierarchy
levels. Column 4 lists the total number of I/O
terminals in the SOC. Column 5 shows the total
number of scan flip flops in the SOC. Column 6 lists
the total sum of the test pattern counts of all tests.

Table – 1: General Characteristics of the ITC-02 SOC Test

Benchmark Circuits
Name

of
SOC

No.
of

Modules

No.
of

Levels

No.
of

I/Os

No.
of

SFFs

No. of
Test

Patterns
p34392 20 3 2057 20948 66349
p22810 29 3 4283 24723 24890
p93731 33 3 6943 89973 22987
d695 11 2 1845 6384 881

Table 2 lists the main characteristics of the module
tests of the SOCs [6]. Column 1 again lists the names
of the SOCs. In column 2, the summed number of
tests over all modules is shown. In columns 3, 4 and
5, the minimum, average and maximum number of
test patterns per test is listed.

Table – 2: Test Characteristics of the ITC-02 SOC Test
Benchmark Circuits

No. of Pattern Counts Name

of
SOC

No.
of

Tests
Min Ave Max

p34392 21 11 3159 12336
p22810 30 1 830 12324
p93731 32 11 718 6127

d695 10 12 88 234

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

126

5 Experimental Results

Our experiments were conducted for the ITC-02 SOC
benchmark circuits p34392, p22810, p93791 and
d695 [6]. The results are obtained for SOC with two
partitions. W is the width of Test Access Mechanism.
w1 and w2 are the size of the partition 1 and partition
2. The processor time and test time are given under
the Heuristics taken from [4]. The processor time and
test time given under Genetic Algorithm are the
results of our experiment.

5.1. Results for p34392
The Table – 3 gives the result for SOC p34392 with
two partitions. In the Genetic Algorithm approach,
the maximum processor time taken is 1.34 seconds
and the minimum processor time taken is 0.82
seconds whereas the maximum and minimum
processor time taken in Heuristic method is 1 second.

Table – 3: Results for SOC p34392 with two partitions
(Processor Time(Seconds))/

Test Time(Cycles)

W
W1
+

w2 Heuristics Genetic
Algorithm

16 8 + 8 (1)/
1080940

(1.34)/
1080900

24 15 + 9 (1)/
928782

(1.25)/
928562

32 21 + 11 (1)/
750490

(1.10)/
749850

40 24 + 16 (1)/
721566

(0.97)/
721450

48 31 + 17 (1)/
709262

(0.85)/
708550

56 38 + 18 (1)/
704659

(0.82)/
704650

64 18 + 46 (1)/
700939

(0.88)/
700800

5.2 Results for p22810
The Table – 4 gives the result for SOC p22810 with
two partitions. In the Genetic Algorithm approach,
the maximum processor time taken is 1.32 seconds
and the minimum processor time taken is 0.41
seconds whereas the maximum processor time taken
is 9 seconds and minimum processor time taken is 1
second in Heuristic method.

Table – 4: Results for SOC p22810 with two partitions
(Processor Time(Seconds))/

Test Time(Cycles)

W
W1
+

w2 Heuristics Genetic
Algorithm

16 6 + 10 (1)/
462210

(0.63)/
461348

24 8 + 16 (2)/
365947

(1.15)/
361326

32 10 + 22 (9)/
312659

(0.41)/
313891

40 9 + 31 (2)/
290644

(0.61)/
287260

48 10 + 38 (1)/
290644

(1.32)/
268512

56 24 + 32 (1)/
290644

(0.51)/
271429

64 12 + 52 (6)/
271330

(0.48)/
260645

5.3 Results for p93791
The Table – 5 gives the result for SOC p93791 with
two partitions. In the Genetic Algorithm approach,
the maximum processor time taken is 1.46 seconds
and the minimum processor time taken is 0.36
seconds whereas the maximum and minimum
processor time taken in Heuristic method is 1 second.

Table – 5: Results for SOC p93791 with two partitions
(Processor Time(Seconds))/

Test Time(Cycles)

W
w1
+

w2 Heuristics Genetic
Algorithm

16 8 + 8 (1)/
1952800

(0.48)/
1786032

24 12 + 12 (1)/
1217980

(0.67)/
1206532

32 9 + 23 (1)/
894342

(1.36)/
878971

40 23 + 17 (1)/
750311

(0.83)/
735677

48 33 + 15 (1)/
632474

(0.36)/
628733

56 46 + 10 (1)/
524203

(1.46)/
518686

64 46 + 18 (1)/
467424

(0.61)/
462757

5.4 Results for d695
The Table – 6 gives the result for SOC d695 with two
partitions.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

127

Table – 6: Results for SOC d695 with two partitions

(Processor Time(Seconds))/
Test Time(Cycles)

W

w1
+

w2 Heuristics Genetic
Algorithm

16 7 + 9 (1)/
45055

(0.18)/
1080900

24 19 + 5 (1)/
34455

(0.19)/
928562

32 20 + 12 (1)/
25828

(0.21)/
749850

40 8 + 32 (1)/
22848

(0.12)/
721450

48 16 + 32 (1)/
22804

(0.22)/
708550

56 19 + 37 (1)/
18940

(0.29)/
704650

64 41 + 23 (1)/
18868

(0.16)/
700800

In the Genetic Algorithm approach, the maximum
processor time taken is 0.29 seconds and the
minimum processor time taken is 0.12 seconds
whereas the maximum and minimum processor time
taken in Heuristic method is 1 second.

6 Conclusion

The experimental results are given for four ITC-02
SOC Benchmark circuits with two partitions. The
result gives good approximation compared to
Heuristics within a few generations with acceptable
processor times. This establishes the suitability of this
problem to be solved by Genetic Algorithm. We can
apply this technique to all the other SOCs given in [6]
having more number of cores with many scan chains
and even more number of TAM widths.

References:
[1] Aristides Efthymiou, John Bainbridge and

Douglas Edwards, Test Pattern Generation and
Partial-Scan Methodology for an Asynchronous
SoC Interconnect, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 13,
No. 12, pp. 1384 – 1393.

[2] S. Chattopadhyay and K. Sudharsana Reddy,
Genetic Algorithm Based Test Scheduling and
Test Access Mechanism Design for System-On-

Chips, Proceedings of the International
Conference on VLSI Design, 2003.

[3] N. Gupta and D.A. Edwards, Synthesis of
Asynchronous Circuits Using Early Data Validity,
Proceedings of the International Conference on
VLSI Design, 2005.

[4] Vikram Iyengar, K. Chakrabarthy and Erik. J.
Marinissen, Efficient Wrapper/TAM Co-
Optimization for Large SOCs,

http://www.ee.duke.edu/~krish/237_iyengar_v.pdf
[5] Erik Jan Marinissen, Rohit Kapur, Maurice

Lousberg, Teresa McLaurin, Mike Ricchetti, and
Yervant Zorian, On IEEE P1500’s Standard for
Embedded Core Test, Journal of Electronic
Testing: Theory and Applications, Vol. 18, 2002,
pp. 365-383.

[6] Erik Jan Marinissen, V. Iyengar and K.
Chakrabarthy, A Set of Benchmarks for Modular
Testing of SOCs,

http://www.extra.research.philips.com/itc02socbenchm
[7] Erik Larsson and Zebo Peng, An Integrated

Framework for the Design and Optimization of
SOC Test Solutions, Journal of Electronic Testing:
Theory and Applications, Vol. 18, 2002, pp. 385 –
400.

[8] Martin Keim, Nicole Drechsler, Rolf Drechsler
and Brend Becker, Combining GAs and Sysmbolic
Methods for High Quality Tests of Sequential
Circuits, Journal of Electronic Testing: Theory and
Applications, Vol. 17, 2001, pp. 37-51.

[9] Sandeep Koranne, A Note on System-on-Chip
Test Scheduling Formulation, Journal of
Electronic Testing: Theory and Applications, Vol.
20, 2004, pp. 309 – 313.

[10] Srivaths Ravi, Ganesh Lakshminarayana and
Niraj. K. Jha, Testing of Core-Based Systems-on-
a-Chip, IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, Vol. 20,
No. 3, 2001, pp. 426-439.

[11] Santanu Chattopadhyay and Naveen Choudhary,
Genetic Algorithm Based Approach for Low
Power Combinational Circuit Testing, Proceedings
of the IEEE International Conference on VLSI
Design, 2003.

[12] Erik Larsson, Klas Arvidsson, Hideo Fujiwara
and Zebo Peng, Efficient Test Solutions for Core-
Based Designs, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
Vo. 23, No. 5, 2004, pp. 758-774.

[13] Vivekananda M. Vedula and Jacob A. Abraham,
Jayanta Bhadra and Raghuram Tupuri, A

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

128

Hierarchical Test Generation Approach Using
Program Slicing Techniques on Hardware
Description Languages, Journal of Electronic
Testing: Theory and Applications, Vol. 19, 2003,
pp. 149-160.

[14] Anuja Sehgal, V. Iyengar and K.
Chakrabarthy, SOC Test Planning Using Virtual
Test Access Architectures, IEEE Transactions on
Very Large Scale Integration Systems, Vo. 12, No.
12, 2004, pp. 1263 – 1276.

[15] Indradeep Ghosh and Masahiro Fujita,
Automatic Test Pattern Generation for Functional
Register-Transfer Level Circuits Using
Assignment Decision Diagrams, IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 20, No. 3,
2001, pp. 402 – 415.

[16] Yuejian Wu and Paul MacDonald, Testing ASIC
with Multiple Identical Cores, IEEE Transactions
on Computer Aided Design of Integrated Circuits
and Systems, Vo. 22, No. 3, 2003, pp. 327 – 336.

[17] Han Bin Kim and Dong Sam Ha, A High-Level
BIST Synthesis Method Based on a Region-wise
Heuristic for an Integer Linear Programming,
Proceedings of the International Test Conference,
pp. 903 – 912, 1999.

[18] V. Iyengar, A. Chandra, S. Schweizer and K.
Chakrabarthy, A Unified Approach for SOC
Testing Using Test Data Compression and TAM
Optimization, Proceedings of the Design,
Automation and Test in Europe Conference and
Exhibition, 2003.

[19] Anshuman Chandra and Krishnendu
Chakrabarty, A Unified Approach to Reduce SOC
Test Data Volume, Scan Power and Testing Time,
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 22, No. 3,
2003, pp. 352 – 362.

[20] Cheng-Wen Wu, SOC Testing Methodology and
Practice, Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition,
2005.

[21] Paulo F. Flores, Horacio C. Neto and Joao P.
Marques Silva, An Exact Solution to the Minimum
Size Test Pattern Problem, ACM Transactions on
Design Automation of Electronic Systems, Vol. 6,
No. 4, 2001, pp. 629-644.

[22] Aristides Efthymiou, John Bainbridge and
Douglas A. Edwards, Adding Testability to an
Asynchronous Interconnect for GALS SOC,

Proceedings of the 13th Asian Test Symposium,
2004.

[23] Irith Pomeranz and Sudhakar M. Reddy,
Functional Test Generation for Delay Faults in
Combinational Circuits, ACM Transactions on
Design Automation of Electronic Systems, Vol. 3,
No. 2, 1998, pp. 231 – 248.

[24] Hemangee K. Kapoor and Mark B. Josephs,
Modelling and Verification of delay-insensitive
circuits using CCS and the Concurrency
Workbench, Information Processing Letters, Vol.
89, 2004, pp.293-296.

[25] Kwang-Ting Cheng, Gate-Level Test Generation
for Sequential Circuits (Tutorial and Survey Paper),
ACM Transactions on Design Automation of
Electronic Systems, Vol. 1, No. 4, 1996, pp. 405 –
442.

[26] Eunjung OH, Soo-Hyun KIM, Dong-Ik LEE and
Ho-Yong CHOI, High Level Test Generation for
Asynchronous Circuits from Signal Transition
Graph, IEICE Transactions on Fundamentals,
Vo.E85-A, No. 12, 2002, pp. 2674 – 2683.

[27] P. Sakthivel, D. Sridharan and P.
Narayanasamy, ATPG Algorithm for Synchronous
Sequential Circuits Based on HGA and Simulation,
Proceedings of the International Conference on
VLSI, pp. 59 – 65, 2002.

[28] Yin-He SU, Ching-Hwa CHENG and Shih-
Chieh CHANG, Novel Techniques for Improving
Testability Analysis, IEICE Transactions on
Fundamentals, Vol. E85-A, No. 12, 2002, pp.
2901-2912.

[29] P. Sakthivel, D. Sridharan and P.
Narayanasamy, Testing of Embedded Core Based
System on a Chip: Challenges and Directions,
Proceedings of the National Seminar on Global
Prosperity Through Information Technology, pp.
97 – 101, 2002.

[30] Mathew Sacker, Andrew D. Brown, Andrew J.
Rushton and Peter R. Wilson, A Behavioral
Synthesis System for Asynchronous Circuits, IEEE
Transactions on Very Large Scale Integration
Systems, Vol.12, No.9, 2004, pp. 978 – 994.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

129

About the Authors

 P. Narayanasamy received the
Bachelor of Engineering Degree in
Electrical and Electronics
Engineering from Coimbatore
Institute of Technology,
Coimbatore, University of Madras,
India in 1980, Master of
Engineering Degree in Electrical

and Electronics Engineering in 1982 and PhD
Degree in the area of Computer Applications in
Electrical Engineering in 1989 from Anna University,
India. He is currently Professor and Head of the
Department of Computer Science and Engineering,
Anna University, Chennai, India. His research
interests include VLSI Design and Testing, Computer
Communication Networks, Wireless and Mobile
Computing. He is guiding many research scholars in
these areas for MS and PhD Programmes. He has
published many technical and research papers in the
National and International Conferences and Journals.

 P. Sakthivel received the
Bachelor of Engineering Degree
in Computer Science and
Engineering from Sathyabama
Engineering College, University
of Madras, India in 1992 and
Master of Computer Science and
Engineering Degree from
Jadavpur University, India in

1994. He is currently Lecturer in Ramanujan
Computing Centre, Anna University, India and
working towards the PhD Degree in the Department
of Computer Science and Engineering, Anna
University, India. His research interests include VLSI
Design and Testing and Computer Aided Design of
VLSI Circuits.

