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Abstract   
Core based design has become the de-facto 

design style for many VLSI design houses, as it 
facilitates design reuse, import of specialized 
expertise from external vendors and leads to a 
more streamlined design flow. Pre-designed 
cores and reusable modules are popularly used in 
the design of large and complex Systems-on-a-
Chip (SOC). Embedded cores such as processors, 
custom application-specific integrated circuits 
(ASIC), and memories are being used to provide 
SOC solutions to complex integrated circuit 
design problems. Traditional approaches for 
testing core-based SOCs completely rely on 
additional test structures such as boundary scan 
or test bus for test-data transfers to and from the 
core under test (CUT). Available techniques for 
testing of core-based SOCs do not provide a 
systematic means for synthesizing low-overhead 
test architectures and compact test solutions. Test 
application time and core accessibility are two 
major issues in SOC Testing. The test 
application time must be minimized, and a test 
access mechanism (TAM) must be developed to 
transport test data to and from the cores. While 
many different formulations of the embedded 
core test-scheduling problem (ECTSP) have been 
proposed in test literature recently, a single 
unified presentation of ECTSP in terms of 
conventional scheduling patterns has been 
lacking. In this paper, Integrated framework for 
the design of SOC test solutions, which includes 
a set of algorithms for early design space 
exploration as well as extensive optimization for 
the final solution is proposed. The framework 
deals with test scheduling, test access mechanism 

design, test sets selection, and test resource 
placement. An approach to solve the problems of 
Test Scheduling and Test Access Mechanism 
partition for SOC based on Genetic Algorithm 
(GA) is presented and the results are compared 
with other approaches already existing. The 
results of GA based approach are shown to be 
superior to the heuristic approaches proposed in 
the literature.  
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System-on-Chip, Pre-Designed Core, Test Vector, 
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1 Introduction 
 
Asynchronous design offers a solution to the 
interconnect problems faced by system-on-chip 
designers [1], but their adoption has been held back 
by a lack of methodology and support for post-
fabrication testing. Interest in asynchronous circuit 
design is increasing due to its promise of efficient 
design [3]. The quiescent nature of asynchronous 
circuits allows them to remain in a stable state until 
necessary wire transitions trigger an event to occur 
[29].  
 Very Large Scale Integrated (VLSI) circuits 
designed using modern Computer Aided Design 
(CAD) tools are becoming faster and larger, 
incorporating millions of smaller transistors on a chip 
[2]. VLSI designs can be divided into two major 
classes: Synchronous and Asynchronous circuits. 
Synchronous circuits use global clock signals that are 
distributed throughout their sub-circuits to ensure 
correct timing and to synchronize their data 
processing mechanisms [28, 30,]. Asynchronous 
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circuits contain no global clocks. Their operation is 
controlled by locally generated signals [26]. 
Asynchronous circuits [22] have many potential 
advantages over their synchronous equivalents 
including lower latency, low power consumption, and 
lower electromagnetic interference [22]. However, 
their acceptance into industry has been slow, which 
may be due to a number of reasons.  
 Recent advances in Integrated Circuit (IC) 
design methods and manufacturing technologies have 
led to the integration of a complete system onto a 
single IC, called system-on-chip (SOC). These 
system chips offer advantages such as higher 
performances, lower power consumption, and 
decreased size and weight, when compared to their 
traditional multichip equivalents. SOC technology is 
the packaging of all the necessary electronic circuits 
and parts for a System on a single integrated circuit 
generally known as a Microchip [10]. SOC 
technology is used in small, increasingly complex 
consumer electronic devices. Some such devices have 
more processing power and memory than a typical 
computer. Many such chips are designed by 
embedding large reusable building blocks, commonly 
called cores. Such a design reuse approach speeds up 
the design process, and allows import of external 
design expertise. The design of asynchronous circuits 
has been attracting more interest recently, as clock 
distribution on a large die becomes increasingly 
difficult.  
 The ITRS road map [22] predicts that as a 
solution to the clock distribution problem, Globally 
Asynchronous Locally Synchronous (GALS) system 
will become mainstream in the near future. In a 
GALS system, a number of synchronous islands of 
logic communicate asynchronously using a suitable 
interconnect. Unfortunately, the testability of 
asynchronous systems is considered to be one of their 
major drawbacks.  
 The increased system complexity leads to high-
test data volumes, which means long testing times. 
The testing of SOC is a crucial and time-consuming 
problem [7] due to the increasing design complexity. 
Therefore it is important to provide the test designer 
with support to develop an efficient test solution. 
Testing SOC becomes an increasing challenge [10] as 
these devices become more complex. An SOC design 
is typically built block by block. Efficient testing is 
also best done by block by block. Recently, pre-
designed cores are also used in the SOCs [12]. 
Traditionally, the chips are tested before they are 

integrated into a system; the interconnections are 
tested separately in system test when fault-free chips 
are already integrated. For system chips, on the other 
hand, testing of cores and interconnections is 
performed in a single system test step. Test access 
becomes also a problem for system chips since the 
cores are not directly accessible via chip inputs and 
outputs. Testing individual circuits, individual blocks 
and individual cores has established technologies. 
But, available techniques for testing of core-based 
SOC do not provide a systematic means of 
synthesizing low overhead test architectures and 
compact test solutions [14]. 
 Embedded cores such as processors, custom 
application specific integrated circuits, and memories 
are increasingly being used to provide SOC solutions 
to complex integrated circuit design problems [16]. 
The advances in design methodologies and 
semiconductor process technologies have led to the 
development of systems with excessive functionality 
implemented on a single chip [14].  
 In a core based design approach, a set of cores 
(predefined and pre-verified design modules) is 
integrated into a system using user defined logic and 
interconnections. In this way, complex systems can 
be efficiently developed [18]. However, the 
complexity in the system leads to high-test data 
volumes and design and optimization of test solution 
are a must for any test. Hence the following 
independent problems [14] might be considered: 
 

• How to design an infrastructure for the 
transportation of test data in the system. 

• How to design a test schedule to minimize 
test time, considering test conflicts and 
power constraints. 

 
The testable units in an SOC design are the cores, the 
User Defined Logic (UDL) and the interconnections. 
The cores are usually delivered with predefined test 
methods and test sets, while the test sets for UDL and 
interconnections are to be generated prior to test 
scheduling and Test Access Mechanism (TAM) 
Design. The workflow when developing an SOC test 
solution can mainly be divided into two consecutive 
parts: an early design space exploration followed by 
an extensive optimization of the final solution. 
During the process, conflicts and limitations must be 
carefully considered. For instance, tests may be in 
conflict with each other due to the sharing of test 
resources and power consumption must be controlled. 
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Otherwise the system may be damaged during test. 
Furthermore, test resources such as external testers 
support a limited number of scan-chains and have a 
limited test memory, which also introduce constraints 
[11]. 
 Research has been going on in developing 
techniques for test scheduling, test access mechanism 
design and testability analysis. In this paper, we 
propose a new technique using Genetic Algorithm for 
optimizing the test vector for Globally Asynchronous 
Locally Synchronous SOC with the objective to 
minimize the test application time. The aim of our 
approach is to reduce the gap between the design 
space exploration and the extensive optimization that 
is to produce a high quality solution in respect of test 
time and test access mechanism at a relatively low 
computational cost. 
 The rest of the paper is organized as follows: 
The works related to our approach and various issues 
related to SOC testing and test scheduling techniques 
are discussed in section 2; Test vector optimization 
and test scheduling framework based on genetic 
algorithm is presented in section 3; the characteristics 
of four ITC-02 SOC benchmark circuits are given in 
section 4; experimental results for the four 
benchmark SOC circuits are presented in section 5 
and section 6 looks at the conclusion. 
 
 
2 SOC Test Scheduling Techniques and 
the Related Works 
The basic problem in test scheduling is to assign a 
start time for all tests.  In order to minimize the test 
application time, tests are scheduled as concurrent as 
possible; however, various types of constraints must 
be considered. A test to be scheduled consists of a set 
of test vectors produced or stored at a test source. The 
test response from the test is evaluated at a test sink 
[7]. When applying a test, a test conflict may occur, 
which must be considered during the scheduling 
process. For instance, often a testable unit is tested by 
several test sets. If several tests are used for a testable 
unit, only one test can be applied to the testable unit 
at a time [13]. 
 Zorian et al [5] proposed a test scheduling 
technique for fully BISTed systems where test time is 
minimized while power constraint is considered. The 
tests are scheduled in sessions where tests at cores 
placed physically close to each other are grouped in 
the same test session. In a fully BISTed system [17, 

25], each core has its dedicated test source and test 
sink; and there might not be any conflicts among tests 
[9]. However, in general, conflicts among tests may 
occur. 
 Peng et al [7] proposed a test scheduling 
technique where test time is minimized for systems 
with test conflicts. For Core Based Systems a test 
scheduling technique is proposed by Chakraborthy et 
al [19]. Choudhary et al [11] proposed an analytic test 
scheduling technique where test conflicts and power 
constraints are considered. Iyengar and Chakrabarty 
[6] proposed a pre-emptive test scheduling technique 
where the test for a testable unit may be interrupted 
and resumed later.  
 The test-application time can be minimized by 
scheduling the execution of the test sets as 
concurrently as possible [2]. The basic idea in test 
scheduling is to determine when each test set should 
be executed and the main objective is to minimize the 
test application time.  
 The scheduling techniques can be classified into 
the following scheme [4]: 
 

• No partitioned testing 
• Partitioned testing with run to completion, 

and 
• Partitioned testing. 
 
 

2.1 SOC Testing 
Integration of a complex system that until recently 
consisted of multiple Integrated Circuits onto a single 
Integrated Circuit is known as System-on- Chip [6]. 
The shrinking of silicon technology leads to an 
increase in the number of transistors on a chip. This 
increases the number of faults and test vectors that in 
turn leads to a serious increase in test time. Test time 
reduction is one of the research challenges [8, 21] in 
the SOC design paradigm. The most important issues 
in the SOC Testing are as follows [10]: 

• Controlling the whole process of SOC 
Testing. 

• Testing the User Defined Logic and 
Interconnections. 

• Testing cores with different functionalities 
coming from different vendors. 

• Accessing cores from the system’s primary 
inputs and primary outputs. 
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2.2 Test Access Mechanism 
The test access mechanism (TAM) takes care of chip 
test pattern transport. It can be used to transport test 
stimuli from the test pattern source to the core under 
test and to transport test responses from the core 
under test to the test pattern sink. The TAM is, by 
definition, implemented on chip [12, 23]. 
 The following are the four problems structured 
in order of increasing complexity [4]: 
   

• PW: Design a wrapper for a given core, such 
that the core testing time is minimized, and 
the TAM width required for the core is 
minimized. 

• PAW: Determine (i) an assignment of cores to 
TAMs of given widths, and (ii) a wrapper 
design for each core such that SOC testing 
time is minimized. 

• PPAW: Determine (i) a partition of the total 
TAM width among the given number of 
TAMs, (ii) an assignment of cores to TAMs 
of given widths, and (iii) a wrapper design 
for each core such that SOC testing time is 
minimized. 

• PNPAW: Determine (i) the number of TAMs 
for the SOC, (ii) a partition of the total TAM 
width among the given number of TAMs, 
(iii) an assignment of cores to TAMs of given 
widths, and (iv) a wrapper design for each 
core such that SOC testing time is minimized.  

 
The above problems are all NP – Hard problems. 
Therefore, efficient heuristics and other techniques 
are needed for large problem instances [14]. In this 
work, we are presenting Genetic Algorithm based 
approach [16] to effectively solve the problems 
namely PAW and PPAW. 
 
3 Test Vector Optimization Based on 
Genetic Algorithm 
Genetic Algorithms can effectively be used to solve 
the search and optimization problems [27]. In this 
section the genetic algorithm that is used for 
generating test sequences for SOC is described [2, 4, 
6, 8, 18]. First, the basic idea of the method is given. 
Then we present the representation of test conditions 
and the objective function and provide some insight 
into the parameter settings of the genetic algorithm 
[15, 20].  GAs consist of population of solutions 
called chromosomes.  Here the chromosomes are an 

encoding of the solution to a given problem. The 
algorithm proceeds in steps called generations. 
During each generation, a new population of 
individuals is created from the old by applying 
genetic operators. Given old generation, new 
generation is built from it, according to the following 
operation given in section 3.1, 3.2 and 3.3 [22]. 
 
 
3.1 Selection 
This operator selects the individuals from the old 
generation. The fitness of an individual determines its 
chances to reproduce. The individual with a better 
performance possesses higher chances of getting 
selected. For each parent, two elements are chosen 
randomly. Only these elements are evaluated by the 
objective function. The element with higher ranking 
is selected. Thus, for the selection of two parents only 
four elements are evaluated instead of the whole 
population. 
 
 
3.2 Crossover 
This operator generates two new chromosomes from 
the couple of selected chromosomes. A random point 
on the chromosome also known as cross-site is 
selected. Portions of individuals in a couple are 
exchanged between themselves to form new 
chromosomes as follows [24]: 
 
for I = 1 to number of entries in the chromosome 
 
 C1(I)  =  P1(I) if I <= cross-site 
            =  P2(I) if I > cross-site 
 
 C2(I)  =  P2(I) if I <= cross-site 
              =  P1(I) if I > cross-site 
3.2.1 1-Point Crossover 
Construct two new elements C1 and C2 from two 
parents P1 and P2, where P1 and P2 are split in two 
parts at a cut position. 
 
 
3.2.2  2-Point Crossover  
Construct two new elements C1 and C2 from two 
parents P1 and P2, where P1 and P2 are split in three 
parts. 
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3.2.3 Uniform Crossover  
Construct two new elements C1 and C2 from two 
parents P1 and P2, where for each position the value 
is taken with a certain probability from P1 and P2 
respectively. 
 
 
3.2.4 Free Vertical Crossover  
Construct two new elements C1 and C2 from two 
parents P1 and P2. Determine for each test vector T 
in two parts at its cut position. The first part of each 
test vector of C1 is taken from P1 and the second part 
is taken from P2. 
 
 
3.3 Mutation 
Construct one new element C from a parent P by 
copying the whole element and changing a value at a 
randomly chosen position. 
 
 
3.3.1 2-Point Mutation  
Perform Mutation two times on the same element. 
 
 
3.3.2 Mutation with neighbor  
Perform Mutation at two adjacent positions on the 
same element. 
 
 
3.4 Overview of the proposed method 
The different steps of the proposed method are given 
as follows [2]: 
 
Genetic Algorithm Begin 

1. Generate the initial population of 
chromosomes, randomly. 

2. Sort the initial population in ascending 
order of the cost. 

3. While there is no improvement in cost 
function. 

 
   Do Begin 

Select first 20% chromosome as best 
class. 
Generate 40% chromosomes using 
crossover operator. 
Generate 40% chromosomes using 
mutation operator 

Sort this generation in ascending 
order of the cost. 

Do End 
4. Genetic Algorithm End. 

 
 
4 Characteristics of the SOCs 
 
Table 1 lists the general characteristics of the SOCs 
considered in our experiment [6]. This table is 
organized as follows: Column 1 gives the names of 
the SOCs. In column 2, the number of modules is 
listed. Column 3 lists the number of design hierarchy 
levels. Column 4 lists the total number of I/O 
terminals in the SOC. Column 5 shows the total 
number of scan flip flops in the SOC. Column 6 lists 
the total sum of the test pattern counts of all tests. 
 
 
Table – 1: General Characteristics of the ITC-02 SOC Test 

Benchmark Circuits 
Name

of 
SOC 

No. 
of 

Modules

No. 
of 

Levels

No. 
of 

I/Os 

No. 
of 

SFFs 

No. of 
Test 

Patterns
p34392 20 3 2057 20948 66349
p22810 29 3 4283 24723 24890
p93731 33 3 6943 89973 22987
d695 11 2 1845 6384 881 

 
Table 2 lists the main characteristics of the module 
tests of the SOCs [6]. Column 1 again lists the names 
of the SOCs. In column 2, the summed number of 
tests over all modules is shown. In columns 3, 4 and 
5, the minimum, average and maximum number of 
test patterns per test is listed. 
 
 

Table – 2: Test Characteristics of the ITC-02 SOC Test 
Benchmark Circuits 

 
No. of Pattern Counts Name 

of 
SOC 

No. 
of 

Tests 
Min Ave Max 

p34392 21 11 3159 12336 
p22810 30 1 830 12324 
p93731 32 11 718 6127 

d695 10 12 88 234 
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5 Experimental Results 
 
Our experiments were conducted for the ITC-02 SOC 
benchmark circuits p34392, p22810, p93791 and 
d695 [6]. The results are obtained for SOC with two 
partitions. W is the width of Test Access Mechanism. 
w1 and w2 are the size of the partition 1 and partition 
2. The processor time and test time are given under 
the Heuristics taken from [4]. The processor time and 
test time given under Genetic Algorithm are the 
results of our experiment.    
 
5.1. Results for p34392 
The Table – 3 gives the result for SOC p34392 with 
two partitions. In the Genetic Algorithm approach, 
the maximum processor time taken is 1.34 seconds 
and the minimum processor time taken is 0.82 
seconds whereas the maximum and minimum 
processor time taken in Heuristic method is 1 second. 
 

Table – 3: Results for SOC p34392 with two partitions 
(Processor Time(Seconds))/ 

Test Time(Cycles) 
 

W 
W1  
+  

w2 Heuristics Genetic 
Algorithm 

16 8 + 8 (1)/ 
1080940 

(1.34)/ 
1080900 

24 15 + 9 (1)/ 
928782 

(1.25)/ 
928562 

32 21 + 11 (1)/ 
750490 

(1.10)/ 
749850 

40 24 + 16 (1)/ 
721566 

(0.97)/ 
721450 

48 31 + 17 (1)/ 
709262 

(0.85)/ 
708550 

56 38 + 18 (1)/ 
704659 

(0.82)/ 
704650 

64 18 + 46 (1)/ 
700939 

(0.88)/ 
700800 

 
5.2 Results for p22810 
The Table – 4 gives the result for SOC p22810 with 
two partitions. In the Genetic Algorithm approach, 
the maximum processor time taken is 1.32 seconds 
and the minimum processor time taken is 0.41 
seconds whereas the maximum processor time taken 
is 9 seconds and minimum processor time taken is 1 
second in Heuristic method. 
 
 

 

Table – 4: Results for SOC p22810 with two partitions 
(Processor Time(Seconds))/ 

Test Time(Cycles) 
 

W 
W1  
+  

w2 Heuristics Genetic 
Algorithm 

16 6 + 10 (1)/ 
462210 

(0.63)/ 
461348 

24 8 + 16 (2)/ 
365947 

(1.15)/ 
361326 

32 10 + 22 (9)/ 
312659 

(0.41)/ 
313891 

40 9 + 31 (2)/ 
290644 

(0.61)/ 
287260 

48 10 + 38 (1)/ 
290644 

(1.32)/ 
268512 

56 24 + 32 (1)/ 
290644 

(0.51)/ 
271429 

64 12 + 52 (6)/ 
271330 

(0.48)/ 
260645 

 
5.3 Results for p93791 
The Table – 5 gives the result for SOC p93791 with 
two partitions. In the Genetic Algorithm approach, 
the maximum processor time taken is 1.46 seconds 
and the minimum processor time taken is 0.36 
seconds whereas the maximum and minimum 
processor time taken in Heuristic method is 1 second. 
 

Table – 5: Results for SOC p93791 with two partitions 
(Processor Time(Seconds))/ 

Test Time(Cycles) 
 

W 
w1  
+  

w2 Heuristics Genetic 
Algorithm 

16 8 + 8 (1)/ 
1952800 

(0.48)/ 
1786032 

24 12 + 12 (1)/ 
1217980 

(0.67)/ 
1206532 

32 9 + 23 (1)/ 
894342 

(1.36)/ 
878971 

40 23 + 17 (1)/ 
750311 

(0.83)/ 
735677 

48 33 + 15 (1)/ 
632474 

(0.36)/ 
628733 

56 46 + 10 (1)/ 
524203 

(1.46)/ 
518686 

64 46 + 18 (1)/ 
467424 

(0.61)/ 
462757 

 
5.4 Results for d695 
The Table – 6 gives the result for SOC d695 with two 
partitions.  
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Table – 6: Results for SOC d695 with two partitions 
 

(Processor Time(Seconds))/ 
Test Time(Cycles) 

 
W 

w1  
+  

w2 Heuristics Genetic 
Algorithm 

16 7 + 9 (1)/ 
45055 

(0.18)/ 
1080900 

24 19 + 5 (1)/ 
34455 

(0.19)/ 
928562 

32 20 + 12 (1)/ 
25828 

(0.21)/ 
749850 

40 8 + 32 (1)/ 
22848 

(0.12)/ 
721450 

48 16 + 32 (1)/ 
22804 

(0.22)/ 
708550 

56 19 + 37 (1)/ 
18940 

(0.29)/ 
704650 

64 41 + 23 (1)/ 
18868 

(0.16)/ 
700800 

 
 
In the Genetic Algorithm approach, the maximum 
processor time taken is 0.29 seconds and the 
minimum processor time taken is 0.12 seconds 
whereas the maximum and minimum processor time 
taken in Heuristic method is 1 second. 
 
6 Conclusion 
 
The experimental results are given for four ITC-02 
SOC Benchmark circuits with two partitions. The 
result gives good approximation compared to 
Heuristics within a few generations with acceptable 
processor times. This establishes the suitability of this 
problem to be solved by Genetic Algorithm. We can 
apply this technique to all the other SOCs given in [6] 
having more number of cores with many scan chains 
and even more number of TAM widths.    
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