
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

179

Manuscript received October 5, 2006.
Manuscript revised October 25, 2006.

* The work is supported by polish MNiSW within research grant 3 T11C 06430

An Approach to Evaluation of PSM/MDA Database
Models in the Context of Transaction Performance

Iwona Dubielewicz†, Bogumila Hnatkowska†
, Zbigniew Huzar†, Lech Tuzinkiewicz†,

Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Summary
The aim of the paper is to propose a method for evaluation
of logical database models in the context of transaction
performance. Logical database models can be regarded as
PSM models within MDA architecture. The logical
database models are driven from a given conceptual
database model (a part of PIM model within MDA) by
applying different transformations rules. The evaluation
method takes into account both static and dynamic aspects
of logical database models. Within static-based aspect
structural metrics to logical database model evaluation
are considered. Within dynamic-based aspect transaction
complexity is approximated.
Key words:
MDA, PSM, database models, performance evaluation

Introduction

Developing an information system usually entails
designing a database. During this process, assuming a sy-
stematic approach, several models are developed at
various levels of abstraction, preserving domain integrity,
and intra- and inter-model consistency. The process can be
divided into three basic phases: conceptual, logical and
physical modelling [1,2,9,10,13]. The conceptual model,
describing the application domain, yields the logical
model specification, basing on which the physical model
(implementation of the database) can be established. The
structure of the process mandates the use of the MDA
(Model Driven Architecture) approach for database design.
MDA is an initiative by the Object Management Group to
automate generation of platform-specific models from
platform-independent models. MDA’s approach to
software development bases on modelling and model
transformations. The process of software development is
seen as modelling, i.e. constructing a sequence of models,
starting with an application domain model and ending
with a system implementation model. Each model, except
the first one, is derived from its predecessor by means of
transformations, stepping down from higher abstract
models to less abstract ones, more closely aligned with the
actual deployment platform. The final result of this
process is a system code model. MDA does not enforce

any particular software development methodology. There
are three categories of models in MDA: Computation
Independent Model (CIM), Platform Independent Model
(PIM) and Platform Specific Model (PSM).
CIM is a view of a system from the computation indepen-
dent viewpoint. CIM does not show details of the structure
of system. CIM may be identified with a domain or
business model in other methodologies [6,12]. It describes
both the requirements for the system and the environment
in which the system will be used.
In our presentation, PIM and PSM are the main MDA’s
models of interest. PIM is a model that is independent of
the features of a platform that the system may use. PSM is
a model that is specific with respect to some features of a
platform. PSM models may be called implementation
models, and may be considered on different abstraction
levels. Eventual implementation model bases on a given
platform, which is understood as a set of subsystems and
technologies that provide a coherent set of functionalities
through interfaces and specified usage patterns.
In the paper, the conceptual database model is treated as a
part of PIM. The logical model and physical models are
treated as parts of PSM models [6]. For specification of
PIM models, the UML 2.0 standard is recommended
[7,16]. PSM models may – on the technological level – be
expressed in SQL 99/2003 [2,4,5,11], while on the
implementation (deployment) level they take the form of
tool native scripts.
PSM is a platform-specific model; hence for databases it
requires selecting both: the relevant technology (PSM1),
i.e. relational, object-oriented or XML, and a database
management system (DBMS) supporting a given platform
(PSM2), i.e. Oracle, MS SQL 2005. We assume that all
DBMSs taken into consideration are compliant with
established SQL and XML standards [11].
One of the first stages of software system design is the
specification of requirements, i.e. properties or characte-
ristics that the system or its components must exhibit [7,
14]. We distinguish between functional and non-functional
requirements. Non-functional requirements can be imple-
mented in various ways. For systems containing databases,
some of those requirements, for instance those relating to
reliability or efficiency, can be delegated to the database

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

180

management system. Decisions regarding the delegation
of responsibility for the fulfilment of non-functional
requirements affect the database development process. So,
the quality and particularly effectiveness of those systems
depend on the databases and on the way they provide
information services. Hence, while designing an informa-
tion system we should consider database design both in its
functional and non-functional aspects. We should be
aware of the many issues, but, in the paper, we concentrate
on performance, i.e. data processing efficiency.
From the point of view of database design, functional and
non-functional requirements, together with the domain
model, and the set of business rules, constitute a CIM
model.
The database developing process requires a sequence of
transformations fulfilling the following principles:

- Elements from a target model should be traced from
respective elements from the source model.

- Transformations should be conservative, i.e. no model
property can be lost by a transformation.

- Transformations should guarantee correctness of a
target model provided the source model was correct.

- For each model element at a given level (CIM, PIM,
PSM1) at least one transformation into an element of a
more refined model must exist.

- Each model could be refactored.
PIM database model must contain all elements necessary
for the satisfaction of functional requirements as well as
non-functional ones. By treating functional and non-
functional requirements as elements of the CIM model, we
assume that transformations of data models ensure the
required range of computing resources and thus enable to
implement the required system functionality. This assum-
ption is acceptable provided that the model transformation
rules are unambiguous and non-contradictory. In more
details, the PIM consists of:

- a class diagram with possible constraints,
- an estimation of maximum number of class instances,
- a set of transactions on the database and frequency of

their calls.
The first two elements characterize system’s requirements;
the last characterizes system’s environment. For the sake
of simplicity we do not consider collisions among tran-
sactions. PSM consists of:

- a set of interconnected tables,
- a set of transactions expressed in terms of SQL

statements.
Note that the set of transactions in PSM is a result of
transformation of the set of transactions from PIM. Obvio-
usly, transformation of these transactions depends on the
transformation of a conceptual database model on PIM
level into logical model on PSM level.

There are many ways of model transformation, i.e. a given
source model may be transformed into many target models.
Typical transformations should yield a set of interconne-
cted tables in third normal form. There are also other
transformations, producing sets of non-normalised tables,
which usually have other important features, especially
that are more efficient in use.
So, the questions arise: how to evaluate the target models
to select the best of them, and how to set up respective
transformation strategy. In the paper, we address only the
first question. We concentrate on transformation of PIM
into PSM database model. Additionally, we assume that
performance of transactions will be the criterion for the
best model selection.
The aim of the paper is to propose evaluation method of
PSM database models that are result of transformations of
PIM database model in the context of transaction perfor-
mance. The evaluation method takes into account static-
based and dynamic-based aspects. Within static-based
aspect structural metrics for strategy evaluation are
considered. Within dynamic-based aspect transaction
complexity is estimated.
Section 2 presents two approaches, i.e. static, and dynamic,
to PSM models evaluation. The metrics associated with
both approaches are presented in subsections 2.1, and 2.2
respectively. An example of using proposed metrics to
PSM models assessment is shown in Section 3. Section 4
gathers some concluding remarks.

2. PSM models evaluation

When designing a database it is required that developed
data model describes as far as possible the real situation
being under investigation. It means that the determined
data as well as relations among them result from existing
business rules and domain constraints.
A logical data model, understood as a relational data
model, can be obtained as an outcome of application of
any methodology, taking into consideration different
selection criteria for data structures as well as for data
processing e.g. elimination of redundant data, elimination
of anomalies connecting with data modification, ensuring
of acceptable level of data performance etc. Generally,
there is obtained a set of different solutions (data models).
The decision which model to choose is based among
others on subjective experience of the database designers.
Consequently, a physical model often is a subject to modi-
fication for improving some of particular features of data-
base e.g. increasing of processing performance.
The metrics presented in subsequent part are related to
performance aspect of database and they enable to

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

181

evaluate data model while logical modeling is conducted
(at PSM1 level).

2.1 Static approach

Data processing improvements in database-oriented sy-
stems is a well-known issue. In many research papers, e.g.
[3,9] there are given practical recommendations which can
help in tailoring of data model for users’ requirements.
However, these proposed processes are very tedious and
time-consuming as they are most often implemented as
multiple data model transformations which still need to be
thoroughly tested. The test results constitute a basis for the
possible data model acceptance.
For that reason we think that metrics which allow for an
in-advance evaluation of some data model features would
be much more valuable.
Hence we propose some metrics which has been
elaborated on the basis of the authors’ experiences in
implementation of many different database-oriented
information systems.
Taking into account the fact that relational database
systems are for the time being the most important ones we
focus only on this kind of data models. Proposed metrics
are supposed to apply to relational databases and relate to
the issue of performance.
Database performance in database systems hinges on
many factors. We have restricted our research only to data
models. We have omitted the factors associated with the
environment in which the system is working (hardware,
operating system). We have considered only those
elements which can be taken into account at the PSM1
model creation phase.
In order to obtain the best performance of database
systems we should consider, during logical data modeling,
the following important issues:

- kinds and complexity of database queries;
- frequency of transactions;
- the data structure;
- table schema;
- amount and kinds of constraints (domain, referential);
- estimated size of tables.

Elements mentioned above have been considered in the
proposed metrics.
For given PSM model static complexity MS of a set S of
transactions performed within a given period of time is
calculated as the weighted sum of MST metric counted for
every transaction:

∑
∈

=
ST

TTS MSgMS

where:
gT – frequency of transaction T within a given period
of time;

MST – static complexity of transaction T.
Static complexity of transaction T is defined by MST
metric:

∑ ∑
∈ ∈ ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=

T jTablej
joinkey

FTablek
krefseljjT ccfsccsdcMS *)*****(mod

where:
TableT – set of tables affected by transaction T;
cmod – cost of table modification (considered only
when T is a modifying transaction);
dj – record length factor for the j table; it is counted
as: maximal_record_length div page_length + 1
(page_length is assumed to be equal to 1024);
sj – maximal number of record instances in j table;
csel – cost of conditional clause in transaction T (e.g.
where clause);
cref – cost of reference integrity assuring;
FTablej – set of tables for which referential integrity
should be considered;
fsk – maximal number of record instances in k table;
cjoin – cost of table joining;
ckey – correction factor if tables join is realized basing
on primary tables keys.

The MSS metric aims at evaluating the logical model of
database. Therefore, we have not considered such database
properties like, for instance, indexes or features of
hardware of a chosen database system.

2.2 Dynamic approach

In dynamic approach performance of PSM models is
evaluated basing on assessment of transactions complexity.
The transaction complexity is a similar concept to compu-
tational complexity of classical algorithms. In our case
transaction complexity is expressed as a formula yielding
an absolute integer value that may be compared with
others values.
At PSM level transactions are represented by a sequence
of SQL statements. To evaluate complexity of SQL
statement it is decomposed into a set of so called
elementary operations. There are three kinds of elementary
operations:

- algebraic elementary operations: projection (PROJ),
selection (SEL), join (JOIN);

- data modification elementary operations: insert (INS),
update (UPT), delete (DEL);

- reference integrity elementary operations: CHK.
For example, an SQL statement of the form:
 DELETE FROM table where condition;
is decomposed into two different elementary operations:
selection (SEL), and deletion (DEL). If the table is asso-
ciated by a foreign key with other table(s), additionally

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

182

decomposition of this operation will result with CHK
operation(s).
Decomposition of SQL statement into elementary opera-
tions at this moment is done manually. For each elemen-
tary operation a maximal number (pessimistic estimation)
of affected records is determined. The record numbers are
treated as the problem size – it is obvious that a time of
operation performance is a function of records’ count. In
turn, a time of record performance depends on record’s
length and on the kind of performed operation.
Dynamic complexity of transaction T is defined by MDT
metric:

 ∑ ∑
∈ ∈

=
Op dr

rrT cncMD
α

αα

where:
Op – set of elementary operation types;
cα – cost of operation of a given kind α;
nαr – maximal number of records affected by elementa-
ry operations of type α working on records of a given
type length r (r∈D);
cr – cost of record performance of a given type length r
(r∈D);
D – set of record type lengths (counted as:
maximal_record_length div page_length + 1)

Dynamic complexity of a set S of transactions performed
within a given period of time is defined by the MDS
metric:
 ∑

∈

=
ST

TTS MDgMD

where:

 gT – a frequency of transaction T,∑
∈

=
ST

Tg 1.

3. Case study

This section presents an example of static and dynamic
approaches to PSM models evaluation. PIM model is the
start point of our considerations.

3.1 PIM, and PSM data models

As it was mention above, PIM data model is described by
a class diagram. Exemplary class diagram is shown on Fig.
1.
Customer, and Employee classes are two specialisations of
Person class. Each person has only one address, but a
given address may be associated with many people. An
employee is responsible for many customers, and a
customer is serviced by one employee. Employees work in
a firm. The firm is placed in one address.

Person
ID
first name
last name
birthday
NIP{complete,

disjoint}

Employee
ID
position

Customer
ID
registration date
discount 0..* 110..*

Address
zip code
street
town
no

1 0..* 1 0..*

Firm
name
NIP
REGON0..* 1 0..* 1

0..1

11

0..1

Fig. 1 Exemplary PIM data model.

PIM model is described with a set of important, in the
context of database performance, features. For each class a
maximal number of instances and maximal record length
(in bytes) is approximated. Table 1 presents such assess-
ments for two variants of database instances. The first
variant was prepared for a medium-scale enterprise, while
the second – for a small-scale enterprise. Record length
factor is calculated basing on the approximations of
maximal record lengths, as it was defined in subsection
2.1.

Table 1: PIM model characteristic
Variant I Variant II

Class Max
instance
number

Max
instance
number

Maximal
record
length [B]

Record
length
factor

Person 100050 3003 600 1

Address 80000 3000 400 1

Client 100000 3000 600 1

Employee 50 3 1400 2

Firm 1000 10 1030 2

Additionally, at PIM level we have informally defined
system transactions and their characteristics. Transactions
are traced from CIM model. At PIM level each transaction
is described in terms of required classes, and forecasted
frequency. Tables 2, and 3 present a set of five
transactions for considered PIM model together with their
characteristics. The characteristics (frequencies) are
defined in two variants (for medium and small-scale
enterprises).

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

183

Table 2: System transactions
No Transaction Required assets (classes)
1 Count the number of

clients
Client

2 Count the number of
clients above 65 years old

Person, Client

3 List the clients from a
given town

Person, Client, Address

4 Insert an employee Person, Employee, Address
5 Insert client Person, Client, Address

Table 3: System transactions and their characteristics
Variant I Variant II

Freq/ Freq/
Trans

No Freq
Day

Norm.
freq

Freq
day

Norm.
freq

1 1/day 1 0,0193 1/month 0,03 0,0059
2 1/month 0,03 0,0006 1/month 0 0,0000
3 1/month 0,03 0,0006 1/month 0,03 0,0059
4 5/week 0,71 0,0137 1/month 0,03 0,0059
5 50/day 50 0,9658 5/day 5 0,9823

Based on PIM data models, manually or automatically,
different PSM models are elaborated. The models can
differ with many characteristics, particularly they may
have different performance characteristics.
Conceptual data model from fig. 1 could be transformed
into many PSM models. Figures 2-5 present four possible
versions of PIM transformations.
PSM models are expressed with terms of tables and
foreign key references. A dependency with a <<fk>> ste-
reotype means, that a source table has a foreign key to a
target table, e.g. Persons table has a foreign key to
Addresses table (see Fig. 2).
For the sake of simplicity the following naming conven-
tions are assumed:
- a table containing instances of a given class is named

with a plural form of the class name, e.g. Person class
instances are gathered in Persons table;

- a table may contain instances of two or more classes;
in such case its name consists of the names of all
classes (in plural form).

Fig. 2 PSM model – variant I

Addresses
<<Table>>

Firms
<<Table>>

<<fk>>

Persons_Customers
<<Table>>

Persons_Employees
<<Table>>

<<fk>>
<<fk>>

<<fk>>

<<fk>>

Fig. 3 PSM model – variant II

Fimrs_Addresses
<<Table>>

Persons_Customers_Addresses
<<Table>>

Persons_Employees_Addresses
<<Table>> <<fk>>

<<fk>>

Fig. 4 PSM model – variant III

<<Table>>
Fimrs_Addresses

Persons_Customers_Employees_Addresses
<<Table>>

<<fk>>

<<fk>>

Fig. 5 PSM model – variant IV

3.2 Model evaluation – Static approach

This section presents evaluation of static metrics, defined
in subsection 2.1 for considered example. All four
versions of PSM models were assessed by counting MST
metric for 5 transactions, and for two variants of PIM
model characteristics. The calculations were done with the
assumption that: cmod=1, csel=1, cref=1, cjoin=1, ckey=1, dj=1,
and fsk was equal to average value of records number in all
tables.
Results of MST metric computation for PIM II are
presented on the Fig. 6. The letter ‘R’ or ‘M’ added after
the transaction identifier shows if the transaction modifies
(M), or not (R) data in a table (tables).

P e rs o n s
< < T a b le > >

A d d re s s e s
< < T a b le > >

C u s to m e rs
< < T a b le > >

E m p lo y e e s
< < T a b le > >

F irm s
< < T a b le > >

< < fk > >

< < fk > >

< < fk > >< < fk > > < < fk > >

< < fk > >

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

184

Fig. 6 MST metric evaluations for T2 transaction

The final ranking of PSM models is presented on Fig. 7.
The best is PSM III model. PSM IV is a little worse. The
worst is the PSM – version I. The ranking is the same for
both variants of PIM model characteristic, but the
differences between models become lower when small
enterprise is considered.

Fig. 7 Evaluation of MSS metric for the set of transactions

3.3 Model evaluation – Dynamic approach

In order to evaluate the MDT metric for a given transaction
T, first the SQL statements representing this transaction on
PSM model should be decomposed into elementary
operations. Next, the maximal number of records, affected
by each elementary operation must be assessed. Decompo-
sitions and assessments are here done manually basing on
PIM model characteristic (see tables 1, 2, 3).
Exemplary SQL statement representing transaction:
“Count the number of clients above 65 years old”, and its
decomposition into elementary operations for all variants
of PSM models are shown in the tables 4 and 5.

Table 4: Input data for evaluation of MDT metric for T2 transaction
PSM SQL Statement Elem.

opera-
tions

Max.
no of

records

Computa-
tional model

Comments

I Select count(*) from
join where
year(date())-
year(data)>65

JOIN
SEL
PROJ

N * M
N
N

N*M + 2*N N – Max no of
Clients
M – Max no of
Persons

II Select count(*) from
Persons_Clients where
year(date())-
year(data)>65

SEL
PROJ

N
N

2*N N – Max no of
Clients

III Select count(*) from
Persons_Clients_Addre
sses where
year(date())-
year(data)>65

SEL
PROJ

N
N

2*N N – Max no of
Clients

IV Select count(*) from
Persons_Clients_Empl
oyees_Addresses
where is_klient and
year(date())-
year(data)>65

SEL
PROJ

N
M

N+M N – Max no of
Persons
M – Max no of
Clients

Table 5: Exemplary evaluation of MDT metric for T2 transaction
PSM Computational

model
Variant 1 Variant 2

I N*M + 2*N 10005200000
N = 100000
M = 100050

9015000
N = 3000
M = 3003

II 2*N 200000
N = 100000

6000
N = 3000

III 2*N 200000
N = 100000

6000
N = 3000

IV N+M 200050
N = 100000
M = 100050

6003
N =3000

M = 3003

Evaluations of MDS metric for all transactions for each
PSM variant are presented in the fig. 8. Evaluations were
done for two variants of PIM model characteristic. The
calculation was done with the assumption that cα=1 (for
each elementary operation kind), and cr=1.
In both aspects – structural and dynamic, PSM variant III
is the best. But let remember that PSI I and PSM II are in
the 3rd normal form, while the others PSMs are
denormalised. In that context ranking result is no surprise.
The same ranking of PSM models is for the second variant
of PIM model characteristic, however in this case the
differences between PSM models are lower. That is
important in some cases, when not only efficiency, but
also maintainability would be required feature of the
database.

0,00

0,50

1,00

1,50

2,00

Var. I of PIM
characteristic

0,82 0,77 0,24 0,35

Var. II of PIM
h t i ti

1,48 1,19 0,30 0,60

PSM I PSM II PSM III PSM IV

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

Var. I of PIM characteristic 0,12 0,12 0,18 0,12 0,24 0,77

Var. II of PIM characteristic 0,00 0,00 0,01 0,00 1,18 1,19

T1-R T2-R T3-R T4-M T5-M PSM II

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

185

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

Var. I of PIM
characteristic

17571797,84 4716477,9 3309,85 180460,51

Var. II of PIM
characteristic

59143,31 56121,69 74,74 6004,02

PSM I PSM II PSM III PSM IV

Fig. 8 Evaluation of TBS metric for the set of transactions

4. Conclusions

In the paper we have presented an approach to evaluation
of performance of PSM database models that are
developed within MDA. Performance of database is not an
absolute value but it is considered in the context of its use
– a set of transactions over the database. Two evaluation
methods are presented and compared. The first static
method is simple in use but it requires an expert
knowledge. The knowledge relates values of factors that
are used in the structural metrics. The second, dynamic
method seems to be more complex as, except an expert
knowledge, it requires decomposition of transactions into
sets of elementary operations. The last problem would be
avoided provided transformation rules for transactions
were elaborated.
Simple case study shows that the methods are strongly
related; both methods give the highest rank to the same
PSM model, however, eventual conclusions need further
experiments.
In general, our approach grows from the postulate to
examine and evaluate developed models as soon as pos-
sible: in the case of database development, we suggest to
evaluate logical models before elaboration of physical
models. We have concentrated on performance evaluation,
which is one of the most important non-functional chara-
cteristic of databases. Nevertheless, the similar approach
could be adopted for evaluation of other non-functional
characteristics. It would be reasonable to elaborate metrics
related to other specific characteristics. A separate multi-

criterion problem is how to integrate evaluation of indi-
vidual characteristics into global evaluation of a system.
Future works require firstly exhaustive experiments to
validate the proposed evaluation methods, especially to
estimate ranges of factors that are used in our metrics. We
expect that the relations among these factors will be not
strongly depended on different platforms. Secondly, future
works should bring automation of decomposition of SQL
transactions into a set of elementary operations.
The next goal of our attempts would be to elaborate the
strategies of PIM-PSM model transformations that yield
the most efficient (in the sense of performance) PSM
model.

References
[1] Ambler Scott W., Agile Database Techniques, Effective

Strategies for the Agile Software Developer, John Wiley &
Sons, 2004.

[2] ANSI/ISO/IEC International Standards (IS). Database
Language SQL – Part 2: Foundation (SQL/Foundation, 1999,
hhttttpp::////wwwwww..ccssee..iiiittbb..aacc..iinn//ddbbmmss//DDaattaa//PPaappeerrss--OOtthheerr//
SSQQLL11999999//aannssii--iissoo--99007755--22--11999999..ppddff.

[3] Connolly T., Begg C., Database Systems. A Practical
Approach to Design, Implementation, and Management,
Fourth Edition, Addison-Wesley, 2005.

[4] Database Languages – SQL, ISO/IEC 9075-*:2003.
[5] Date C., Darwen H., A Guide to the SQL Standard, Fourth

Edition, Addison-Wesley, 1997.
[6] Dubielewicz I., Hnatkowska B., Huzar Z., Tuzinkiewicz L.,

Feasibility analysis of MDA-based database design,
Proceedings of International Conference on Dependability
of Computer Systems. DepCoS – RELCOMEX 2006.
Szklarska Poręba. Los Alamitos, IEEE Computer Society
Press, 2006.

[7] Fowler M., UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Third Edition, Pearson
Education, 2004.

[8] Jacobson L., Booch G., Rumbaugh J., The Unified Software
Development. Process, Addison-Wesley, 1999.

[9] Kiefer M., Bernstein A., Lewis P., Database Systems. An
Application-Oriented Approach, Second Edition, Addison-
Wesley, 2006.

[10] Marcos E., Vela B., Cavero M., A Methodological
Approach for Object-Relational Database Design using
UML, Software and Systems Modeling, Vol. 2, pp. 59-72,
Springer-Verlag, 2003.

[11] Mattos N., Darwen H., Cotton P., Pistor P., Kulkarni K.,
Dessloch S., Zeidenstein K.: SQL99, SQL/MM, and SQLJ:
An Overview of the SQL Standards,
hhttttpp::////wwwwww..wwiissccoorrpp..ccoomm//SSQQLLSSttaannddaarrddss..hhttmmll

[12] MDA Guide v. 1.0.1., http://www.omg.org/mda
[13] Naiburg E. J., Maksimchuk R. A., UML for Database

Design, Addison-Wesley, 2001.
[14] Rumbaugh J., Jacobson L., Booch G., The Unified

Modeling Language. Reference Manual, Second Edition,
Addison-Wesley, 2005.

[15] Shasha D., Bonner P., Database Tuning. Principles,
Experiments, and Troubleshooting Techniques, Elsevier
Science, 2003.

[16] UML 2.0 Superstructure Specification, OMG, September
2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

186

Iwona Dubielewicz received the M.S. and
Ph.D. degrees in Computer Science from
Electronic Department of Wroclaw Institute
of Technology in 1972 and 1977, respectively.
During 1984-199 she participated in
designing and implementing NASK first
computer wide-area network in Poland. Now
she is a lecturer and her research area is

dealing with software development methodologies and software
project management.

Bogumiła Hnatkowska received the M.S.,
and PhD degrees in Computer Science from
Wrocław University of Technology, Poland,
in 1992 and 1998, respectively. Since 1998
she has working as a Professor Assistant in
Institute of Applied Informatics at Wrocław
University of Technology. Her main research
interests are: software engineering, software

metrics and models, software quality.

Zbigniew Huzar received the M.S., Ph.D.,
and habilitation degrees in Computer Scien-
ce from Wrocław University of Technology,
Poland, in 1969, 1974 and 1990, respective-
ly. During 1978-1984, he was deputy dire-
ctor of Computer Center, during 1984-2003,
he served as a head of Informatics Center,
and since 2004 he has served as a director of

the Institute of Applied Informatics, all at Wrocław University of
Technology. The field of his interest comprises software engi-
neering, especially formal specification and design methods.

Lech Tuzinkiewicz received the PhD degree in computer
science from Wrocław University of Technology, Poland, in
1982. He works as a Professor Assistant in Institute of Applied
Informatics at Wrocław University of Technology. His main
research interests are: databases, data warehouses, software
engineering.

