
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October  2006 
 

 

194 

 

1This work was carried out during the visit of prof. Smile Markovski to the Faculty of information technology, mathematics and electrical engineering - 
Department of Telematics, The Norwegian University of Science and Technology - Trondheim, Norway, in the framework of Erasmus Mundus program 
and NordSecMob Master’s Programme in Security and Mobile Computing. 
 
Manuscript received  October 5, 2006. 
Manuscript revised October 25, 2006. 

A Secure Hash Algorithm with only 8 Folded SHA-1 Steps 

Danilo Gligoroski†, Smile Markovski†† and Svein J. Knapskog† 
  

† “Centre for Quantifiable Quality of Service in Communication Systems”,  
Norwegian University  of Science and Technology, Trondheim, Norway 

†† Faculty of Sciences, Institute of Informatics, 
“Ss Cyril and Methodius” University, Skopje, Republic of Macedonia 1 

Summary 
We propose a new design principle for construction of iterated 
cryptographic hash functions: computations in the iterative part 
of the compression function to start with variables produced in 
the message expansion part that have complexity level of a 
random Boolean function. Then we show that to reach the 
cryptographic strength that will withstand all currently known 
techniques for finding collisions, much lower number of 
iterations is necessary. Concretely we use the recently proposed 
nonlinear technique “Quasigroup Fold” together with the 
mentioned principle to design a hash function that has only 8 
iterative steps. Besides increasing the security, the reference C 
code for the obtained hash function shows that it is at least 3% 
faster than original reference code for SHA-1. 
 
Key words: SHA-1,SHA-2, hash, quasigroup folding 

Introduction 

Since the successful attacks on MDx family of functions 
were announced by Wang at. al [1-4] a significant part of 
the cryptographic community devoted its current scientific 
interest in revising the principles of constructing 
cryptographically secure hash functions. Thus, the Merkle-
Damgård design of hash functions [5,6] came under 
careful revision, and some weaknesses have been already 
found. Besides the classical birthday attack (and some 
variants such as Yuval's attack [7]), in a recent paper from 
2004 by Joux [8] the concepts of multi-collisions and 
expandable messages were introduced and it was shown 
that the workload for finding second preimage collisions 
with equal length for iterated one-way hash functions is 
about log(k)×2n/2, where k is the number of computed hash 
values. Kelsy and Schneier in 2005 [9] extended the 
approach for finding expandable messages with different 
length, and they showed that the workload is about 
k×2n/2+1. Then Coron at al. [10] made several suggestions 
how to strengthen the Merkle-Damgård design. On the 
other hand, in recent ePrint paper, Gauravaram, Millan 
and Neito [11] give an interesting discussion about the 

possibilities that Merkle-Damgård design for MDx family 
was in fact not properly implemented. That is especially 
true for the so called pseudo-collisions attack, for which 
MD5, SHA-0 and SHA-1 were not designed to be secure. 
These thoughts for the design criteria are also present in 
Preneel works [12, 13]. 

Previous Work – Having a completely linear message 
expansion part, SHA-1 reaches the level of complexity of 
a random nonlinear multivariate Boolean function over the 
field GF(2) in about 20 steps in the iterative part of its 
compression function. Basically, all known methods for 
finding collisions on SHA-0 and SHA-1 exploit heavily 
that weak part of the design. Another characteristic that all 
known methods for finding collisions on MDx family of 
hash functions have in common is that they use the 
invertibility and the linearity of addition modulo 232 and 
left rotation, that are frequently used in the iterative part of 
the compression function. Recently Gligoroski, Markovski 
and Knapskog, presented at NIST Cryptographic 
Workshop [14] a technique called “Quasigroup Folding” 
that eliminates that linear characteristic of SHA-1 and, 
tracing the computations of the compression function, 
after several steps becomes infeasible. However, the 
proposed solution was around 85% slower than the 
original SHA-1. 

Facing the recent successful cryptanalysis of SHA-1, 
NIST has updated their information and recommendations 
for the policy of using cryptographic hash functions. Their 
recommendations now include the use of SHA-2 family, 
and they propose smooth transfer from SHA-1 to SHA-2. 
However, having in mind that SHA-2 is two times slower 
than SHA-1, for many industrial applications, SHA-1 will 
continue its life. From that point of view, there is still big 
industrial interest for fast cryptographic hash functions 
(similar or even faster than SHA-1, and with digest sizes 
of 160 bits). 

Our Work – In this paper we define a measure of the 
similarity of an iterated hash functions to the random 
function. We examine how SHA-1 and SHA-2 behave 
according to that measure and propose a new design 
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principle using that measure. Further on, following that 
principle and using the technique of Quasigroup Folding, 
we define a new hash function with 160 bits message 
digest size. It has only 16 steps in the message expansion 
part and has only 8 internal iterative steps. We claim that 
the new hash function SHA-1Q2 is cryptographically 
secure and can withstand all known successful attacks on 
MDx family of hash functions. For comparison, Wang at 
al. claim that they can find collisions in 58 steps of 
original SHA-1 with complexity of 233. Moreover, SHA-
1Q2 is faster than the original SHA-1 for at least 3.0%.  

The paper is organized as follows. Some preliminaries 
about Quasigroup Folding and SHA-1 are given in Section 
2. The algorithm SHA-1Q2 is given in Section 3, security 
analysis is given in Section 4 and we close our paper with 
conclusions in Section 5. 

 

2. Preliminaries and notation 
In this paper we will use the same notation as that of 
NIST: FIPS 180-2 description of SHA-1 [15]. 
The following operations are applied to 32-bit words in 
SHA-1Q2: 
 

1. Bitwise logical word operations:  ∧, ∨, ⊕ and ¬. 
2. Addition modulo 232. 
3. The rotate left (circular left shift) operation, ROTLn(x), 
where x is a 32-bit word and n is an integer with 0 ≤  n < 
32. 
4. The operation of quasigroup folding of a 32-bit word x 
= x1x2x3x4x5x6x7x8 (represented as a concatenation of eight 
4-bit variables x1,…,x8) is defined by the following 
equations: 
 

QFOLD(x) = x1’ x2’ x3’ x4’x5 x6 x7 x8, 
x1’ = x1 ∗ x5, 
x2’ = x6 ∗ x2,    (1) 
x3’ = x3 ∗ x7, 
x4’ = x8 ∗ x4, 

 

where the operation ∗ is a 16×16 quasigroup operation 
defined as in Table 1. 

SHA-1Q2 uses a sequence of 8 logical functions, f0, 
f1,..., f7. Each function ft, where 0 ≤ t ≤ 7, operates on three 
32-bit words, x, y, and z, and produces a 32-bit word as 
output. The function ft(x,y,z) is defined as follows: 

 

ft(x,y,z) = 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

 

 

SHA-1Q2 does not use any sequence of predefined 
constant 32-bit words. Preprocessing in SHA-1Q2 is 
exactly the same as that of SHA-1. That means that these 
three steps: padding the message M, parsing the padded 
message into message blocks, and setting the initial hash 
value, H(0) are the same as in SHA-1. In the parsing step 
the message is parsed into N blocks of 512 bits, and the 
i-th block of 512 bits is a concatenation of sixteen 32-bit 
words denoted as M0

(i), M1
(i), …, M15

(i). 
The initial hash value, H(0) for SHA-1Q2 is the same 

as that of SHA-1 and consist of the following five 32-bit 
words: 

H0
(0) = 67452301, H1

(0) = efcdab89,  
H2

(0) = 98badcfe, H3
(0) = 10325476,              (2) 

H4
(0) = c3d2e1f0.  

 

 

 

 

Table 1: A quasigroup (Q, ∗) of order 16 

3. SHA-1Q2 Hash Computation 

The SHA-1Q2 hash computation uses functions and 
constants defined in Section 2. Addition (+) is performed 
modulo 232. After preprocessing is completed, each 
message block, M (1), M(2), …, M(N), is processed in order, 
using the steps described algorithmically in the Table 2. 
 

∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 
c 
d 
e 
f 

a 4 5 9 6 0 e 1 2 c d f 3 8 b 7 
5 b c 8 4 e 0 7 3 2 f a 1 9 d 6 
c 5 2 d f 8 a e 1 3 6 7 b 0 9 4 
7 d 3 e 2 1 b c 5 9 4 8 0 f 6 a 
1 2 4 a b 7 8 9 0 d 3 e 6 c 5 f 
4 a 8 b d 2 c 6 e f 5 9 7 3 1 0 
0 e d 2 8 3 6 5 c b 7 4 9 a f 1 
b 6 0 5 9 d 4 8 7 a 2 3 f 1 e c 
d 8 6 1 c a f 0 b 5 9 2 4 7 3 e 
2 f 1 0 7 c 5 b 9 6 8 d a e 4 3 
6 c b 7 a f 1 3 4 8 e 0 d 5 2 9 
8 1 f 6 3 9 7 4 a e c 5 2 d 0 b 
f 3 9 4 e 6 2 d 8 7 0 1 c b a 5 
e 9 7 3 1 b d f 6 0 a c 5 4 8 2 
3 0 e c 5 4 9 a f 1 b 6 8 2 7 d 
9 7 a f 0 5 3 2 d 4 1 b e 6 c 8 

Ch(x,y,z) = (x ∧ y) ⊕ (¬x ∧ z),   0 ≤ t ≤ 1 
Parity(x,y,z) = x ⊕ y ⊕ z,    2≤ t ≤ 3 
Maj(x,y,z) = (x∧y) ⊕ (x ∧z) ⊕ (y ∧ z),  4≤ t ≤ 5 
Parity(x,y,z) = x ⊕ y ⊕ z,    6 ≤ t ≤ 7 
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Fig. 1 Speed comparison (higher bars mean slower algorithm) between 

different hash functions - relative to the speed of SHA-1. 

 
In Figure 1 we give a speed comparison between 

SHA-1, SHA-1Q, SHA-1Q2 and SHA-2. To obtain the 
values for SHA-2 we have taken the relative speed 
comparison between SHA-1 and SHA-2 in Crypto++ 
library [16]. The label SHA-1Q2CPU is estimation what 
would be the speed of SHA-1Q2 if the operation of 
Quasigroup Folding is implemented in the microcode of 
the CPU as an assembler instruction. Logical bitwise 
operations NOT, XOR, AND and OR are normally 
implemented in every modern CPU as a single assembler 
instruction and the same can be done for the operation of 
Quasigroup Folding in future versions of the modern 
CPUs. The operation Quasigroup Folding is univariate, 
and can be implemented in a parallel fashion. Its 
execution will take only one or two CPU cycles. 

 
For i = 1 to N: 
{ 
1. Message expansion part for obtaining 512 working bits  
from 512 message bits: 

Wt =

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

 

      
2. Initialize the five working variables a, b, c, d and e, with  
the (i-1)th hash value and the values of W31, W30, W29, W28, W27: 
      a = H0

(i-1)
 +W31 

      b = H1
(i-1)

 +W30 

      c = H2
(i-1)

 +W29 

      d = H3
(i-1)

  +W28 

      e = H4
(i-1)

 +W27 
 

3. For t=0 to 7 
{ 
    T =QFOLD(ROTL5(a)+ft(b,c,d)+e+(Wt⊕Wt+16)+(Wt+8 ⊕Wt+22)) 
    e = d 
    d = c 
    c = ROTL30(b) 
    b = a 
    a = T 
} 
4. Compute the ith intermediate hash value H(i): 
H0

(i)
 = a + H0

(i-1)
 

H1
(i)

 = b + H1
(i-1)

 

H2
(i)

 = c + H2
(i-1)

 

H3
(i)

 = d + H3
(i-1)

 

H4
(i)

 = e + H4
(i-1)

 

} 

Table 2: Algorithmic description of SHA-1Q2 hash function.  

At the end of this section we give SHA-1Q2 test hash 
values for the following messages: 
1. `abc', 
    Hash: D3 17 3E B6 8E E4 3C 10 D8 B6 BB A3 53 
    AC BB 5A 35 EF 33 30 
2. `abcdbcdecdefdefgefghfghighijhijkijkljklmklmnl 
     mnomnopnopq', 
     Hash: 3B 2B 12 77 42 B9 67 A9 F0 F6 BD 0F D6 
     87 7A C8 DB 0B A0 F8 
3. 1,000,000 `a', 
    Hash: 8E 36 55 F8 A9 7E 3B 12 58 38 D5 32 FD 
    6A DF 07 E1 FB E2 E3 
4. 10 `01234567012345670123456701234567 
     01234567012345670123456701234567', 
     Hash: D4 EC F9 82 33 77 9E E5 71 AE B9 61 19 
     8A C0 14 27 5E C6 C2 
 

The complete source code for SHA-1Q2 is given in the 
Appendix. 

4. Security of SHA-1Q2 

In this section we will make an initial analysis of how 
strongly collision resistant, preimage resistant and second 
preimage resistant SHA-1Q2 is. In the first subsection we 
will analyze the properties of the message expansion part 
and in the rest of the chapter we will discuss the strength 
of the function against finding different types of collisions. 
The chosen methodology for that part will be to define a 
measure of complexity of its compression function 
F:{0,1}512→{0,1}160 expressed as a normalized average 
number FL  of terms (monomials) in the Algebraic 

Mi
(t),    0 ≤ t ≤ 15 

QFOLD(ROTL7( 
Wt-1 ⊕Wt-3 +Wt-6 ⊕Wt-8 + 
Wt-12 ⊕Wt-14 +Wt-13 ⊕Wt-16 + 
Wt-2 ⊕Wt-7 +Wt-4 ⊕Wt-10 + 
Wt-5 ⊕Wt-9 +Wt-11 ⊕Wt-15 

        )),    16 ≤ t ≤ 31
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Normal Form (ANF) of that function and to examine a 
reduced version of that function. 

4.1 Properties of message expansion part 
It is relatively easy to prove the following Theorem: 
 

Theorem 1. The message expansion part of the SHA-1Q2 
is a bijection ξ : {0,1}512→{0,1}512. 
Proof. It is enough to show that the message expansion 
part is surjection, i.e. for every 16-tuple W=(W16,W17, 
…,W31) there exist a 16-tuple preimage M=(M0,M1,…,M15) 
such that  ξ(M)=W. 

First we should note that the quasigroup folding 
operation QFOLD:{0,1}32→{0,1}32 is a bijection. That 
means that from the recurrent equation that describes the 
message expansion part for a given 16-tuple 
W=(W16,W17,…,W31) we have the relation: 
W31=QFOLD(ROTL7(W30⊕W28 + W25⊕W23 + W19⊕W17 + 
W18⊕W15 + W29 ⊕W24 + W27⊕W21 + W26⊕W22 +W20⊕W16)).  
From there it is straightforward to compute the unique 
value for W15 as: 
W15 = (QFOLD-1(ROTR7(W31)) – W30⊕W28 – W25⊕W23 – 
W19⊕W17 – W29⊕W24 – W27⊕W21 – W26⊕W22 – W20 ⊕W16) 
⊕W18.  

Now, having the new 16-tuple W =(W15, W16, …, W30) 
we can proceed further to compute the unique value for 
W14, and so on until we compute the unique value for W0.�
           

4.2 Properties of iterative part 
The iterative part of SHA-1Q2 introduces a new design 
principle: For the initialization of the working variables 
(that will give the final output) the last values produced in 
the message expansion part are combined together with 
some predefined initial values. 

Namely, instead of the original design proposal in 
SHA-1 where the initialization of the five working 
variables a, b, c, d, and e is done with the  (i-1)th hash 
value (and where H0

(0), H1
(0), H2

(0), H3
(0), H4

(0)  are fixed 
and predetermined) we initialize the five working variables 
both with the values of (i-1)th hash value and with the 
values of W31, W30, W29, W28, W27. According to the 
analysis about the algebraic complexity of the hash 
functions in their iterative part, that is given in the 
following subsection, we argue that this design principle 
enables us both to reduce the number of iteration steps in 
the hash function, and to thwart any of the current 
successful attacks on MDx family of hash functions, since 
the iterative part starts immediately with algebraic 
complexity of a random Boolean function. 

SHA-1Q2 in its iterative part uses quasigroup folding 
similarly, but slightly different than SHA-1Q. Namely, 
instead of the assignment T = QFOLD(ROTL5(a) + ft(b,c,d) 
+ e + Wt) in SHA- 1Q2, in order to achieve mixing of all 
32 variables Wi in just 8 steps we use the assignment T = 
QFOLD(ROTL5(a)+ft(b,c,d)+e+(Wt⊕Wt+16)+(Wt+8⊕Wt+22)). 
In such a way, all 32 variables Wi, 0 ≤ i ≤ 31, are used in 
the iterative part after 8 steps. In the Table 3 we give the 
order of how the iterative part of the SHA-1Q2 combines 
the variables Wi, 0 ≤ i ≤ 31. 

 
        Step Used Wi 
        Initialisation 
        t = 0 
        t = 1 
        t = 2 
        t = 3 
        t = 4 
        t = 5 
        t = 6 
        t = 7 

W31, W30, W29, W28, W27 
W0, W8, W16, W22 
W1, W9, W17, W23 
W2, W10, W18, W24 
W3, W11, W19, W25 
W4, W12, W20, W26 
W5, W13, W21, W27 
W6, W14, W22, W28 
W7, W15, W23, W29 

Table 3: The order of using the working variables Wi, 0 ≤ i ≤ 31 in the 
compression function of SHA-1Q2. 

 

4.3 Normalized Average Number of Terms – 
NANT 

Let  1 ≤ r ≤ n  be integers and let  F:{0,1}n→ {0,1}r be a 
vector valued Boolean function. The vector valued 
function F can be represented as an r-tuple of Boolean 
functions  F = (F(1), F(2), …, F(r)), where F(s):{0,1}n → 
{0,1} (s = 1, 2, …, r), and the value of F(s)(x1, …, xn) 
equals the value of the s-th component of F(x1, …, xn). 
The Boolean functions F(s)(x1, …, xn)  can be expressed in 
the Algebraic Normal Form (ANF) as polynomials with n 
variables x1, …, xn of kind  a0 ⊕ a1x1 ⊕ …⊕ anxn ⊕ 
a1,2x1x2 ⊕ … ⊕ an-1,nxn-1,n ⊕ … ⊕ a1,2,…,nx1x2...xn, where 
aλ ∈ {0,1}. Each ANF have up to 2n terms (i.e. 
monomials), depending of the values of the coefficients 
aλ. Denote by LF(s) the number of terms in the ANF of the 
function F(s). Then the number of terms of the vector 
valued function F is defined to be the number 

∑
=

=
r

s
FF LL s

1
)( . 

Defnition 1. Let F:{0,1}n→{0,1}r be a vector valued 
Boolean function. For any k ∈{1,…,n} and any assembly 
of S subsets σj = {i1,…,ik}⊂{1, …, n} chosen uniformly 
at random (1 ≤ j ≤ S), let Fσj denote the restriction of F 
defined by Fσj (x1,…,xn)=F(0,…,0, xi1, 0,…,0, xi2, 0,…,0, 
xik,…,0). We define a random variable FL  – the 
Normalized Average Number of Terms (NANT) as: 
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∑
=∞→−

⋅⋅==
r

s
FSkFF LSr

krLL
j1

1
1lim

2
11),( σ

 

Since the subsets σj are chosen uniformly at random, 
the average values of )( s

jFL
σ

 (s = 1, 2,…,r) are 2k-1, the 

average value of 
jFL

σ
 is r2k-1 and k

F s
j

L 2)( ≤
σ

. So, the 

following theorem is true: 
 
Theorem 2. For any function F:{0,1}n→{0,1}r 

chosen uniformly at random from the set of all such 
functions, for any value of  r ≥ 1  and for any k ∈ {1, …, 
n}, it is true that 

20 ≤≤ FL  
and that the expected value is 

2)(0 ≤≤ FLEX  
� 

For our purposes we take n = 512 and we consider 
functions F : {0,1}512 →{0,1}r, where r ∈ {32, 160, 256} 
depending on whether we measure the complexity in the 
message expansion part (32-bit variables), the iterative 
part of SHA-1 and SHA-1Q2 (the hash is 160 bits), or the 
iterative part of SHA-2 (the hash is 256 bits). 

Remark: Obviously, there is very close analogy 
between our introduced measure of Normalized Average 
Number of Terms – ),( krLF  for a specific value k, and 
the propagation criterion of degree l and order k (PC(l) of 
order k) introduced by Preneel at al. [17]. (Stronger 
mathematical relations between NANT and PC(l) of 
order k are also interesting research topic but are out of 
scope of this paper.) 

The reasons why we choose to apply averaging in the 
definition of NANT were that we wanted to have a tool 
that will give us quantitative measure how close to 
random Boolean function some iteratively defined hash 
function is. We find that having such a measure, rather 
than just a mathematical definition that will give us 
Yes/No answers, is much preferable in the analysis of 
iteratively defined hash functions. Moreover, having 
concretely defined compression functions (such as those 
of SHA-1, SHA-1Q2 and SHA-2) with several hundreds 
of input bits, it was practically impossible directly to 
apply the definitions for the balanced Boolean function, 
for high order of resiliency or for high propagation 
degree. Still, we want to stress that we do not consider 
the value of FL  as an ultimate measure that will 
unconditionally prove security claims for the hash 
functions. To repeat once again, NANT is used just as a 
tool to conjecture how close and how fast some iterated 

Boolean functions obtain a property that is true for a 
random Boolean function. 

 

 

Fig. 2a SHA-1 Message Expansion 

 
Fig. 2b SHA-1 Iterations 

For small values of k (k = 3, 4, 5, 6, 7, 8), the values 
),( krLF  are easily computable. In Figures 2–4 we give 

graphs for SHA-1, SHA-2 and SHA-1Q2 for their 
message expansion part and for their iterative part when k 
= 5. Similar graphs can be obtained for other values of k. 
In Figure 2a it can be seen that the message expansion part 
of SHA-1, being completely linear, never reaches the 
complexity of a random Boolean function. Further, in 
Figure 2b we can see that SHA-1 reaches the complexity 
of a random Boolean function after 20 steps in its iterative 
part. Here we can again express our opinion that linearity 
of its message expansion part, in combination with the 
linear and invertible operations applied in iteration part, 
are the essential reasons for the successes of finding 
collisions of reduced SHA-1 function up to 58 steps and 
for the breaking of the security level of 280 SHA-1 
computations for the collision resistance. 
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Fig. 3a SHA-2 Message Expansion  

 

Fig. 3b SHA-2 Iterations 

The situation with SHA-2 is significantly different. 
From Figure 3a we see that the message expansion part of 
SHA-2 is much better designed and it reaches the same 
complexity as a random Boolean function after 16 steps, 
which reflects afterwards in the iterative part of SHA-2 
that achieves the complexity level of a random Boolean 
function after 13 steps (Figure 3b). 

In Figures 4a and 4b we show the complexity levels of 
our proposal SHA-1Q2. Having similar design principles 
as SHA-2 in the design of SHA-1Q2 we have introduced 
one new principle that is not present in the design of SHA-
2: computations in the iterative part of the compression 
function starts with variables produced in the message 
expansion part that have complexity level of a random 
Boolean function. As a consequence of this additional 
design detail SHA-1Q2 starts immediately with a 
complexity of a random Boolean function in its iterative 
part. 

 
Fig. 4a SHA-1Q2 Message Expansion  

 
Fig. 4b SHA-1Q2 Iterations 

4.4 Finding Collisions in Variants of Reduced 
Compression Function of SHA-1Q2 
In this subsection we will analyze a reduced compression 
function SHA-1Q2 with only one or two steps, and we 
will show how to find collisions with workload less than 
280. 

Together with the initialization in which we use the 
values W31, W30, W29, W28, W27 we can divide the set of 
all 32 variables Wi, 0 ≤ i ≤ 31, into four disjunctive 
subsets: 

 

1. Used words from the extension part. X1 = {W31, …, 
W27, W22, W16} 
2. Unused words from the extension part. X2 = {W26, 
…, W23, W21,…, W17} 
3. Used words from the message part. Y1 = {W8, W0} 
4. Unused words from the message part. Y2 = {W1, …, 
W7, W9, …,W15} 

 

So, if we fix the values of the set X1 then, with the 
procedure described in the proof of the Theorem 1, we 
can search trough the values of the set X2 in order to find 
collisions in the set Y1. Since the total number of bits of 
the variables in the set Y1 is 64, from the birthday 
paradox we can expect that after 232 attempts of different 
values from the set X2 we will find a collision in the set 
Y1. Consequently, the values in the set Y2 will be different, 
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i.e., we will find a collision of reduced SHA-1Q2 on one 
step after 232 attempts. 

For a two step reduction we will have the following 
situation: 

 

1. Used words from the extension part. X1 = {W31, …, 
W27, W23, W22,W17, W16} 
2. Unused words from the extension part. X2 = {W26, 
W25, W24, W21, W20, W19, W18} 
3. Used words from the message part. Y1 = {W9, W8, W1, 
W0} 
4. Unused words from the message part. Y2 = {W2, …, 
W7, W10, …,W15}. 

 

Again if we fix the values of the set X1 we can search 
trough the values of the set X2 in order to find collisions 
in the set Y1. Since now the total number of bits of the 
variables in the set Y1 is 128 from the birthday paradox 
we can expect that after 264 attempts of different values 
from the set X2 we will find a collision in the set Y1. 
Consequently, we will find a collision of reduced SHA-
1Q2 on two steps after 264 attempts. 

Obviously, the above strategy does not work for three 
step reduced SHA-1Q2 since it needs workload in the 
range of 296, which is more than simple exhaustive search 
of size 280. 

 

4.5 Finding Collisions in Full SHA-1Q2 
We will discuss the strength of the iterated hash 

function SHA-1Q2 as a collision resistant function in the 
light of the previous work [14], the discussion that was 
given there and in the light of the known successful 
attacks on MDx family of hash functions. 

Finding collisions in MDx family of hash functions 
was always based on the fact that in the iterative step they 
use linear and invertible functions: eXclusive OR and 
addition modulo 232. That allowed numerous researchers 
(for example den Boer and Bosselaers in [21, 22], 
Dobbertin in [23] and at the rump session of Eurocrypt '96, 
Wang at al in [1-4] and many others) to mount successful 
attacks for finding collisions. The basic principle that was 
used was the following: Setting up some system of 
equations obtained from the definition of the hash function, 
then tracing forward and backward some initial bit 
differences that will result in fine tuning and annulations 
of those differences and, finally, obtaining collisions. As it 
is stressed in [14], Quasigroup Folding prevents those 
attacks, since the operation is highly nonlinear and its 
tracing (and solving the nonlinear systems of equations) 
becomes infeasible after few steps. The message 
expansion of SHA-1Q2 uses 16 QFOLD operations, it is 

bijective function on the set {0,1}512 and the last obtained 
five 32-bit variables obtained in the expansion part are the 
starting values for the iterative part. So, our claim that 
SHA-1Q2 is collision resistant (i.e. the workload for 
finding collisions is 280 SHA-1Q2 computations) is based 
on the nonlinearity and complexity of the used Quasigroup 
Folding technique. 

More precisely, since every application of Quasigroup 
Folding introduces at least 4 nonlinear quasigroup 
equations with 8 unknown 4-bit variables, after 16 steps in 
the expansion part we will obtain at least 64 quasigroup 
equations with 128 unknown 4-bit variables. The relations 
between those 4-bit variables are not in some finite field 
since the used quasigroup is non-associative and non-com- 
mutative. Solving that system will need the usage of 
quasigroup parastrophes of the quasigroup defined in 
Table 1 (for more details see [14]). Except exhaustive 
combinatorial search, in this moment there is no math-
ematical knowledge for fast finding of solutions for such 
complex nonlinear systems of quasigroup equations. The 
current level of the mathematical knowledge for solving 
such nonlinear systems of equations can only reduce the 
problem to a system of multivariate polynomial equations 
in GF(2). In such a case the most advanced mathematical 
technique for solving such systems is by the Buchberger's 
method of Gröbner’s bases [18]. However, if the number 
of monomials in such systems is exponential (on the 
number of variables) then that algorithm has exponential 
running time (see for example [19, 20]). Since we have 
designed the compression function of SHA-1Q2 to be 
conjectured that obtained systems of nonlinear equations 
in GF(2) will have an exponential number of monomials 
(see the NANT level in Table 4b. that is around 1.0, that is 
equivalent to the claim that the number of monomials is 
exponential on the number of output bits), we conjecture 
that the compression function of SHA-1Q2 is collision 
resistant, i.e., for finding a collision the needed 
computational workload is at least 280 SHA-1Q2 
computations. 

 

4.6 Finding Preimages and Second Preimages of 
SHA-1Q2 
From the definition of SHA-1Q2 similarly as with SHA-1 
from a given 160-bit hash digest it is possible to perform 
backward steps by guessing values for the message and for 
the working variables of the extension part. However, 
since the message expansion part is bijection over {0,1}512 
if the attacker guess some values for W7 and W15 he(she) 
can not just put arbitrary values for W23 and W29. In fact, 
because of that bijective property of the message 
expansion part, the attacker have to guess the whole initial 
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message of 512 bits, compute the message expansion and 
then perform backward steps. At the end of that backward 
procedure the attacker will have to find a message that, by 
going backward, will end by giving the initial 160 bits 
defined by (2) and that search effort will need 2160 
attempts. 
 

4.7 Cryptographic properties of the used 
quasigroup 
In this subsection we would like to give several remarks 
about the used quasigroup. Basically here we can repeat 
the claims of Gligoroski at. al from the paper [14]. The 
operations of quasigroup-folding are performed by 16×16 
quasigroup that is non-commutative, non-associative, non-
idempotent, non-involutory and without neutral elements. 
That is quite different to the Boolean functions 
conjunction, disjunction, negation, addition (mod 232) and 
exclusive disjunction, which are used in the MDx family 
of hash functions. All of these Boolean functions satisfy 
many algebraic laws suitable for making reductions and 
for solving equations and systems of equations. On the 
other hand, solving equations that introduce quasigroup 
operations can not lead to the reduction of variables and 
successful tracing of differences, that is the core of every 
successful differential attack on the hash functions that we 
know of today. There are huge numbers of quasigroups of 
order 16 that satisfy the above mentioned properties. In 
fact the number of such quasigroups is of order 2430, any 
such a quasigroup can be used in a definition of SHA-1Q2, 
and their construction can be done in very fast manner. 
 

5. Conclusion 
In this paper we have constructed a new hash function 
SHA-1Q2 based on the hash function SHA-1 and its 
security improvement SHA-1Q. The proposed hash 
function uses recently introduced technique of nonlinear 
bijective operation “Quasigroup Folding” as a tool for 
obtaining highly complex and nonlinear relations of the 
output bits. The design of SHA-1Q2 introduces a new 
principle: the reached complexity level of a random 
Boolean function in the message expansion part to be used 
immediately in the iterative part of the compression 
function. It has 16 steps in the Message Expansion part, 8 
iterative steps and it is at least 3% faster than SHA-1. 
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Appendix:  
C source code of SHA-1Q2 hash function 
 
/* SHA1Q2.c - 
An altered SHA-1 algorithm named as SHA-1Q2 that fixes the weaknesses of SHA-1 
message-digest algorithm. Version 2 has only 16 message expansion rounds, 8 
iteration rounds and is about 3% faster then original SHA-1. 
*/ 
/* The modification for SHA-1Q2 made by Danilo Gligoroski 05.05.2006. */ 
/* The modification for SHA-1Q made by Danilo Gligoroski 20.08.2005. 
 
Danilo Gligoroski makes no representations concerning either the 
merchantability of this software or the suitability of this software for any 
particular purpose. It is provided "as is" without express or implied warranty 
of any kind.  
 
This work was carried out during the Postdoc research position ot Q2S -Centre 
for Quantifiable Quality of Service in Communication Systems at Norwegian 
University of Science and Technology - Trondheim, Norway. 
*/ 
/* 
* sha1.c 
* 
* Description: 
* This file implements the Secure Hashing Algorithm 1 as  
* defined in FIPS PUB 180-1 published April 17, 1995. 
* 
* The SHA-1, produces a 160-bit message digest for a given 
* data stream. It should take about 2**n steps to find a 
* message with the same digest as a given message and 
* 2**(n/2) to find any two messages with the same digest, 
* when n is the digest size in bits. Therefore, this 
* algorithm can serve as a means of providing a 
* "fingerprint" for a message. 
* 
* Portability Issues: 
* SHA-1 is defined in terms of 32-bit "words". This code 
* uses <stdint.h> (included via "sha1.h" to define 32 and 8 
* bit unsigned integer types. If your C compiler does not 
* support 32 bit unsigned integers, this code is not 
* appropriate. 
* 
* Caveats: 
* SHA-1 is designed to work with messages less than 2^64 bits 
* long. Although SHA-1 allows a message digest to be generated 
* for messages of any number of bits less than 2^64, this 
* implementation only works with messages with a length that is 
* a multiple of the size of an 8-bit character. 
* 
*/ 
#include "sha1.h" 
/* This is the definition of the quasigroup Q of order 16x16. */ 
unsigned char Q[256] ={ 10, 4, 5, 9, 6, 0, 14, 1, 2, 12, 
13, 15, 3, 8, 11, 7, 
5, 11, 12, 8, 4, 14, 0, 7, 3, 2, 15, 10, 1, 9, 13, 6, 
12, 5, 2, 13, 15, 8, 10, 14, 1, 3, 6, 7, 11, 0, 9, 4, 
7, 13, 3, 14, 2, 1, 11, 12, 5, 9, 4, 8, 0, 15, 6, 10, 
1, 2, 4, 10, 11, 7, 8, 9, 0, 13, 3, 14, 6, 12, 5, 15, 
4, 10, 8, 11, 13, 2, 12, 6, 14, 15, 5, 9, 7, 3, 1, 0, 
0, 14, 13, 2, 8, 3, 6, 5, 12, 11, 7, 4, 9, 10, 15, 1, 
11, 6, 0, 5, 9, 13, 4, 8, 7, 10, 2, 3, 15, 1, 14, 12, 
13, 8, 6, 1, 12, 10, 15, 0, 11, 5, 9, 2, 4, 7, 3, 14, 
2, 15, 1, 0, 7, 12, 5, 11, 9, 6, 8, 13, 10, 14, 4, 3, 
6, 12, 11, 7, 10, 15, 1, 3, 4, 8, 14, 0, 13, 5, 2, 9, 
8, 1, 15, 6, 3, 9, 7, 4, 10, 14, 12, 5, 2, 13, 0, 11, 
15, 3, 9, 4, 14, 6, 2, 13, 8, 7, 0, 1, 12, 11, 10, 5, 
14, 9, 7, 3, 1, 11, 13, 15, 6, 0, 10, 12, 5, 4, 8, 2, 
3, 0, 14, 12, 5, 4, 9, 10, 15, 1, 11, 6, 8, 2, 7, 13, 
9, 7, 10, 15, 0, 5, 3, 2, 13, 4, 1, 11, 14, 6, 12, 8 
}; 
/* First 16 bits of a variable 'a' will be changed by 16 bits 
obtained by quasigroup transformation defined below. */ #define 
QUASIGROUP_FOLD(a) {\ 
(a) = ((a)&0x0fffffff)|(((unsigned char)Q[( ((a)&0xf0000000)>>28)| \ 
( ((a)&0x0000f000)>> 8)])<<28);\ 
(a) = ((a)&0xf0ffffff)|(((unsigned char)Q[( ((a)&0x0f000000)>>20)| \ 
( ((a)&0x00000f00)>> 8)])<<24);\ 
(a) = ((a)&0xff0fffff)|(((unsigned char)Q[( ((a)&0x00f00000)>>20)| \ 
( ((a)&0x000000f0) )])<<20);\ 
(a) = ((a)&0xfff0ffff)|(((unsigned char)Q[( ((a)&0x000f0000)>>12)| \ 
( ((a)&0x0000000f) )])<<16);\ 
} 
/* 
* Define the SHA1 circular left shift macro 
*/ 
#define SHA1CircularShift(bits,word) \ 
(((word) << (bits)) | ((word) >> (32-(bits)))) 
/* Local Function Prototyptes */ void SHA1PadMessage(SHA1Context 
*); void SHA1ProcessMessageBlock(SHA1Context *); 
/* 
* SHA1Reset 
* 
* Description: 
* This function will initialize the SHA1Context in preparation 
* for computing a new SHA1 message digest. 
* 
* Parameters: 
* context: [in/out] 
* The context to reset. 
* 
* Returns: 
* sha Error Code. 
* 
*/ 
int SHA1Reset(SHA1Context *context) { 
if (!context) 
{ 
return shaNull; 
} 

context->Length_Low = 0; 
context->Length_High = 0; 
context->Message_Block_Index = 0; 
context->Intermediate_Hash[0] = 0x67452301; 
context->Intermediate_Hash[1] = 0xEFCDAB89; 
context->Intermediate_Hash[2] = 0x98BADCFE; 
context->Intermediate_Hash[3] = 0x10325476; 
context->Intermediate_Hash[4] = 0xC3D2E1F0; 
context->Computed = 0; 
context->Corrupted = 0; 
return shaSuccess; 
} 
/* 
* SHA1Result 
* 
* Description: 
* This function will return the 160-bit message digest into the 
* Message_Digest array provided by the caller. 
* NOTE: The first octet of hash is stored in the 0th element, 
* the last octet of hash in the 19th element. 
* 
* Parameters: 
* context: [in/out] 
* The context to use to calculate the SHA-1 hash. 
* Message_Digest: [out] 
* Where the digest is returned. 
* 
* Returns: 
* sha Error Code. 
* 
*/ 
int SHA1Result( SHA1Context *context, 
uint8_t Message_Digest[SHA1HashSize]) 
{ 
int i; 
if (!context || !Message_Digest) 
{ 
return shaNull; 
} 
if (context->Corrupted) 
{ 
return context->Corrupted; 
} 
if (!context->Computed) 
{ 
SHA1PadMessage(context); 
for(i=0; i<64; ++i) 
{ 
/* message may be sensitive, clear it out */ 
context->Message_Block[i] = 0; 
} 
context->Length_Low = 0; /* and clear length */ 
context->Length_High = 0; 
context->Computed = 1; 
} 
for(i = 0; i < SHA1HashSize; ++i) 
{ 
Message_Digest[i] = context->Intermediate_Hash[i>>2] 
>> 8 * ( 3 - ( i & 0x03 ) ); 
} 
return shaSuccess; 
} 
/* 
* SHA1Input 
* 
* Description: 
* This function accepts an array of octets as the next portion 
* of the message. 
* 
* Parameters: 
* context: [in/out] 
* The SHA context to update 
* message_array: [in] 
* An array of characters representing the next portion of 
* the message. 
* length: [in] 
* The length of the message in message_array 
* 
* Returns: 
* sha Error Code. 
* 
*/ 
int SHA1Input( SHA1Context *context, 
const uint8_t *message_array, 
unsigned length) 
{ 
if (!length) 
{ 
return shaSuccess; 
} 
if (!context || !message_array) 
{ 
return shaNull; 
} 
if (context->Computed) 
{ 
context->Corrupted = shaStateError; 
return shaStateError; 
} 
if (context->Corrupted) 
{ 
return context->Corrupted; 
} 
while(length-- && !context->Corrupted) 
{ 
context->Message_Block[context->Message_Block_Index++] = 
(*message_array & 0xFF); 
context->Length_Low += 8; 
if (context->Length_Low == 0) 
{ 
context->Length_High++; 
if (context->Length_High == 0) 
{ 
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/* Message is too long */ 
context->Corrupted = 1; 
} 
} 
if (context->Message_Block_Index == 64) 
{ 
SHA1ProcessMessageBlock(context); 
} 
message_array++; 
} 
return shaSuccess; 
} 
/* 
* SHA1ProcessMessageBlock 
* 
* Description: 
* This function will process the next 512 bits of the message 
* stored in the Message_Block array. 
* 
* Parameters: 
* None. 
* 
* Returns: 
* Nothing. 
* 
* Comments: 
* Many of the variable names in this code, especially the 
* single character names, were used because those were the 
* names used in the publication. 
* 
* 
*/ 
void SHA1ProcessMessageBlock(SHA1Context *context) { /* 
Intervention by Danilo Gligoroski */ /* SHA-1Q2 does not use any 
predefined constants, so the next lines will 
be put in comment. 
*/ 
// const uint32_t K[] = { /* Constants defined in SHA-1 */ 
// 0x5A827999, 
// 0x6ED9EBA1, 
// 0x8F1BBCDC, 
// 0xCA62C1D6 
// }; 
int t; /* Loop counter */ 
uint32_t temp; /* Temporary word value */ 
/* Intervention by Danilo Gligoroski */ 
/* Instead of 80 uint32_t words we need only 32 */ 
uint32_t W[32]; /* Word sequence */ 
uint32_t A, B, C, D, E; /* Word buffers */ 
/* 
* Initialize the first 16 words in the array W 
*/ 
for(t = 0; t < 16; t++) 
{ 
W[t] = context->Message_Block[t * 4] << 24; 
W[t] |= context->Message_Block[t * 4 + 1] << 16; 
W[t] |= context->Message_Block[t * 4 + 2] << 8; 
W[t] |= context->Message_Block[t * 4 + 3]; 
} 
/* Intervention by Danilo Gligoroski */ 
/* The following changes are made: 
1. Only 16 steps are performed. 
2. Instead of bitwise XORing, a complex operation of addition (mod 2^32) 
and XOR are used. 
3. In every step, 7 bits circular shift is performed. 
4. One QUASIGROUP_FOLD operation is performed per new W[t]. 
*/ 
for(t = 16; t < 32; t++) 
{ 
W[t] = SHA1CircularShift(7,\ 
(W[t - 1] ^ W[t - 3]) + (W[t - 6] ^ W[t - 8]) + \ 
(W[t - 12] ^ W[t - 14]) + (W[t - 13] ^ W[t - 16]) + \ 
(W[t - 2] ^ W[t - 7]) + (W[t - 4] ^ W[t - 10]) + \ 
(W[t - 5] ^ W[t - 9]) + (W[t - 11] ^ W[t - 15]) 
); 
QUASIGROUP_FOLD((W[t])) 
} 
/* Intervention by Danilo Gligoroski */ 
/* The following changes are made: 
1. Instead of original initialization - an initialization involves 
the last 5 words obtained in the message expansion part. 
*/ 
A = context->Intermediate_Hash[0] + W[31]; 
B = context->Intermediate_Hash[1] + W[30]; 
C = context->Intermediate_Hash[2] + W[29]; 
D = context->Intermediate_Hash[3] + W[28]; 
E = context->Intermediate_Hash[4] + W[27]; 
/* Intervention by Danilo Gligoroski */ 
/* The following changes are made: 
1. Instead of original 4x20=80 steps, only 4x2=8 steps 
are performed. 
2. Those transformations are made on words: 
W[0], W[1], ..., W[29] 
3. We don't use addition of any constants K[]. 
*/ 
/* t=0; */ 
temp = SHA1CircularShift(5,A) + ((B & C) ^ ((~B) & D)) +\ 
E + (W[0]^W[16]) + (W[8]^W[22]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
15 
 
/* t=1; */ 
temp = SHA1CircularShift(5,A) + ((B & C) ^ ((~B) & D)) +\ 
E + (W[1]^W[17]) + (W[9]^W[23]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 

/* t=2 */ 
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\ 
E + (W[2]^W[18]) + (W[10]^W[24]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
/* t=3 */ 
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\ 
E + (W[3]^W[19]) + (W[11]^W[25]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
/* t=4 */ 
temp = SHA1CircularShift(5,A) + ((B & C) ^ (B & D) ^ (C & D)) +\ 
E + (W[4]^W[20]) + (W[12]^W[26]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
/* t=5 */ 
temp = SHA1CircularShift(5,A) + ((B & C) ^ (B & D) ^ (C & D)) +\ 
E + (W[5]^W[21]) + (W[13]^W[27]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
/* t=6 */ 
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\ 
E + (W[6]^W[22]) + (W[14]^W[28]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
/* t=7 */ 
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\ 
E + (W[7]^W[23]) + (W[15]^W[29]); 
E = D; 
D = C; 
C = SHA1CircularShift(30,B); 
B = A; 
A = temp; 
QUASIGROUP_FOLD((A)); 
context->Intermediate_Hash[0] += A; 
context->Intermediate_Hash[1] += B; 
context->Intermediate_Hash[2] += C; 
context->Intermediate_Hash[3] += D; 
context->Intermediate_Hash[4] += E; 
context->Message_Block_Index = 0; 
} 
/* 
* SHA1PadMessage 
* 
* Description: 
* According to the standard, the message must be padded to an even 
* 512 bits. The first padding bit must be a '1'. The last 64 
* bits represent the length of the original message. All bits in 
* between should be 0. This function will pad the message 
* according to those rules by filling the Message_Block array 
* accordingly. It will also call the ProcessMessageBlock function 
* provided appropriately. When it returns, it can be assumed that 
* the message digest has been computed. 
* 
* Parameters: 
* context: [in/out] 
* The context to pad 
* ProcessMessageBlock: [in] 
* The appropriate SHA*ProcessMessageBlock function 
* Returns: 
* Nothing. 
* 
*/ 
void SHA1PadMessage(SHA1Context *context) { 
/* 
* Check to see if the current message block is too small to hold 
* the initial padding bits and length. If so, we will pad the 
* block, process it, and then continue padding into a second 
* block. 
*/ 
if (context->Message_Block_Index > 55) 
{ 
context->Message_Block[context->Message_Block_Index++] = 0x80; 
while(context->Message_Block_Index < 64) 
{ 
context->Message_Block[context->Message_Block_Index++] = 0; 
} 
SHA1ProcessMessageBlock(context); 
while(context->Message_Block_Index < 56) 
{ 
context->Message_Block[context->Message_Block_Index++] = 0; 
} 
} 
else 
{ 
context->Message_Block[context->Message_Block_Index++] = 0x80; 
while(context->Message_Block_Index < 56) 
{ 
context->Message_Block[context->Message_Block_Index++] = 0; 
} 
} 
/* 
* Store the message length as the last 8 octets 
*/ 
context->Message_Block[56] = context->Length_High >> 24; 
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context->Message_Block[57] = context->Length_High >> 16; 
context->Message_Block[58] = context->Length_High >> 8; 
context->Message_Block[59] = context->Length_High; 
context->Message_Block[60] = context->Length_Low >> 24; 
context->Message_Block[61] = context->Length_Low >> 16; 
context->Message_Block[62] = context->Length_Low >> 8; 
context->Message_Block[63] = context->Length_Low; 
SHA1ProcessMessageBlock(context); 
} 
 
 


