
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

194

1This work was carried out during the visit of prof. Smile Markovski to the Faculty of information technology, mathematics and electrical engineering -
Department of Telematics, The Norwegian University of Science and Technology - Trondheim, Norway, in the framework of Erasmus Mundus program
and NordSecMob Master’s Programme in Security and Mobile Computing.

Manuscript received October 5, 2006.
Manuscript revised October 25, 2006.

A Secure Hash Algorithm with only 8 Folded SHA-1 Steps

Danilo Gligoroski†, Smile Markovski†† and Svein J. Knapskog†

† “Centre for Quantifiable Quality of Service in Communication Systems”,
Norwegian University of Science and Technology, Trondheim, Norway

†† Faculty of Sciences, Institute of Informatics,
“Ss Cyril and Methodius” University, Skopje, Republic of Macedonia 1

Summary
We propose a new design principle for construction of iterated
cryptographic hash functions: computations in the iterative part
of the compression function to start with variables produced in
the message expansion part that have complexity level of a
random Boolean function. Then we show that to reach the
cryptographic strength that will withstand all currently known
techniques for finding collisions, much lower number of
iterations is necessary. Concretely we use the recently proposed
nonlinear technique “Quasigroup Fold” together with the
mentioned principle to design a hash function that has only 8
iterative steps. Besides increasing the security, the reference C
code for the obtained hash function shows that it is at least 3%
faster than original reference code for SHA-1.

Key words: SHA-1,SHA-2, hash, quasigroup folding

Introduction

Since the successful attacks on MDx family of functions
were announced by Wang at. al [1-4] a significant part of
the cryptographic community devoted its current scientific
interest in revising the principles of constructing
cryptographically secure hash functions. Thus, the Merkle-
Damgård design of hash functions [5,6] came under
careful revision, and some weaknesses have been already
found. Besides the classical birthday attack (and some
variants such as Yuval's attack [7]), in a recent paper from
2004 by Joux [8] the concepts of multi-collisions and
expandable messages were introduced and it was shown
that the workload for finding second preimage collisions
with equal length for iterated one-way hash functions is
about log(k)×2n/2, where k is the number of computed hash
values. Kelsy and Schneier in 2005 [9] extended the
approach for finding expandable messages with different
length, and they showed that the workload is about
k×2n/2+1. Then Coron at al. [10] made several suggestions
how to strengthen the Merkle-Damgård design. On the
other hand, in recent ePrint paper, Gauravaram, Millan
and Neito [11] give an interesting discussion about the

possibilities that Merkle-Damgård design for MDx family
was in fact not properly implemented. That is especially
true for the so called pseudo-collisions attack, for which
MD5, SHA-0 and SHA-1 were not designed to be secure.
These thoughts for the design criteria are also present in
Preneel works [12, 13].

Previous Work – Having a completely linear message
expansion part, SHA-1 reaches the level of complexity of
a random nonlinear multivariate Boolean function over the
field GF(2) in about 20 steps in the iterative part of its
compression function. Basically, all known methods for
finding collisions on SHA-0 and SHA-1 exploit heavily
that weak part of the design. Another characteristic that all
known methods for finding collisions on MDx family of
hash functions have in common is that they use the
invertibility and the linearity of addition modulo 232 and
left rotation, that are frequently used in the iterative part of
the compression function. Recently Gligoroski, Markovski
and Knapskog, presented at NIST Cryptographic
Workshop [14] a technique called “Quasigroup Folding”
that eliminates that linear characteristic of SHA-1 and,
tracing the computations of the compression function,
after several steps becomes infeasible. However, the
proposed solution was around 85% slower than the
original SHA-1.

Facing the recent successful cryptanalysis of SHA-1,
NIST has updated their information and recommendations
for the policy of using cryptographic hash functions. Their
recommendations now include the use of SHA-2 family,
and they propose smooth transfer from SHA-1 to SHA-2.
However, having in mind that SHA-2 is two times slower
than SHA-1, for many industrial applications, SHA-1 will
continue its life. From that point of view, there is still big
industrial interest for fast cryptographic hash functions
(similar or even faster than SHA-1, and with digest sizes
of 160 bits).

Our Work – In this paper we define a measure of the
similarity of an iterated hash functions to the random
function. We examine how SHA-1 and SHA-2 behave
according to that measure and propose a new design

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

195

principle using that measure. Further on, following that
principle and using the technique of Quasigroup Folding,
we define a new hash function with 160 bits message
digest size. It has only 16 steps in the message expansion
part and has only 8 internal iterative steps. We claim that
the new hash function SHA-1Q2 is cryptographically
secure and can withstand all known successful attacks on
MDx family of hash functions. For comparison, Wang at
al. claim that they can find collisions in 58 steps of
original SHA-1 with complexity of 233. Moreover, SHA-
1Q2 is faster than the original SHA-1 for at least 3.0%.

The paper is organized as follows. Some preliminaries
about Quasigroup Folding and SHA-1 are given in Section
2. The algorithm SHA-1Q2 is given in Section 3, security
analysis is given in Section 4 and we close our paper with
conclusions in Section 5.

2. Preliminaries and notation
In this paper we will use the same notation as that of
NIST: FIPS 180-2 description of SHA-1 [15].
The following operations are applied to 32-bit words in
SHA-1Q2:

1. Bitwise logical word operations: ∧, ∨, ⊕ and ¬.
2. Addition modulo 232.
3. The rotate left (circular left shift) operation, ROTLn(x),
where x is a 32-bit word and n is an integer with 0 ≤ n <
32.
4. The operation of quasigroup folding of a 32-bit word x
= x1x2x3x4x5x6x7x8 (represented as a concatenation of eight
4-bit variables x1,…,x8) is defined by the following
equations:

QFOLD(x) = x1’ x2’ x3’ x4’x5 x6 x7 x8,
x1’ = x1 ∗ x5,
x2’ = x6 ∗ x2, (1)
x3’ = x3 ∗ x7,
x4’ = x8 ∗ x4,

where the operation ∗ is a 16×16 quasigroup operation
defined as in Table 1.

SHA-1Q2 uses a sequence of 8 logical functions, f0,
f1,..., f7. Each function ft, where 0 ≤ t ≤ 7, operates on three
32-bit words, x, y, and z, and produces a 32-bit word as
output. The function ft(x,y,z) is defined as follows:

ft(x,y,z) =

⎪
⎪
⎩

⎪
⎪
⎨

⎧

SHA-1Q2 does not use any sequence of predefined
constant 32-bit words. Preprocessing in SHA-1Q2 is
exactly the same as that of SHA-1. That means that these
three steps: padding the message M, parsing the padded
message into message blocks, and setting the initial hash
value, H(0) are the same as in SHA-1. In the parsing step
the message is parsed into N blocks of 512 bits, and the
i-th block of 512 bits is a concatenation of sixteen 32-bit
words denoted as M0

(i), M1
(i), …, M15

(i).
The initial hash value, H(0) for SHA-1Q2 is the same

as that of SHA-1 and consist of the following five 32-bit
words:

H0
(0) = 67452301, H1

(0) = efcdab89,
H2

(0) = 98badcfe, H3
(0) = 10325476, (2)

H4
(0) = c3d2e1f0.

Table 1: A quasigroup (Q, ∗) of order 16

3. SHA-1Q2 Hash Computation

The SHA-1Q2 hash computation uses functions and
constants defined in Section 2. Addition (+) is performed
modulo 232. After preprocessing is completed, each
message block, M (1), M(2), …, M(N), is processed in order,
using the steps described algorithmically in the Table 2.

∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

a 4 5 9 6 0 e 1 2 c d f 3 8 b 7
5 b c 8 4 e 0 7 3 2 f a 1 9 d 6
c 5 2 d f 8 a e 1 3 6 7 b 0 9 4
7 d 3 e 2 1 b c 5 9 4 8 0 f 6 a
1 2 4 a b 7 8 9 0 d 3 e 6 c 5 f
4 a 8 b d 2 c 6 e f 5 9 7 3 1 0
0 e d 2 8 3 6 5 c b 7 4 9 a f 1
b 6 0 5 9 d 4 8 7 a 2 3 f 1 e c
d 8 6 1 c a f 0 b 5 9 2 4 7 3 e
2 f 1 0 7 c 5 b 9 6 8 d a e 4 3
6 c b 7 a f 1 3 4 8 e 0 d 5 2 9
8 1 f 6 3 9 7 4 a e c 5 2 d 0 b
f 3 9 4 e 6 2 d 8 7 0 1 c b a 5
e 9 7 3 1 b d f 6 0 a c 5 4 8 2
3 0 e c 5 4 9 a f 1 b 6 8 2 7 d
9 7 a f 0 5 3 2 d 4 1 b e 6 c 8

Ch(x,y,z) = (x ∧ y) ⊕ (¬x ∧ z), 0 ≤ t ≤ 1
Parity(x,y,z) = x ⊕ y ⊕ z, 2≤ t ≤ 3
Maj(x,y,z) = (x∧y) ⊕ (x ∧z) ⊕ (y ∧ z), 4≤ t ≤ 5
Parity(x,y,z) = x ⊕ y ⊕ z, 6 ≤ t ≤ 7

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

196

Fig. 1 Speed comparison (higher bars mean slower algorithm) between

different hash functions - relative to the speed of SHA-1.

In Figure 1 we give a speed comparison between

SHA-1, SHA-1Q, SHA-1Q2 and SHA-2. To obtain the
values for SHA-2 we have taken the relative speed
comparison between SHA-1 and SHA-2 in Crypto++
library [16]. The label SHA-1Q2CPU is estimation what
would be the speed of SHA-1Q2 if the operation of
Quasigroup Folding is implemented in the microcode of
the CPU as an assembler instruction. Logical bitwise
operations NOT, XOR, AND and OR are normally
implemented in every modern CPU as a single assembler
instruction and the same can be done for the operation of
Quasigroup Folding in future versions of the modern
CPUs. The operation Quasigroup Folding is univariate,
and can be implemented in a parallel fashion. Its
execution will take only one or two CPU cycles.

For i = 1 to N:
{
1. Message expansion part for obtaining 512 working bits
from 512 message bits:

Wt =

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

2. Initialize the five working variables a, b, c, d and e, with
the (i-1)th hash value and the values of W31, W30, W29, W28, W27:
 a = H0

(i-1)
 +W31

 b = H1
(i-1)

 +W30

 c = H2
(i-1)

 +W29

 d = H3
(i-1)

 +W28

 e = H4
(i-1)

 +W27

3. For t=0 to 7
{
 T =QFOLD(ROTL5(a)+ft(b,c,d)+e+(Wt⊕Wt+16)+(Wt+8 ⊕Wt+22))
 e = d
 d = c
 c = ROTL30(b)
 b = a
 a = T
}
4. Compute the ith intermediate hash value H(i):
H0

(i)
 = a + H0

(i-1)

H1
(i)

 = b + H1
(i-1)

H2
(i)

 = c + H2
(i-1)

H3
(i)

 = d + H3
(i-1)

H4
(i)

 = e + H4
(i-1)

}

Table 2: Algorithmic description of SHA-1Q2 hash function.

At the end of this section we give SHA-1Q2 test hash
values for the following messages:
1. `abc',
 Hash: D3 17 3E B6 8E E4 3C 10 D8 B6 BB A3 53
 AC BB 5A 35 EF 33 30
2. `abcdbcdecdefdefgefghfghighijhijkijkljklmklmnl
 mnomnopnopq',
 Hash: 3B 2B 12 77 42 B9 67 A9 F0 F6 BD 0F D6
 87 7A C8 DB 0B A0 F8
3. 1,000,000 `a',
 Hash: 8E 36 55 F8 A9 7E 3B 12 58 38 D5 32 FD
 6A DF 07 E1 FB E2 E3
4. 10 `01234567012345670123456701234567
 01234567012345670123456701234567',
 Hash: D4 EC F9 82 33 77 9E E5 71 AE B9 61 19
 8A C0 14 27 5E C6 C2

The complete source code for SHA-1Q2 is given in the
Appendix.

4. Security of SHA-1Q2

In this section we will make an initial analysis of how
strongly collision resistant, preimage resistant and second
preimage resistant SHA-1Q2 is. In the first subsection we
will analyze the properties of the message expansion part
and in the rest of the chapter we will discuss the strength
of the function against finding different types of collisions.
The chosen methodology for that part will be to define a
measure of complexity of its compression function
F:{0,1}512→{0,1}160 expressed as a normalized average
number FL of terms (monomials) in the Algebraic

Mi
(t), 0 ≤ t ≤ 15

QFOLD(ROTL7(
Wt-1 ⊕Wt-3 +Wt-6 ⊕Wt-8 +
Wt-12 ⊕Wt-14 +Wt-13 ⊕Wt-16 +
Wt-2 ⊕Wt-7 +Wt-4 ⊕Wt-10 +
Wt-5 ⊕Wt-9 +Wt-11 ⊕Wt-15

)), 16 ≤ t ≤ 31

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

197

Normal Form (ANF) of that function and to examine a
reduced version of that function.

4.1 Properties of message expansion part
It is relatively easy to prove the following Theorem:

Theorem 1. The message expansion part of the SHA-1Q2
is a bijection ξ : {0,1}512→{0,1}512.
Proof. It is enough to show that the message expansion
part is surjection, i.e. for every 16-tuple W=(W16,W17,
…,W31) there exist a 16-tuple preimage M=(M0,M1,…,M15)
such that ξ(M)=W.

First we should note that the quasigroup folding
operation QFOLD:{0,1}32→{0,1}32 is a bijection. That
means that from the recurrent equation that describes the
message expansion part for a given 16-tuple
W=(W16,W17,…,W31) we have the relation:
W31=QFOLD(ROTL7(W30⊕W28 + W25⊕W23 + W19⊕W17 +
W18⊕W15 + W29 ⊕W24 + W27⊕W21 + W26⊕W22 +W20⊕W16)).
From there it is straightforward to compute the unique
value for W15 as:
W15 = (QFOLD-1(ROTR7(W31)) – W30⊕W28 – W25⊕W23 –
W19⊕W17 – W29⊕W24 – W27⊕W21 – W26⊕W22 – W20 ⊕W16)
⊕W18.

Now, having the new 16-tuple W =(W15, W16, …, W30)
we can proceed further to compute the unique value for
W14, and so on until we compute the unique value for W0.�

4.2 Properties of iterative part
The iterative part of SHA-1Q2 introduces a new design
principle: For the initialization of the working variables
(that will give the final output) the last values produced in
the message expansion part are combined together with
some predefined initial values.

Namely, instead of the original design proposal in
SHA-1 where the initialization of the five working
variables a, b, c, d, and e is done with the (i-1)th hash
value (and where H0

(0), H1
(0), H2

(0), H3
(0), H4

(0) are fixed
and predetermined) we initialize the five working variables
both with the values of (i-1)th hash value and with the
values of W31, W30, W29, W28, W27. According to the
analysis about the algebraic complexity of the hash
functions in their iterative part, that is given in the
following subsection, we argue that this design principle
enables us both to reduce the number of iteration steps in
the hash function, and to thwart any of the current
successful attacks on MDx family of hash functions, since
the iterative part starts immediately with algebraic
complexity of a random Boolean function.

SHA-1Q2 in its iterative part uses quasigroup folding
similarly, but slightly different than SHA-1Q. Namely,
instead of the assignment T = QFOLD(ROTL5(a) + ft(b,c,d)
+ e + Wt) in SHA- 1Q2, in order to achieve mixing of all
32 variables Wi in just 8 steps we use the assignment T =
QFOLD(ROTL5(a)+ft(b,c,d)+e+(Wt⊕Wt+16)+(Wt+8⊕Wt+22)).
In such a way, all 32 variables Wi, 0 ≤ i ≤ 31, are used in
the iterative part after 8 steps. In the Table 3 we give the
order of how the iterative part of the SHA-1Q2 combines
the variables Wi, 0 ≤ i ≤ 31.

 Step Used Wi
 Initialisation
 t = 0
 t = 1
 t = 2
 t = 3
 t = 4
 t = 5
 t = 6
 t = 7

W31, W30, W29, W28, W27
W0, W8, W16, W22
W1, W9, W17, W23
W2, W10, W18, W24
W3, W11, W19, W25
W4, W12, W20, W26
W5, W13, W21, W27
W6, W14, W22, W28
W7, W15, W23, W29

Table 3: The order of using the working variables Wi, 0 ≤ i ≤ 31 in the
compression function of SHA-1Q2.

4.3 Normalized Average Number of Terms –
NANT

Let 1 ≤ r ≤ n be integers and let F:{0,1}n→ {0,1}r be a
vector valued Boolean function. The vector valued
function F can be represented as an r-tuple of Boolean
functions F = (F(1), F(2), …, F(r)), where F(s):{0,1}n →
{0,1} (s = 1, 2, …, r), and the value of F(s)(x1, …, xn)
equals the value of the s-th component of F(x1, …, xn).
The Boolean functions F(s)(x1, …, xn) can be expressed in
the Algebraic Normal Form (ANF) as polynomials with n
variables x1, …, xn of kind a0 ⊕ a1x1 ⊕ …⊕ anxn ⊕
a1,2x1x2 ⊕ … ⊕ an-1,nxn-1,n ⊕ … ⊕ a1,2,…,nx1x2...xn, where
aλ ∈ {0,1}. Each ANF have up to 2n terms (i.e.
monomials), depending of the values of the coefficients
aλ. Denote by LF(s) the number of terms in the ANF of the
function F(s). Then the number of terms of the vector
valued function F is defined to be the number

∑
=

=
r

s
FF LL s

1
)(.

Defnition 1. Let F:{0,1}n→{0,1}r be a vector valued
Boolean function. For any k ∈{1,…,n} and any assembly
of S subsets σj = {i1,…,ik}⊂{1, …, n} chosen uniformly
at random (1 ≤ j ≤ S), let Fσj denote the restriction of F
defined by Fσj (x1,…,xn)=F(0,…,0, xi1, 0,…,0, xi2, 0,…,0,
xik,…,0). We define a random variable FL – the
Normalized Average Number of Terms (NANT) as:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

198

∑
=∞→−

⋅⋅==
r

s
FSkFF LSr

krLL
j1

1
1lim

2
11),(σ

Since the subsets σj are chosen uniformly at random,
the average values of)(s

jFL
σ

 (s = 1, 2,…,r) are 2k-1, the

average value of
jFL

σ
 is r2k-1 and k

F s
j

L 2)(≤
σ

. So, the

following theorem is true:

Theorem 2. For any function F:{0,1}n→{0,1}r

chosen uniformly at random from the set of all such
functions, for any value of r ≥ 1 and for any k ∈ {1, …,
n}, it is true that

20 ≤≤ FL
and that the expected value is

2)(0 ≤≤ FLEX
�

For our purposes we take n = 512 and we consider
functions F : {0,1}512 →{0,1}r, where r ∈ {32, 160, 256}
depending on whether we measure the complexity in the
message expansion part (32-bit variables), the iterative
part of SHA-1 and SHA-1Q2 (the hash is 160 bits), or the
iterative part of SHA-2 (the hash is 256 bits).

Remark: Obviously, there is very close analogy
between our introduced measure of Normalized Average
Number of Terms –),(krLF for a specific value k, and
the propagation criterion of degree l and order k (PC(l) of
order k) introduced by Preneel at al. [17]. (Stronger
mathematical relations between NANT and PC(l) of
order k are also interesting research topic but are out of
scope of this paper.)

The reasons why we choose to apply averaging in the
definition of NANT were that we wanted to have a tool
that will give us quantitative measure how close to
random Boolean function some iteratively defined hash
function is. We find that having such a measure, rather
than just a mathematical definition that will give us
Yes/No answers, is much preferable in the analysis of
iteratively defined hash functions. Moreover, having
concretely defined compression functions (such as those
of SHA-1, SHA-1Q2 and SHA-2) with several hundreds
of input bits, it was practically impossible directly to
apply the definitions for the balanced Boolean function,
for high order of resiliency or for high propagation
degree. Still, we want to stress that we do not consider
the value of FL as an ultimate measure that will
unconditionally prove security claims for the hash
functions. To repeat once again, NANT is used just as a
tool to conjecture how close and how fast some iterated

Boolean functions obtain a property that is true for a
random Boolean function.

Fig. 2a SHA-1 Message Expansion

Fig. 2b SHA-1 Iterations

For small values of k (k = 3, 4, 5, 6, 7, 8), the values
),(krLF are easily computable. In Figures 2–4 we give

graphs for SHA-1, SHA-2 and SHA-1Q2 for their
message expansion part and for their iterative part when k
= 5. Similar graphs can be obtained for other values of k.
In Figure 2a it can be seen that the message expansion part
of SHA-1, being completely linear, never reaches the
complexity of a random Boolean function. Further, in
Figure 2b we can see that SHA-1 reaches the complexity
of a random Boolean function after 20 steps in its iterative
part. Here we can again express our opinion that linearity
of its message expansion part, in combination with the
linear and invertible operations applied in iteration part,
are the essential reasons for the successes of finding
collisions of reduced SHA-1 function up to 58 steps and
for the breaking of the security level of 280 SHA-1
computations for the collision resistance.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

199

Fig. 3a SHA-2 Message Expansion

Fig. 3b SHA-2 Iterations

The situation with SHA-2 is significantly different.
From Figure 3a we see that the message expansion part of
SHA-2 is much better designed and it reaches the same
complexity as a random Boolean function after 16 steps,
which reflects afterwards in the iterative part of SHA-2
that achieves the complexity level of a random Boolean
function after 13 steps (Figure 3b).

In Figures 4a and 4b we show the complexity levels of
our proposal SHA-1Q2. Having similar design principles
as SHA-2 in the design of SHA-1Q2 we have introduced
one new principle that is not present in the design of SHA-
2: computations in the iterative part of the compression
function starts with variables produced in the message
expansion part that have complexity level of a random
Boolean function. As a consequence of this additional
design detail SHA-1Q2 starts immediately with a
complexity of a random Boolean function in its iterative
part.

Fig. 4a SHA-1Q2 Message Expansion

Fig. 4b SHA-1Q2 Iterations

4.4 Finding Collisions in Variants of Reduced
Compression Function of SHA-1Q2
In this subsection we will analyze a reduced compression
function SHA-1Q2 with only one or two steps, and we
will show how to find collisions with workload less than
280.

Together with the initialization in which we use the
values W31, W30, W29, W28, W27 we can divide the set of
all 32 variables Wi, 0 ≤ i ≤ 31, into four disjunctive
subsets:

1. Used words from the extension part. X1 = {W31, …,
W27, W22, W16}
2. Unused words from the extension part. X2 = {W26,
…, W23, W21,…, W17}
3. Used words from the message part. Y1 = {W8, W0}
4. Unused words from the message part. Y2 = {W1, …,
W7, W9, …,W15}

So, if we fix the values of the set X1 then, with the
procedure described in the proof of the Theorem 1, we
can search trough the values of the set X2 in order to find
collisions in the set Y1. Since the total number of bits of
the variables in the set Y1 is 64, from the birthday
paradox we can expect that after 232 attempts of different
values from the set X2 we will find a collision in the set
Y1. Consequently, the values in the set Y2 will be different,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

200

i.e., we will find a collision of reduced SHA-1Q2 on one
step after 232 attempts.

For a two step reduction we will have the following
situation:

1. Used words from the extension part. X1 = {W31, …,
W27, W23, W22,W17, W16}
2. Unused words from the extension part. X2 = {W26,
W25, W24, W21, W20, W19, W18}
3. Used words from the message part. Y1 = {W9, W8, W1,
W0}
4. Unused words from the message part. Y2 = {W2, …,
W7, W10, …,W15}.

Again if we fix the values of the set X1 we can search
trough the values of the set X2 in order to find collisions
in the set Y1. Since now the total number of bits of the
variables in the set Y1 is 128 from the birthday paradox
we can expect that after 264 attempts of different values
from the set X2 we will find a collision in the set Y1.
Consequently, we will find a collision of reduced SHA-
1Q2 on two steps after 264 attempts.

Obviously, the above strategy does not work for three
step reduced SHA-1Q2 since it needs workload in the
range of 296, which is more than simple exhaustive search
of size 280.

4.5 Finding Collisions in Full SHA-1Q2
We will discuss the strength of the iterated hash

function SHA-1Q2 as a collision resistant function in the
light of the previous work [14], the discussion that was
given there and in the light of the known successful
attacks on MDx family of hash functions.

Finding collisions in MDx family of hash functions
was always based on the fact that in the iterative step they
use linear and invertible functions: eXclusive OR and
addition modulo 232. That allowed numerous researchers
(for example den Boer and Bosselaers in [21, 22],
Dobbertin in [23] and at the rump session of Eurocrypt '96,
Wang at al in [1-4] and many others) to mount successful
attacks for finding collisions. The basic principle that was
used was the following: Setting up some system of
equations obtained from the definition of the hash function,
then tracing forward and backward some initial bit
differences that will result in fine tuning and annulations
of those differences and, finally, obtaining collisions. As it
is stressed in [14], Quasigroup Folding prevents those
attacks, since the operation is highly nonlinear and its
tracing (and solving the nonlinear systems of equations)
becomes infeasible after few steps. The message
expansion of SHA-1Q2 uses 16 QFOLD operations, it is

bijective function on the set {0,1}512 and the last obtained
five 32-bit variables obtained in the expansion part are the
starting values for the iterative part. So, our claim that
SHA-1Q2 is collision resistant (i.e. the workload for
finding collisions is 280 SHA-1Q2 computations) is based
on the nonlinearity and complexity of the used Quasigroup
Folding technique.

More precisely, since every application of Quasigroup
Folding introduces at least 4 nonlinear quasigroup
equations with 8 unknown 4-bit variables, after 16 steps in
the expansion part we will obtain at least 64 quasigroup
equations with 128 unknown 4-bit variables. The relations
between those 4-bit variables are not in some finite field
since the used quasigroup is non-associative and non-com-
mutative. Solving that system will need the usage of
quasigroup parastrophes of the quasigroup defined in
Table 1 (for more details see [14]). Except exhaustive
combinatorial search, in this moment there is no math-
ematical knowledge for fast finding of solutions for such
complex nonlinear systems of quasigroup equations. The
current level of the mathematical knowledge for solving
such nonlinear systems of equations can only reduce the
problem to a system of multivariate polynomial equations
in GF(2). In such a case the most advanced mathematical
technique for solving such systems is by the Buchberger's
method of Gröbner’s bases [18]. However, if the number
of monomials in such systems is exponential (on the
number of variables) then that algorithm has exponential
running time (see for example [19, 20]). Since we have
designed the compression function of SHA-1Q2 to be
conjectured that obtained systems of nonlinear equations
in GF(2) will have an exponential number of monomials
(see the NANT level in Table 4b. that is around 1.0, that is
equivalent to the claim that the number of monomials is
exponential on the number of output bits), we conjecture
that the compression function of SHA-1Q2 is collision
resistant, i.e., for finding a collision the needed
computational workload is at least 280 SHA-1Q2
computations.

4.6 Finding Preimages and Second Preimages of
SHA-1Q2
From the definition of SHA-1Q2 similarly as with SHA-1
from a given 160-bit hash digest it is possible to perform
backward steps by guessing values for the message and for
the working variables of the extension part. However,
since the message expansion part is bijection over {0,1}512
if the attacker guess some values for W7 and W15 he(she)
can not just put arbitrary values for W23 and W29. In fact,
because of that bijective property of the message
expansion part, the attacker have to guess the whole initial

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

201

message of 512 bits, compute the message expansion and
then perform backward steps. At the end of that backward
procedure the attacker will have to find a message that, by
going backward, will end by giving the initial 160 bits
defined by (2) and that search effort will need 2160
attempts.

4.7 Cryptographic properties of the used
quasigroup
In this subsection we would like to give several remarks
about the used quasigroup. Basically here we can repeat
the claims of Gligoroski at. al from the paper [14]. The
operations of quasigroup-folding are performed by 16×16
quasigroup that is non-commutative, non-associative, non-
idempotent, non-involutory and without neutral elements.
That is quite different to the Boolean functions
conjunction, disjunction, negation, addition (mod 232) and
exclusive disjunction, which are used in the MDx family
of hash functions. All of these Boolean functions satisfy
many algebraic laws suitable for making reductions and
for solving equations and systems of equations. On the
other hand, solving equations that introduce quasigroup
operations can not lead to the reduction of variables and
successful tracing of differences, that is the core of every
successful differential attack on the hash functions that we
know of today. There are huge numbers of quasigroups of
order 16 that satisfy the above mentioned properties. In
fact the number of such quasigroups is of order 2430, any
such a quasigroup can be used in a definition of SHA-1Q2,
and their construction can be done in very fast manner.

5. Conclusion
In this paper we have constructed a new hash function
SHA-1Q2 based on the hash function SHA-1 and its
security improvement SHA-1Q. The proposed hash
function uses recently introduced technique of nonlinear
bijective operation “Quasigroup Folding” as a tool for
obtaining highly complex and nonlinear relations of the
output bits. The design of SHA-1Q2 introduces a new
principle: the reached complexity level of a random
Boolean function in the message expansion part to be used
immediately in the iterative part of the compression
function. It has 16 steps in the Message Expansion part, 8
iterative steps and it is at least 3% faster than SHA-1.

References

[1] X. Wang, X. Lai, D. Feng, H. Chen and X. Yu,
“Cryptanalysis of the Hash Functions MD4 and RIPEMD”,
EuroCrypt 2005, Springer LNCS 3494 (2005), 118
[2] X. Wang and H. Yu , “How to Break MD5 and Other Hash
Functions”, EuroCrypt 2005, Springer LNCS 3494 (2005), 1935
[3] X. Wang, Y. L. Yin, H. Yu, “Collision Search Attacks on
SHA-1”, Crypto 2005, Springer LNCS 3621 (2005), pp. 17-36
[4] X. Wang, H. Yu, Y. L. Yin :”Efficient Collision Search
Attacks on SHA-0”, Crypto 2005, Springer LNCS 3621 (2005),
pp. 1-16
[5] R. Merkle, “One way hash functions and DES”, Advances in
Cryptology-Crypto'89, LNCS 435, G. Brassard, Ed., Springer-
Verlag, 1990, pp. 428-446
[6] I.B. Damgård, “A design principle for hash functions”,
Advances in CryptologyCRYPTO 89 LNCS 435, G. Brassard,
Ed., Springer-Verlag, 1990, pp. 416-427
[7] G. Yuval, “How to swindle Rabin”, Cryptologia, 3 (1979), pp.
187-190
[8] A. Joux, “Multicollisions in iterated hash functions.
Application to cascaded constructions”, In M. Franklin, editor,
Advances in Cryptology CRYPTO 2004, volume 3152 of
Lecture Notes in Computer Science, pp. 306-316. Springer-
Verlag, Berlin, Germany, 2004
[9] J. Kelsey and B. Schneier, “Second preimages on n-bit hash
functions for much less than 2n

 work”, In R. Cramer, editor,
Advances in Cryptology EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science, pp. 474-490. Springer-
Verlag, Berlin, Germany, 2005
[10] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya,
“Merkle-Damgård revisisted: How to construct a hash Function”,
in V. Shoup, editor, Advances in Cryptology CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 2005
[11] P. Gauravaram, W. Millan and J. G. Nieto, “Some thoughts
on Collision Attacks in the Hash Functions MD5, SHA-0 and
SHA-1”, Cryptology ePrint Archive: Report 2005/391.
[12] B. Preneel, “Analysis and design of Cryptographic Hash
Functions”, PhD thesis, Katholieke Universiteit Leuven, 1993
[13] B. Preneel, “The State of Cryptographic Hash Functions”,
Lectures on Data Security, Lecture Notes in Computer
Science 1561, I. Damgård (ed.), pp. 158-182, 1999
[14] D. Gligoroski, S. Markovski and S. J. Knapskog, “A Fix of
the MD4 Family of Hash Functions – Quasigroup Fold”, NIST
Cryptographic Hash Workshop, 2005,
http://www.csrc.nist.gov/pki/HashWorkshop/program.htm
[15] Secure Hash Signature Standard (SHS) (FIPS PUB 180-2),
United States of American, National Institute of Science and
Technology, Federal Information Processing Standard (FIPS)
180-2, 2002 August 1
[16] Crypto++ library, http://www.cryptopp.com
[17] B. Preneel, R. Govaerts and J. Varitlevalle, “Boolean
functions satisfying higher order propagation criteria”, Advances
in Cryptology - EUROCRYPT91, Lecture Notes in Computer
Science 547, D. W. Davies (ed.), Springer-Verlag, pp. 141-152,
1991

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

202

[18] B. Buchberger, “Buchbergers PhD thesis 1965 - An
algorithm for finding the basis elements of the residue class ring
of a zero dimensional polynomial ideal”, Journal of Symbolic
Computation, Volume 41, Issues 3-4, March-April 2006, pp.
475-511, Elsevier Ltd.
[19] M. Clegg, J. Edmonds and R. Impagliazzo, “Using the
Groebner basis algorithm to find proofs of unsatisfiability”, in
Proc. 28th ACM Symp. on Theory of Computing, pp. 174-183,
ACM 1996
[20] R. Impagliazzo, P. Pudlák, J. Sgall, “Lower Bounds for the
Polynomial Calculus and the Groebner Basis Algorithm”,
Electronic Colloquium on Computational Complexity (ECCC)
4(42), (1997)
[21] B. den Boer, and A. Bosselaers: \An attack on the last two
rounds of MD4", Advances in Cryptology, CRYPTO91,
Lecture Notes in Computer Science, vol. 576, Springer-Verlag,
Berlin, 1992, pp. 194-203
[22] B. den Boer, and A. Bosselaers, “Collisions for the
compression function of MD5”, Advances in Cryptology,
EUROCRYPT93, Lecture Notes in Computer Science, vol. 765,
Springer-Verlag, Berlin, 1994, pp. 293-304
[23] H. Dobbertin, “Cryptanalysis of MD4”, J. Cryptology
(1998) 11, pp. 253-271

Danilo Gligoroski received the PhD
degree in Computer Science from
Institute of Informatics, Faculty of
Natural Sciences and Mathematics, at
University of Skopje – Macedonia in
1997. His research interests are
Cryptography, Computer Security,
Discrete algorithms and Information
Theory and Coding. Currently he is
PostDoc at Q2S – Centre for
Quantifiable Quality of Service in
Communication Systems at Norwegian

University of Science and Technology - Trondheim, Norway.

Smile Markovski received his PhD in
Mathematics from University of
Skopje in 1980 in the field of algebra.
He has been elected as full professor in
1991 at the same university. His
research interests are Universal algeb-
ras, n-ary and vector valued groupoids,
quasigroup theory, discrete mat-
hematics, cryptography and coding
theory.

Svein Johan Knapskog received
his MS in Electrical Engineering from
Norwegian University of Science and
Technology – Trondheim in 1972. His
research interests are Network Sec-
urity, Cryptography, and Security
Standards. Currently he is a head of
the “Centre for Quantifiable Quality
of Service in Communication Systems
– Q2S”, at the Norwegian University
of Science and Technology,

Trondheim, Norway.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

203

Appendix:
C source code of SHA-1Q2 hash function

/* SHA1Q2.c -
An altered SHA-1 algorithm named as SHA-1Q2 that fixes the weaknesses of SHA-1
message-digest algorithm. Version 2 has only 16 message expansion rounds, 8
iteration rounds and is about 3% faster then original SHA-1.
*/
/* The modification for SHA-1Q2 made by Danilo Gligoroski 05.05.2006. */
/* The modification for SHA-1Q made by Danilo Gligoroski 20.08.2005.

Danilo Gligoroski makes no representations concerning either the
merchantability of this software or the suitability of this software for any
particular purpose. It is provided "as is" without express or implied warranty
of any kind.

This work was carried out during the Postdoc research position ot Q2S -Centre
for Quantifiable Quality of Service in Communication Systems at Norwegian
University of Science and Technology - Trondheim, Norway.
*/
/*
* sha1.c
*
* Description:
* This file implements the Secure Hashing Algorithm 1 as
* defined in FIPS PUB 180-1 published April 17, 1995.
*
* The SHA-1, produces a 160-bit message digest for a given
* data stream. It should take about 2**n steps to find a
* message with the same digest as a given message and
* 2**(n/2) to find any two messages with the same digest,
* when n is the digest size in bits. Therefore, this
* algorithm can serve as a means of providing a
* "fingerprint" for a message.
*
* Portability Issues:
* SHA-1 is defined in terms of 32-bit "words". This code
* uses <stdint.h> (included via "sha1.h" to define 32 and 8
* bit unsigned integer types. If your C compiler does not
* support 32 bit unsigned integers, this code is not
* appropriate.
*
* Caveats:
* SHA-1 is designed to work with messages less than 2^64 bits
* long. Although SHA-1 allows a message digest to be generated
* for messages of any number of bits less than 2^64, this
* implementation only works with messages with a length that is
* a multiple of the size of an 8-bit character.
*
*/
#include "sha1.h"
/* This is the definition of the quasigroup Q of order 16x16. */
unsigned char Q[256] ={ 10, 4, 5, 9, 6, 0, 14, 1, 2, 12,
13, 15, 3, 8, 11, 7,
5, 11, 12, 8, 4, 14, 0, 7, 3, 2, 15, 10, 1, 9, 13, 6,
12, 5, 2, 13, 15, 8, 10, 14, 1, 3, 6, 7, 11, 0, 9, 4,
7, 13, 3, 14, 2, 1, 11, 12, 5, 9, 4, 8, 0, 15, 6, 10,
1, 2, 4, 10, 11, 7, 8, 9, 0, 13, 3, 14, 6, 12, 5, 15,
4, 10, 8, 11, 13, 2, 12, 6, 14, 15, 5, 9, 7, 3, 1, 0,
0, 14, 13, 2, 8, 3, 6, 5, 12, 11, 7, 4, 9, 10, 15, 1,
11, 6, 0, 5, 9, 13, 4, 8, 7, 10, 2, 3, 15, 1, 14, 12,
13, 8, 6, 1, 12, 10, 15, 0, 11, 5, 9, 2, 4, 7, 3, 14,
2, 15, 1, 0, 7, 12, 5, 11, 9, 6, 8, 13, 10, 14, 4, 3,
6, 12, 11, 7, 10, 15, 1, 3, 4, 8, 14, 0, 13, 5, 2, 9,
8, 1, 15, 6, 3, 9, 7, 4, 10, 14, 12, 5, 2, 13, 0, 11,
15, 3, 9, 4, 14, 6, 2, 13, 8, 7, 0, 1, 12, 11, 10, 5,
14, 9, 7, 3, 1, 11, 13, 15, 6, 0, 10, 12, 5, 4, 8, 2,
3, 0, 14, 12, 5, 4, 9, 10, 15, 1, 11, 6, 8, 2, 7, 13,
9, 7, 10, 15, 0, 5, 3, 2, 13, 4, 1, 11, 14, 6, 12, 8
};
/* First 16 bits of a variable 'a' will be changed by 16 bits
obtained by quasigroup transformation defined below. */ #define
QUASIGROUP_FOLD(a) {\
(a) = ((a)&0x0fffffff)|(((unsigned char)Q[(((a)&0xf0000000)>>28)| \
(((a)&0x0000f000)>> 8)])<<28);\
(a) = ((a)&0xf0ffffff)|(((unsigned char)Q[(((a)&0x0f000000)>>20)| \
(((a)&0x00000f00)>> 8)])<<24);\
(a) = ((a)&0xff0fffff)|(((unsigned char)Q[(((a)&0x00f00000)>>20)| \
(((a)&0x000000f0))])<<20);\
(a) = ((a)&0xfff0ffff)|(((unsigned char)Q[(((a)&0x000f0000)>>12)| \
(((a)&0x0000000f))])<<16);\
}
/*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
/* Local Function Prototyptes */ void SHA1PadMessage(SHA1Context
*); void SHA1ProcessMessageBlock(SHA1Context *);
/*
* SHA1Reset
*
* Description:
* This function will initialize the SHA1Context in preparation
* for computing a new SHA1 message digest.
*
* Parameters:
* context: [in/out]
* The context to reset.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Reset(SHA1Context *context) {
if (!context)
{
return shaNull;
}

context->Length_Low = 0;
context->Length_High = 0;
context->Message_Block_Index = 0;
context->Intermediate_Hash[0] = 0x67452301;
context->Intermediate_Hash[1] = 0xEFCDAB89;
context->Intermediate_Hash[2] = 0x98BADCFE;
context->Intermediate_Hash[3] = 0x10325476;
context->Intermediate_Hash[4] = 0xC3D2E1F0;
context->Computed = 0;
context->Corrupted = 0;
return shaSuccess;
}
/*
* SHA1Result
*
* Description:
* This function will return the 160-bit message digest into the
* Message_Digest array provided by the caller.
* NOTE: The first octet of hash is stored in the 0th element,
* the last octet of hash in the 19th element.
*
* Parameters:
* context: [in/out]
* The context to use to calculate the SHA-1 hash.
* Message_Digest: [out]
* Where the digest is returned.
*
* Returns:
* sha Error Code.
*
*/
int SHA1Result(SHA1Context *context,
uint8_t Message_Digest[SHA1HashSize])
{
int i;
if (!context || !Message_Digest)
{
return shaNull;
}
if (context->Corrupted)
{
return context->Corrupted;
}
if (!context->Computed)
{
SHA1PadMessage(context);
for(i=0; i<64; ++i)
{
/* message may be sensitive, clear it out */
context->Message_Block[i] = 0;
}
context->Length_Low = 0; /* and clear length */
context->Length_High = 0;
context->Computed = 1;
}
for(i = 0; i < SHA1HashSize; ++i)
{
Message_Digest[i] = context->Intermediate_Hash[i>>2]
>> 8 * (3 - (i & 0x03));
}
return shaSuccess;
}
/*
* SHA1Input
*
* Description:
* This function accepts an array of octets as the next portion
* of the message.
*
* Parameters:
* context: [in/out]
* The SHA context to update
* message_array: [in]
* An array of characters representing the next portion of
* the message.
* length: [in]
* The length of the message in message_array
*
* Returns:
* sha Error Code.
*
*/
int SHA1Input(SHA1Context *context,
const uint8_t *message_array,
unsigned length)
{
if (!length)
{
return shaSuccess;
}
if (!context || !message_array)
{
return shaNull;
}
if (context->Computed)
{
context->Corrupted = shaStateError;
return shaStateError;
}
if (context->Corrupted)
{
return context->Corrupted;
}
while(length-- && !context->Corrupted)
{
context->Message_Block[context->Message_Block_Index++] =
(*message_array & 0xFF);
context->Length_Low += 8;
if (context->Length_Low == 0)
{
context->Length_High++;
if (context->Length_High == 0)
{

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

204

/* Message is too long */
context->Corrupted = 1;
}
}
if (context->Message_Block_Index == 64)
{
SHA1ProcessMessageBlock(context);
}
message_array++;
}
return shaSuccess;
}
/*
* SHA1ProcessMessageBlock
*
* Description:
* This function will process the next 512 bits of the message
* stored in the Message_Block array.
*
* Parameters:
* None.
*
* Returns:
* Nothing.
*
* Comments:
* Many of the variable names in this code, especially the
* single character names, were used because those were the
* names used in the publication.
*
*
*/
void SHA1ProcessMessageBlock(SHA1Context *context) { /*
Intervention by Danilo Gligoroski */ /* SHA-1Q2 does not use any
predefined constants, so the next lines will
be put in comment.
*/
// const uint32_t K[] = { /* Constants defined in SHA-1 */
// 0x5A827999,
// 0x6ED9EBA1,
// 0x8F1BBCDC,
// 0xCA62C1D6
// };
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
/* Intervention by Danilo Gligoroski */
/* Instead of 80 uint32_t words we need only 32 */
uint32_t W[32]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for(t = 0; t < 16; t++)
{
W[t] = context->Message_Block[t * 4] << 24;
W[t] |= context->Message_Block[t * 4 + 1] << 16;
W[t] |= context->Message_Block[t * 4 + 2] << 8;
W[t] |= context->Message_Block[t * 4 + 3];
}
/* Intervention by Danilo Gligoroski */
/* The following changes are made:
1. Only 16 steps are performed.
2. Instead of bitwise XORing, a complex operation of addition (mod 2^32)
and XOR are used.
3. In every step, 7 bits circular shift is performed.
4. One QUASIGROUP_FOLD operation is performed per new W[t].
*/
for(t = 16; t < 32; t++)
{
W[t] = SHA1CircularShift(7,\
(W[t - 1] ^ W[t - 3]) + (W[t - 6] ^ W[t - 8]) + \
(W[t - 12] ^ W[t - 14]) + (W[t - 13] ^ W[t - 16]) + \
(W[t - 2] ^ W[t - 7]) + (W[t - 4] ^ W[t - 10]) + \
(W[t - 5] ^ W[t - 9]) + (W[t - 11] ^ W[t - 15])
);
QUASIGROUP_FOLD((W[t]))
}
/* Intervention by Danilo Gligoroski */
/* The following changes are made:
1. Instead of original initialization - an initialization involves
the last 5 words obtained in the message expansion part.
*/
A = context->Intermediate_Hash[0] + W[31];
B = context->Intermediate_Hash[1] + W[30];
C = context->Intermediate_Hash[2] + W[29];
D = context->Intermediate_Hash[3] + W[28];
E = context->Intermediate_Hash[4] + W[27];
/* Intervention by Danilo Gligoroski */
/* The following changes are made:
1. Instead of original 4x20=80 steps, only 4x2=8 steps
are performed.
2. Those transformations are made on words:
W[0], W[1], ..., W[29]
3. We don't use addition of any constants K[].
*/
/* t=0; */
temp = SHA1CircularShift(5,A) + ((B & C) ^ ((~B) & D)) +\
E + (W[0]^W[16]) + (W[8]^W[22]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
15

/* t=1; */
temp = SHA1CircularShift(5,A) + ((B & C) ^ ((~B) & D)) +\
E + (W[1]^W[17]) + (W[9]^W[23]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));

/* t=2 */
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\
E + (W[2]^W[18]) + (W[10]^W[24]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
/* t=3 */
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\
E + (W[3]^W[19]) + (W[11]^W[25]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
/* t=4 */
temp = SHA1CircularShift(5,A) + ((B & C) ^ (B & D) ^ (C & D)) +\
E + (W[4]^W[20]) + (W[12]^W[26]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
/* t=5 */
temp = SHA1CircularShift(5,A) + ((B & C) ^ (B & D) ^ (C & D)) +\
E + (W[5]^W[21]) + (W[13]^W[27]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
/* t=6 */
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\
E + (W[6]^W[22]) + (W[14]^W[28]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
/* t=7 */
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) +\
E + (W[7]^W[23]) + (W[15]^W[29]);
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
QUASIGROUP_FOLD((A));
context->Intermediate_Hash[0] += A;
context->Intermediate_Hash[1] += B;
context->Intermediate_Hash[2] += C;
context->Intermediate_Hash[3] += D;
context->Intermediate_Hash[4] += E;
context->Message_Block_Index = 0;
}
/*
* SHA1PadMessage
*
* Description:
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* Parameters:
* context: [in/out]
* The context to pad
* ProcessMessageBlock: [in]
* The appropriate SHA*ProcessMessageBlock function
* Returns:
* Nothing.
*
*/
void SHA1PadMessage(SHA1Context *context) {
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (context->Message_Block_Index > 55)
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 64)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(context);
while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
else
{
context->Message_Block[context->Message_Block_Index++] = 0x80;
while(context->Message_Block_Index < 56)
{
context->Message_Block[context->Message_Block_Index++] = 0;
}
}
/*
* Store the message length as the last 8 octets
*/
context->Message_Block[56] = context->Length_High >> 24;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.10, October 2006

205

context->Message_Block[57] = context->Length_High >> 16;
context->Message_Block[58] = context->Length_High >> 8;
context->Message_Block[59] = context->Length_High;
context->Message_Block[60] = context->Length_Low >> 24;
context->Message_Block[61] = context->Length_Low >> 16;
context->Message_Block[62] = context->Length_Low >> 8;
context->Message_Block[63] = context->Length_Low;
SHA1ProcessMessageBlock(context);
}

