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Summary 
In this paper, we present new practical digital signature 
schemes based on chained BCH code. Their safety rests on 
the well-known Syndrome Decoding problem (SD). We 
introduce the first practical and secure digital signature 
scheme using a generator matrix as key. Then, we 
generate a signature scheme faster than the only practical 
one based on Niederreiter cryptosystem.  
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Introduction 

Since the introduction of public key cryptography in the 
70’s [1], many cryptosystems have been proposed and 
many cryptographic schemes have been broken. The most 
used cryptosystems rely on number theory problem like 
the factorization problem [3] and the discrete logarithm 
over suitable group [2]. The McEliece cryptosystem [5] 
and the Neiderreiter variante [6] rely on coding theory, 
they are ones of the few cryptosystems, which are very 
secure and which are not broken although they do not rely 
on number theory. These cryptosystems present many 
advantages: they are very fast for both encryption and 
decryption and the best attacks complexity are exponential 
in the length of the code. These cryptosystems have the 
drawback to have a large public key which is a generator 
matrix or a check parity matrix of a long code. Another 
drawback related to the belief that we can not deduce a 
digital signature from these public key cryptosystems. In 
2001, Courtois, Finiasz and Sendrier [15] introduced the 
first signature scheme based on  McEliece cryptosystem.  
Firstly, they have presented a scheme based on McEliece 
cryptosystem using generator matrix. With the proposed 
secure parameters, this scheme is impractical. Secondly, 
they have introduced a short practical signature based on 
the Neiderreiter variant using the parity check matrix as 
key. This scheme has the drawback to have a slow 
signature algorithm.  
In this paper, we introduce new performant digital 
signature schemes based on coding theory similar to those 
based on McEliece and Niederreiter cryptosystems. The 

idea of our schemes consists in considering a chained 
BCH code. The resulting code will be a secret code which 
will be scrambled and permuted to obtain the public code.  
 
The paper is organized as follows: We, first, define 
“chained BCH code”. Then, we introduce a digital 
signature scheme using the generator matrix of chained 
BCH code. Unlike, the scheme based on the McEliece 
cryptosystem, our scheme has practical parameters and it 
is performant in terms of public key size and in signature 
length.  
Before concluding, we present the dual version of this 
scheme. This second scheme permits to skirt the drawback 
of the signature based on Neiderreiter cryptosystem.  

2. Definition  

 
In order to build a system based on chained error 
correcting codes, we need a family of linear codes with 
given parameters, that has some "good" cryptographic 
properties. Each code of this family should have a 
polynomial complexity decoding algorithm.  
The family must be large enough to avoid an exhaustive 
attack and each code iC of the family is defined by its 
generator matrix  ( respectively a check parity matrix) 

iM . The obtained system from chaining these codes 
called "chained error correcting code " has a resulting 
generator matrix (respectively a parity check matrix) with 
the following form: 
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In our case, codewords and syndromes are stocked in 
tables. To decode a word, we compare it to the table 
elements and we take the nearest one to this word or the 
equal syndrome. So, the decoding operation is very fast. It 
consists, only, in some n   length vector comparison. 
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3. Signature with chained BCH code (BCHS1) 

3.1. Algorithm parameters 

Elements of )2( nGF  are called words and elements of 

iC  are called codewords of iC . A code is usually defined 
by its generating matrix. The distance between two words 
of )2( nGF  is the Hamming distance, that is the number 
of positions in which they differ. The weight of a word of 

)2( nGF  is its Hamming distance to zero-words.  

Γ  denotes a family of linear codes. A code iC  of Γ  will 

be defined by its length n , its dimension ik  and its 

correction capacity it .  
In order to obtain an efficient digital signature, we need  
an algorithm able to compute a signature for any document 
and a fast verification algorithm to anyone.  
Thus, the most BCH codes can not satisfy the first point. 
In fact, if we consider a random word of length n  ( n is 
the length of the chosen code), it is usually chosen at a 
distance greater than the decoding capacity of this code. In 
other terms, we can find a word which is not decodable.  
One solution to this problem is to obtain an algorithm able 
to decode any word of the space )2( nGF . In [8], 
N.Courtois, M.Finiasz and N.Sendrier have introduced a 
method named complete decoding to solve this problem.  
Complete decoding consists in finding the nearest 
codeword to any given word of the space )2( nGF . To 
achieve this goal, we do not decode at the correction 
capacity t  but at a distance δ+= tc .  
In [8], authors evaluate the smallest δ  for which the 
volume of the sphere with radius δ  is greater than kn−2 .  
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Nextly, we denote by BCH ],,[ ii tkn  a BCH code of 

length n , of dimension ik  and correction capacity it .  

The chosen BCH codes set is formed by BCH ]1,11,15[ , 
BCH ]2,11,15[  completed by one bit and BCH ]3,11,15[  
completed by two bits using (1).  
 
 
 
 
  

 Secret parameters 
 

• A family Γ  of l  BCH codes. The chained BCH code 
is defined by its generator matrix G .  

• A secret binary permutation matrix P .  
• A secret binary invertible matrix S . 
 

 Public parameters 
 

The public key of our scheme consists in:  
• A matrix 'G  defined by:  
 

PGSG ..'=  
 

The matrix G  is obtained from chaining BCH codes. By 
the algorithm construction, 'G  is a permuted and 
scrambled generating matrix.   

3.2. Key generation 

In our scheme, the public key is deduced from the secret 
key as described in section 2.  In this section, we need 
only to describe how the secret key and exactly the 
generating matrix G  is obtained.  
We consider a family Γ  of BCH codes. A code  iC  is 

defined by its length 15=n , its dimension 
{ }11,7,5∈ik  and its correction capacity it . Codes of  Γ  

are chosen randomly.  
The generated matrix G  results from chained BCH code. 
So, G is diagonal in blocs whose diagonal is formed by 
elementary generating matrices of used codes (see section 
2).  
To hide the G  structure, we permute its columns and then 
it will be multiplied by an invertible matrix to obtain the 
public key 'G . 

3.3. Signing a document 

In the present section, we describe the signature of a 
message M  by our new scheme.  
 

  Signing algorithm 
 
The document M  to be signed is given by a binary 
sequence of length N .  
The first step, that a signer must do, is to choose 
parameters shown in the previous section. Indeed, the 
signer chooses a random generator of codes, an invertible 
matrix S and a permutation matrix P.  
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In the second step, he constructs the generating matrix G  
of chained linear error correcting code. Then, he calculates 
the matrix product: 

PGSG ..'=  
and publishes this entity 'G .  
The third stage is the signature: the signer who wants to 
sign the message M , formed by a binary sequence of 
length N  bits, permutes his message by multiplying it by 
the inverse of P . Then, he splits his message in words of 
length n  to get a family of words im . He applies 
systematic decoding, that means he looks for the nearest 
codeword and he keeps the first ik  bits of every im  ( ik  

represents dimension of used code to decode im ).   
The concatenated blocks obtained after decoding represent 
a binary chain of length K  which depends on generated 
codes. This sequence will be multiplied by a matrix 1S −  
to obtain a chain y  of length K .  

y  is the signature of M .  
Let’s regroup this in an algorithm  
o Parameters:  

-  A family of l  BCH codes of length 15=n  and of 
dimension { }11,7,5∈ik . The resulting matrix G  of the 
chained codes is a diagonal matrix..  
-  The NN ×  binary permutation matrix P  .  
-  The KK ×  binary random invertible matrix S .  

o Public key:  
PGSG ..'=  

o Secret key : 
{ }PGS ,,  

o Signature:  
M is a document to be signed of length N .  
-  Compute )(Mh=ρ   

-  Compute  1. −= Px ρ   

-  Split x  in ),...,,( 21 lxxx ; lixi ..1, =  are sequences 
of n  bits  
-   Decode  )( iki xdeca

i
= ; li ..1= ;   

-  ),...,,( 21 laaaa =  has a length  ∑=
i

ikK   

-   1. −= Say   
y is the signature.  

 
 Control algorithm 

 
To control the validity of the signature, the verifier 
receives the message M , its signature y  and the sum of 

correction capacities of used codes. He multiplies y  by 
the resulting generator matrix  'G  to get a binary chain b  
of length  N  and he compares the distance between b  
and )(Mh  to the sum of the used codes capacity 
correction.  
The signature is valid if the following condition is 
satisfied:  

∑<
i

iH cMhbd ))(,(  

3.4. Implementation 

In this section, the key generation, signature and 
verification algorithms will be implemented and discussed 
in more details.  
 

 Key Generation 
 
This is certainly the most complicated part of the 
algorithm. It is certainly less critical than the signature and 
verification, but the nature of the operations (e.g. inversion 
of a KK ×  matrix) requires careful coding if a 
reasonable performance is expected. The key generation 
involves the following steps:  
-  Select a random NN ×  permutation matrix P  and 
construct the invertible scramble matrix S as follows: 

21 SSS ×= , where  1S  is a lower triangular matrix over 

)2(GF  with random entries and 2S  is an upper 
triangular matrix over )2(GF  with random entries and 

with diagonal elements equal to 1. The inverse  1−S  is 
easily computed as  1

1
1

2
1 −−− ×= SSS   

-   Generate randomly the family of BCH codes.  
The public key 'G  is computed as  PGS .. , and the 
secret key consists of  S , G  and P . 
 

 Signature cost  
 
The signature algorithm is very fast. It consists in:  
-  One multiplication of a binary vector of length N  by a 
matrix  NN × . Therefore it requires 2/2N  binary 
operations.  
-  One multiplication of a binary vector of length K  by a 
matrix KK × . Therefore it requires 2/2K  binary 
operations.  
-  l decoding operations which has a cost of ikK2  binary 
operations.  
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 Verification cost 
 
The verification  algorithm is very fast since it consists in 
a multiplication of a K  length binary vector  by a matrix 

NK × . Therefore, it requires 2/NK ⋅  binary 
operations.  

3.5 Performances 

Our scheme is determinist to sign and to verify the validity 
of the signature. Indeed, it permits to sign all messages 
since the signer, who possesses the secret key ),,( PGS , 
can sign any message after completing BCH ]2,7,15[  and 
BCH ]3,5,15[ .  
Moreover, our algorithm permits to verify every signatures 
for every message by anyone possessing the public key 

'G .  
Indeed, the verifier calculates  

PGaPGSyGy .....'. ==  
Then, he codes the text a  to get a text  'x . By 
multiplying 'x  by P , the distance between the obtained 
message and the original text must be inferior to the 
completed codes correction capacities sum.  
In our implementation, we have chosen to sign a binary 
sequence of length 1000 with BCH ]1,5,15[ =c , 
BCH ]3,7,15[ =c  and BCH ]5,5,15[ =c  ( c  is the 
correction capacity of completed code calculated with (1) ). 
The obtained signature is of overage length  500=K  
bits.  
The table 1 summarizes the efficiency of our scheme 
BCHS1 compared with McEliece signature.  
 

Tab 1: Signature with chained BCH code BCHS1 compared to 
the one based on the one based on McEliece cryptosystem 

 
Signature McEliece BCHS1 

 
Data 
size 65536 1000 

Signature  
length 65392 500 

Key 
size (bit) 4292069312 500000 

4. Signature with dual version of chained 
BCH Code (BCHS2) 

As the first scheme, we consider a set of l  BCH codes of 
length  15=n  and of dimension  { }11,7,5∈ik . The set 

of l  BCH codes will be chained to obtain a large code of 

length  ∑
=

=
l

i

nN
1

 and dimension  ∑
=

−=
l

i
ikNK

1

.  

4.1. Signature parameters 

 Secret parameters 
-  A family of  l  BCH codes.  
The parity check matrix of each code is stocked in a large 
matrix H  which we call parity check matrix of chained 
BCH code (see section 2).  
-  A binary permutation matrix P  over )2(GF .  
-  A binary invertible matrix S  over  )2(GF .  
 

 Public parameters 
 
The public parameter used to validate the signature is the 
public matrix 'H  deduced from the secret parameters 
{ }PHS ,, .  It is a parity check matrix of an equivalent 
code of chained BCH code.  
We need, also, a hash function with an output of length 

KN − .  

4.2. Signature algorithm 

 Signing a document 
 
The message  M  to be signed is a binary sequence.  
-  Compute  )(Mh=ρ .  

-  Compute  PSa .1−= .  
-  Split the sequence a  in ikn −   length blocs  ia   

-  If ia  is a syndrome then stock the correspondent error        

ib  of length n  in the message  b .  
   Else modify one bit and try to code, if it is a syndrome    
then stock the modified bit in a sequence 'σ  else 
remodify, again, another bit, etc...  
-  Compute  bPy .1−=   
-  Compute  '.σσ S=   
The Signature is formed by  ),( σy .  
 
 
 

 Verification algorithm 
 
In the verification step, we have the message M , the 
signature  ),( σy .  
-  Compute )(Mh=ρ .  
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)(Mh=ρ  

M  

ρ.1−= Sa  

),..,( 1 laa  

0
0'

=
=

j
σ

 

ia  :syndrome 

ja
j

i >>=⊕
++

1
 

)( ii adecb =  ji >>=⊕ 1'σ  

),..,( 1 lbb  )',..,'( 1 lσσ

bPy .1−=  '.σσ S=  

),( σy  
M

No  

Yes 

Fig 1: Signature with dual version of chained BCH code 

-  Compute  tyH '.'=ρ .  
-  Compute  'σσς += .  
The signture is valid if  ρς =   
Let’s regroup the signature algorithm in a flow diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 

 
 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 
 

4.3. Implementation aspects 

  Signature cost 
 
The complexity of the signature is based specially on 
decoding with the chained BCH code.  
The decoding operation is done by blocs using elementary 
codes. It consists in testing if an  )( ikn −  tuples is a 
syndrome.  
The BCH code of length  15=n  and of dimension 

11=ik  correcting  1=it  error is a perfect code so all  

)( ikn −  tuples are syndromes.  

The BCH code of length 15=n  and of dimension 
7=ik  correcting  2=it  errors (or of dimension  

5=ik  correcting  3=it  errors) has  it
nC  syndromes.  

The probability to have a decodable  )( ikn −  tuples is:  

 
2
1

2
≈=

− i

i

kn

t
nC

P  

 
So, for each bloc of length ikn −   with { }11,7,5∈ik   is 

the dimension of the thi '  used code, we need 
2

ikn −
 of 

random bit modification to obtain a decodable ikn −  
tuples. Then, the complexity of signature is:  
  

NKNC
kn

KN it
n

i +−+
−

− ))(
2

)((  

 
 Verification cost 

The verification cost is the complexity of the syndrome 
determination from the error.  
So, the verification requires  

))(2( KNc −+  
  

binary operations with   ∑
=

=
l

i
icc

1

  

4.4.  Security 

There are two broad types of attacks:  
  
 

 Decoding attack: Information Set decoding (IS) 
Our schemes are based on the well known problem NP-
complete:  
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Syndrome Decoding (SD)  
Instance : Let  H  be a  nkn ×− )(  binary matrix , s a 
binary vector of size kn −  and an integer p .  
Question : Is there a binary vector x  of size  n  of weight 
smaller or equal to p  such that  sHx t = ?  
 
The most efficient algorithms in our case are based on the 
information set decoding. A first analysis was done by Lee 
and Brickell in [12],  Stern in [13] , Leon in [11] and at 
last by Canteaut and Chabaud in [14] which is the most 
efficient one.  
Consider a binary code of length n , of dimension k  and 
of correction capacity t , if one uses information set 
decoding, one chooses a random set of k  columns, an 
error is decodable when its support doesn’t meet the  k  
random columns. The probability for an error to be 

decodable is then  t
n

t
kn

dec C
C

P −= .  

Then the estimated work factor WF  to find a word of 
weight t  can be estimated as follow:  

decP
kPWF )(

=  

where )(kP  corresponds to the cost of Gaussian 
elimination, )(kP  can be first thought as a cost in 

)( 3kO .   
 
 

 Structural attack 
 
The complexity of this attack on our signature scheme 
public key can be measured by searching exhaustively for 
all possible combination of permutation  ( N !), secret 
code ( l3 ) and invertible matrix ( K229.0 × ). Then, for 
each secret key, one has to test wether this key is the good 
one.  
In the case of our scheme, the complexity of this attack 
can be increased due to the fact that the secret code is 
formed by three BCH codes. We can apply permutations 
to the elementary BCH codes to increase their number.  
 
 
 
 
 
 
 

Tab 2  New signatures schemes BCHS1 and BCHS2 compared 
to the one based on Neiderreiter cryptosystem 

    
Signature Neiderreiter BCHS1 BCHS2 

 
Data 
Size 144 1000 900 

Signature 
length 132 500 1350 

Key  
size (bit) 223 219 219 

Signature 
cost 233  * 220   ** 216    ** 

Verification 
cost 210 218 216 

IS attack 
workfactor + 280 288 285 

Structural 
attack 2119 2106 295 

 
*: the document is hashed t!  times,  
**: the document is hashed only one time 
+:the IS attack workfactor  is the one of the Canteaut and Chabaud 
algorithm. 
  
The signature  BCHS2 has the following proporties 
compared to the signature based on Niederreiter 
cryptosystem: 
-  It has a signature algorithm faster 157000 times, 
-  It has a public key size smaller 23 times, 
-  It has a verification algorithm slower 42 times, 
-  It has a signature longer 10 times 

5. A variant that improves the security 

In this variant, we will introduce a "random" sequence in 
the signature to increase the security of the previous 
scheme. The principle consists in transforming a syndrome 
to another syndrome by modifying some random bits. As 
calculated for the previous scheme, the probability to 
obtain a decodable ikn −  tuples for a code  ic  of length 

n  and dimension ik   is 1/2. This modification requires 

2
ikn −

 attempt and if we re-sign the same text, we have 

a probability of  602−  to obtain the same signature.  
The new scheme algorithm is as follow:  
-  Compute  )(Mh=ρ .  

-  Compute  ρ.1−= Sa .  

-  Split the sequence  a  in  ikn −  length blocs  ia   
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-  If  ia  is a syndrome then modify it in another syndrome 
by modifying a random bit and stock the modified bit in a 
sequence  'σ  and, then, store the correspondent error ib  

of length  n  in the message  b .  
  Else modify a bit until obtaining a syndrome and 
transform it to another syndrome then stock the modified 
bit in the sequence  'σ  .  
-  Compute  bPy .1−=   
-  Compute  '.σσ S=   
The Signature is formed by  ),( σy .  
The complexity of this algorithm is:  

NKNCknKN it
ni +−+−− ))())(((  

which is very close to the one of the previous scheme. 
With this algorithm, we preserve the same performances 
and we improve the security.  

6. Conclusion 

In this paper, we have defined a new signature scheme 
based on the well known Syndrome Decoding problem SD. 
Our schemes consist in chaining a family of BCH codes 
with various dimensions. The resulting matrix of chaining 
these codes forms the trapdoor of our algorithm.  
The main contribution in this paper consists, firstly, in 
generating a practical digital signature using generator 
matrix and, secondly, in introducing another scheme faster 
than the only practical and secure signature scheme based 
on coding theory.  
Our schemes offer, also, a fast and short signature with 
less public key size than the signature based on McEliece 
and Neiderreiter public key cryptosystem.  
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