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Summary 
This paper proposes a new real-value mutation operator and a 
hybrid real-coded genetic algorithm with quasi-simplex 
technique using this new mutation operator (RCGAQS). 
Compared with the classical GA (CGA), RCGAQS has the 
following distinguish features: (1) A new real-value mutation 
mechanism was used to increase the capability of global search 
(exploration); (2) The modified simplex technique, so called the 
quasi-simplex technique, was employed to generate prospective 
offspring to increase the capability of local search (exploitation); 
and (3) The dynamic subpopulation strategy, in which the entire 
generation is subdivided into a number of subgroups in each 
evolution step, was adopted to enhance the abilities in both 
exploration and exploitation. RCGAQS algorithm has been 
implemented and tested on typical benchmark functions along 
with CGA. The experimental study has shown that RCGAQS is 
impressive in finding the near global optimal solutions cross all 
the selected benchmark functions and is substantially robust. 
Key words: 
Genetic algorithm, Real-coded, Elitist strategy, Quasi- simplex 
technique 

1. Introduction 

Conventional optimization methods suffer from the local 
optimality problem and some of them usually requires the 
function to have good characteristics, such as 
differentiability, continuity etc.. To a certain extend, this 
limits the application of these traditional methods to a 
small range of real word problems. In recent years, 
stochastic optimization techniques, such as the simulated 
annealing (SA), the genetic algorithm (GA), and the 
evolutionary algorithm (EA), have drawn many 
researchers’ attention due to their capability of finding the 
near global optimal solutions without putting restrictions 
on the characteristics of the target functions although they 
require significant computing power and generally take a 
fairly long time to reach the solution. A great amount of 
efforts have been devoted in improving these methods and 
some of the improved methods have been successfully 
used in variety of real world problems [1-7].  
GA was initially introduced by John Holland in seventies 
as a special technique for function optimization [8]. 

Hereafter, we refer to it as the classical GA (CGA). A 
typical CGA has three phases, i.e., initialization, evaluation 
and genetic operations, which are consisted of 
reproduction, crossover and mutation. The performance of 
CGA precedes the traditional optimization methods in 
aspect of global search and robustness in handling an 
arbitrary non-linear function. However, it suffers 
premature convergence problem and usually consumes 
enormous computing times.  
 
In the CGA, ability of local search mainly relies on the 
reproduction and crossover operations, which can be 
referred to as the exploitation operations, while the 
capability of global search is assured by the mutation 
operation, which can be regarded as the exploration 
operation. Generally speaking, the velocity of local search 
increases when the probability of crossover increases. 
Similarly, the level of capability of global search will 
increase when the probability of mutation increases. Since 
the sum of probabilities of all the generic operations must 
be unity, in order to assure a reasonable level of capability 
of local search, the mutation probability has to be reduced 
to increase the crossover probability. This contributes to 
the fact that the probability of mutation in CGA is very 
low which usually comes in a range of 0.1-5%. On the 
other hand, to achieve a satisfactory level of capability of 
global search, the probabilities of reproduction and 
crossover have to be decreased to increase the mutation 
probability. This will weaken capability of local search 
dramatically, slow down the convergence rate and makes 
the global search ability unachievable eventually. In the 
process of balancing exploration and exploitation based on 
reproduction/crossover and mutation operations for a fixed 
population, it is hardly possible to achieve the win 
situation for both sides simultaneously. Therefore, how to 
balance between exploration and exploitation in GA-type 
algorithms has long been a challenge task and retained its 
attractiveness to many researchers [9-17]. Majority of the 
improvements proposed were centralized in three aspects, 
i.e., decreasing the computing time, reducing premature 
convergence and enhancing global search capability.  
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To reduce computing time, some researchers proposed 
to use real-coded values instead of binary bit sequences [4-
5] [9-11]. Taking this approach, the computation time 
spent on encoding/decoding has been eliminated, the 
diversity of mutation, however, is significantly limited. 
Two typical approaches are commonly used: one is to 
generate a new random value to replace the existing one 
and the other is to add up one extra part, which is usually 
chosen randomly, to the existing one [4-5],[9-11]. None of 
them preserves the meaning of natural mutation in a sense 
that the new value has nothing to do with the existing one. 

 
To enhance the capability of global search, a lot of 

works have been done in increasing the diversity of the 
population [9-17]. Typical approaches are the sub-
grouping approach and the fitness sharing approach. The 
sub-grouping approach makes use of local information to 
search optimal and exchanges the information among the 
sub-groups when the evolution process goes along. From 
the fitness sharing approach, several methods, such as the 
fitness sharing, the crowding methods and the clearing 
methods have been proposed [14-15]. In a typical method 
of fitness sharing, the similarity levels amongst individuals 
are measured by the distances and the new fitness of 
individuals will be re-assigned according to the similarity 
levels. The higher the similarity level is, the lower the 
fitness [15-17]. Although there are a number of fitness 
sharing methods proposed, the main difference is the way 
in which the distances are calculated. The crowding 
method is similar to the fitness sharing method. According 
to Bruno [15], crowding methods can be classified into 
two groups, one is the standard crowding method and the 
other is the deterministic crowding method. In the standard 
crowding scheme, an offspring replaces the most similar 
individual taken from a randomly drawn subpopulation of 
size CF (crowding factor) from the global population. The 
deterministic crowding method introduces competition 
between children and parents of identical niches. After 
crossover and eventually mutation, each child replaces the 
nearest parent if it has a higher fitness. The clearing 
method is also very similar to the fitness sharing method 
except that it is based on the concept of limited resources 
of the environment. Instead of sharing the resources 
amongst all individuals of a single subpopulation as in 
fitness sharing, clearing method preserves the fitness of the 
k best individuals of the niche and resets the fitness of the 
others that belong to the same subpopulation. All these 
methods aim at maintaining the diversity of a population 
by modifying the search landscape by reducing the payoff 
in densely populated regions to eventually enhance global 
search capability [17]. 

 
Our approach is to enhance the capability of global search 
by increasing the probability of mutation operation while 

assuring satisfactory level of capability of local search by 
employing the idea of simplex method, so called the quasi-
simplex technique. From this approach, a new hybrid real-
coded genetic algorithm with quasi-simplex technique 
(RCGAQS) is proposed. RCGAQS aims at the following 
three points:  (1) assuring the capability of global search 
by increasing the probability of mutation, (2) mutation is 
implemented by using an effective real-value mutation 
operator instead of traditional binary mutation; and (3) 
enhance the capability of local search by introducing the 
so-called quasi-simplex techniques into the CGA since the 
capability of local search will be significantly weaken 
when the probability of reproduction/crossover decrease as 
a result of increasing the probability of mutation. In each 
iteration, RCGAQS firstly divides the population into a 
number of subpopulations and each subpopulation is 
treated as a classical simplex, then for every simplex, 
RCGAQS applies fours operations in parallel to produce 
offspring. The first operation is the quasi-simplex 
evolution in which two prospective individuals will be 
chosen to be offspring. The other three operations are the 
reproduction, crossover and mutation, respectively, which 
are very similar to the traditional genetic operation except 
that the probability of mutation is fairly high. All these 
four operations together will produce a new sub-
population with the same size as the corresponding parent 
sub-group. The new generation is the collection of all the 
newly produced sub-groups. In brief, RCGAQS maintain 
the diversity of a population to eventually enhance global 
search capability because a higher diversity of population 
leads to a higher level of capability to explore the search 
space while the local search are mainly implemented by 
quasi-simplex technique, reproduction including the elitist 
strategy and crossover operations. 
 
The rest of this paper is organized as follows. Section 2 
describes briefly the global minimization problem 
described by Xin Yao and Yong Liu [18] and the idea of 
simple algorithm. Section 3 presents a new hybrid genetic 
algorithm with quasi-simplex technique, the new real-
coded mutation operator and dynamic subpopulation in 
detail. In section 4, the experimental study and verification 
of the proposed new algorithm are focused. The 
comparison of the experimental results of the CGA and the 
proposed new method is also depicted across over a set of 
popular benchmark functions. Finally, the conclusions are 
drawn in Section 5. 
 
2. Function Optimization and quasi-simplex 
technique 
 
Consider the global minimization problem described by 
Xin Yao and Yong Liu [18] for the purpose of development 
of new search algorithm. According to Yao and Liu, the 
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problem can be formalized as a pair of real valued vectors 
( , )s f , where nS R⊆  is a bounded set on nR and 

:f S R→  is an n-dimensional real-valued function. f  
needs not to be continuous but it must be bounded. The 
problem is to find a point  such that min( )f x  is a global 

minimum on S . More specially, it is required to find an 

minx S∈  such that 
 

min, ( ) ( )x S f x f x∀ ∈ ≤                    (1) 
 

On solving above optimization problem by genetic 
algorithm, one effective method, which can speed up local 
convergence rate, is to combine the CGA with 
conventional optimization methods. Since it has been 
highly recognized that GA has no special request on the 
characteristics of the objective functions as one of its 
merits, the conventional optimization methods that can go 
with GA should not require that the objective functions 
having special characteristics neither. In this light, Simplex 
method is promising because it demands less on the 
function characteristics. Therefore, we choose to combine 
the conventional GA with simplex technique to form a 
hybrid generic algorithm in which a real-value scheme and 
dynamic sub-grouping are used. This algorithm is referred 
to as the hybrid real-coded genetic algorithm with quasi-
simplex technique (RCGAQS). 

 
For the ease of understanding of RCGAQS algorithm, 

let us recall briefly the basic idea of simplex technique. 
Simplex is a kind of direct search method, which is a 
widely accepted search technique. A simplex in an n-
dimensional space is defined by a convex polyhedron 
consisting of 1n + vertices, which are not in the same 
hyper-plane. Assume that there are n+1 individuals, 
denoted by ix ,  and their function values are denoted as 

if , i = 1,2,…, n+1. The worst and the best points in terms 

of function values are denoted by 
Hx and

Bx , respectively, 
and can be determined by  

 
( ) maxH

H ii
f x f f= =    i = 1,2,…, n+1          (2) 

and 
 

( ) minB
B ii

f x f f= =   i = 1,2,…, n+1            (3) 

  
where Hf  and Bf denotes the worst and the best function 
values, respectively.  

To determine a new better point than the worst point 

Hx , the centroid 
Cx  of the polyhedron whose vertexes 

are all the points but the worst one needs to be calculated 
by  
 

1

1
/

n
C i H

i
x x x n

+

=

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑                 (4) 

 
The better point predicted by simplex techniques lies 

on the line starting from the worst point and towards the 
centroid, which can be referred to as the worst-opposite 
direction, and the actual location can be determined by the 
following formula: 
 

( )C C Hx x x xα= + −                    (5) 
 
where α is a constant and can be different values for 
different points lying on the worst-opposite direction, such 
as the reflection point,  expansion points, or the 
compression points. The actual value ranges of α for 
different points are shown in table 1. 

 
Conventional simplex techniques are mainly consisted 

of four operations, i.e., the reflection, the expansion, the 
compression, and the contraction operations. The simplex 
algorithm produces a new simplex either by replacing the 
worst point by a better point produced using the simplex 
techniques or contract the current simplex towards the best 
point in each iteration step. The process will be continuing 
until the termination criterion is satisfied. The crucial idea 
of the classical simplex techniques is to approach the local 
optimal following the worst-opposite direction of each 
simplex, which can be regarded as a kind of guidance in 
the search landscape. Therefore, simplex algorithm has a 
higher level of ability of local search. 

 
Table 1: Points obtained using the simplex techniques  

with different value of α 

1 =α  
reflection  
point 

Reflection point of 
Hx respect to Cx

1α >  
Expansion 
point 

A point farther 
than the reflection 

point from Cx  

1> 0α > Compression  
point 

Points between  
Cx and reflection 

point 

 
( )

c

c H

x x
x xα

= +

−
 

0> 1α > −
 

Compression 
 point 

Points between  
Hx and Cx  
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3. Hybrid Real-Coded GA with Quasi-Simplex 
Technique 
 
3.1 Simulation Hybrid Real-Coded GA  
 
In the CGA, local exploitation relies heavily on 
reproduction and crossover operation while global 
exploration mainly makes use of mutation operation. Since 
the summation of probabilities of reproduction, crossover 
and mutation operations should be unity, it is hardly 
possible to achieve satisfactory results in both local 
exploitation and global exploration in CGA. The major 
problems are low convergence rate and premature. It has 
been a key issue in GA-type algorithms how to balance 
exploration and exploitation.  
 
The hybrid real-coded GA (RCGAQS) circumvents the 
difficulties in CGA by combining a technique evolved 
from the traditional simplex technique, which is referred to 
as quasi-simplex technique, with the CGA. In doing so, 
RCGAQS can achieve substantially high level of global 
exploration by increasing the probability of mutation while 
its capability of local exploitation can also be reasonable 
high by using both reproduction/crossover and quasi-
simplex techniques. 

 
The process of RCGAQS works can be described as 
follows: Firstly, RCGAQS initializes a random-generated 
population with μ individuals (real-coded chromosomes) 
and each individual has n components. Then the 
population starts to evolve. At the beginning of each 
iteration, the generation is divided into a number of 
subpopulations (or subgroups) with each subgroup having 
n+1 individuals.  Each subgroup will then evolve into a 
new subpopulation of the same size by four operations in 
parallel, which are the quasi-simplex operation, 
reproduction, crossover and mutation. The quasi-simplex 
operation (QS) will generate two new individuals, the 
reproduction will retain the best individual by applying the 
elitist strategy and also produce some individuals based on 
the probability of reproduction (R), the crossover 
operation will also generate a number of pairs of 
individuals according to the probability of crossover (C) 
and the left-over individuals will be produced by mutation 
(M). At the end of each iteration, all the new individuals 
from the subpopulations will merge together and evolution 
enters into a new generation. If the termination criterion is 
not met, evolution starts a new iteration.  This process 
continues until the termination criterion satisfied. The 
population in the final generation will be the solution.  
 
3.2 Highlights of RCGAQS 
 

RCGAQS has a number of outstanding features which 
equip it with capability of both local exploitation and 
global exploration. Firstly, RCGAQS adopts the dynamic 
sub-grouping idea to ensure each simplex consists of 
reasonably correlated individuals in the entire evolution 
process to enhance the convergence rate. RCGAQS 
implements population partition differently from the 
proposed strategies proposed in literature by two aspects: 
One is to  take into account the dimension of individuals in 
deciding the number of subgroups. RCGAQS divides a 
population into a number of subgroups with each subgroup 
consisting of n+1 individuals to ensure the validity of 
search and efficiency in terms of computing times.  The 
detailed discussion about the size of a subpopulation and 
how many subpopulations should be used will be 
presented in another paper. And the other is to do partition 
for each iteration. Although the computation time for each 
iteration may increase due to the partition process, the 
enhancement in convergence rate could decrease the 
number of iteration needed  
 

Secondly, RCGAQS employs the quasi-simplex 
technique with ancillary reproduction and crossover 
operation to assure the local exploitation. The quasi-
simplex technique absorbs the idea of classical simplex 
techniques to perform a guided search. It produces four 
prospective individuals using the reflection, expansion and 
compression operations along with the worst-opposite 
direction. The quasi-simplex technique also expands the 
conventional simplex technique by looking at the 
prospective individuals lying on a line starting from the 
centroid and towards the best point of the simplex. We 
refer to this direction as  the best-forward direction in 
contrast with the worst-opposite direction. Three 

prospective individuals 
ex , 

mx and 
nx  will be produced 

along the best-forward direction by the expansion and 
compression operations using the following formula. 

 

   ( )B B Dx x x xβ= + −                       (6) 
 

where 
Dx denotes the centroid of the remaining points 

except for the best point 
Bx and can be calculated by  

    
1

1

n
D i B

i
x x x n

+

=

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑

                  (7) 
   

The points 
ex , 

mx and 
nx can be determined by the value 

of β in (6) and corresponding the range of β are shown in 
the table 2. 
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In order to avoid a situation in which too many 
individuals are similar so that the diversity of the 
population decreases dramatically, RCGAQS selects the 
best one from the two prospective individual groups along  
the worst-opposite and the best-forward directions to 
produce two new individuals as a part of offspring. 
  

Table 2:  Range of β in (6) for 
ex , 

mx and 
nx  

Formula Range of β Calculated
point 

1β >  
ex  

1β =  
mx  

1

1

n
D i B

i
x x x n

+

=

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

 0 1β< <
 

nx  

   
Thirdly, RCGAQS uses a new real-coded mutation 

operator. Generally speaking, mutation operation is mainly 
used for enhancing the diversity of a population. In CGA, 
each individual is represented by a chromosome, which is 
a sequence of genes in genetics and usually represented by 
a string of 0s and 1s in computation. Mutation operation 
converts 0 to 1 or 1 to 0 for a specific bit if that bit is 
meant to mutate. As mentioned in Section 1, encoding and 
decoding individuals may consume significant computing 
time, therefore, real-coded mutation scheme in which an 
individual is represented by a decimal number is highly 
desirable and preferable. The common practice in real-
coded mutation is to replace a gene (a decimal digit) by a 
new random number or add a random number to the 
existing gene. Although it works under certain 
circumstances, this practice lacks of mechanics of natural 
genetics. RCGAQS uses a new mutation operation which 
is proposed based on the idea of mutation in natural 
genetics. This mutation operation converts a big number 
( >= 5) to a small number (< 5) or a small number into a 
big number.  
 

Let ijx , 1, 2, ,i μ= L , 1, 2, ,j n= L , denotes the j-
th component of the i-th individual in the population, 
where μ is the size of a population and n is the dimension 
of each individual. Under the real-coded scheme, ijx can 
be represented by a sequence of decimal numbers 
including the decimal point as 
 

1 2 1 2... ...p qw fw w f f
ij ij ij ij ij ij ijx d d d d d d= �                (8) 

   
where superscript w and f denote the whole number part 
and the fractional part respectively, and p and q  are 
constants representing the number of digits in the whole 
number part and the fractional part for a given ijx , 

respectively. In practice, q is determined by the precision 
required by the problems with maximum value being 
determined by the hardware used in computing. During the 
mutation operation, firstly, a mask will be generated for 
each ijx , 1, 2, ,i μ= L , 1,2, ,j n= L . The mask is a 

sequence of binary bits with length being the same as ijx ’s 

excluding the decimal point. Let 
1 2 1 2p qw fw w f fm b b b b b b= L L  denotes the mask. If 

m(br)=0, the r-th number will not change and if m(br)=1, 
the r-th number will mutate. After the mutation, the result 

ijx can be obtained using the new mutation operation as 
    

1 2 1 2p qw fw w f f
ij ij ij ij ij ij ijx d d d d d d= L � L            (9) 

  
where 
 

( ) 0
9 ( ) 1

r r
ijr

ij r r
ij

d m b
d

d m b
⎧ =⎪= ⎨ − =⎪⎩

       (10) 

 
where 1 2 1 2, , , , , 2,p qr w w w f f f= L L . 

 
3.3 RCGAQS algorithm procedure 

 
The RCGAQS algorithm procedure can be outlined in the 
following steps: 
Step 1 Initialize a random population of size μ=K(n+1), X. 
Step 2 Divide the population into K subpopulations with 
each subgroup consists of n+1 individuals. 

Step 2.1 Select the best individual of the population x.  
Step 2.2 Select n individuals which are most close to 

x in terms of their Euclid distances 
Step 2.3 Combine the individuals obtained from steps 

2.1 and 2.2 to form a subpopulation S;  
Step 2.4 Remove S from the original population. 
Step 2.5 Repeat Steps 2.1 – 2.4 for other 

subpopulations, until no individuals are left. 
Step 3 Each subpopulation evolves into a group of new 
individuals 

Step 3.1 Produce two new individuals using quasi-
simplex technique. 

Step 3.2 Implement elitist strategy, i.e., reserve the 
best one in the subpopulation to be a part of offspring 

Step 3.3 Produce new individuals by reproduction 
using linear ranking. The probability of the i-th individual, 

ix , in the targeting subgroup (sorted into an order of 
descending in fitness) calculated by following formula 
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( ) 11 2( 1)
1

i
i

rank xP
n n

η η −⎛ ⎞= − − ⋅⎜ ⎟+ ⎝ ⎠
       (11) 

   
where 1η > , which can be determined by the desired 
probability of the best individual  
Step 3.4 Crossover operation is processed as follows:  

Select ( 2)[ ]2
Cn P− pair of parents randomly, where [ ]�  

is an operator producing the maximum integer which is 
less than the operand; for every pair of parent selected,  
 

1 2 1 2( , ,..., ,..., ,..., )i i i i i i
m m nx x x x x x=            (12) 

 

1 2 1 2( , ,..., ,..., ,..., )j j j j j j
m m nx x x x x x=           (12′) 

   
where subscripts i and j denotes the i-th and the j-th 
individual in the population, respectively and the subscript 
m1 and m2 are two random numbers between 1 and n. The 
two new individuals will be 
    

   1 2 1 2( , ,..., ,..., ,..., )i i i j j i
new m m nx x x x x x=         (13) 

 
   1 2 1 2( , ,..., ,..., ,..., )j j j i i j

new m m nx x x x x x=         (13′) 
   

Step 3.5 Mutation operation. The remained 
individuals will participate the mutation operation. For 
each individual, a mask will be generated and a new 
individual will be produced by using (10). 
 

In summary, this algorithm assures the capability of 
local search by combining the traditional genetic 
operations (reproduction and crossover) with the quasi-
simplex techniques and the capability of global search by 
using high probability mutation operation.  
 
4. Experimental Verification 
 
4.1 Test Functions 
 
In order to test the effectiveness of the proposed new 
algorithm in terms of the global search capability and the 
convergence rate, six typical benchmark functions were 
chosen from the set of 23 benchmark functions listed in 
[18] and re-numbered as 1f to 6f . The definitions of these 

six functions are depicted in Table 3. The coefficients ia  

and ic  in the functions 5f  and 6f  with imax = 5 in 5f  

and imax = 10 in 6f are shown in Table 4.  
 

 
Table 4 coefficients of functions 5f and 6f  

ai=(ai1,ai2,ai3,ai4) 
i j=1 j=2 j=3 j=4 ci 

1 4 4 4 4 0.1 
2 1 1 1 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 
6 2 9 2 9 0.6 

Table 3: Definitions of test benchmark functions 

N
o Test function n Domain Minimum 

value fmin 

1 2
1 1

n
ii

f x
=

= ∑  30 [-100, 100]30 0.0 

2 ∑ ∏= =
+=

n

i

n

i ii xxf
1 12  

30 [-100, 100]30 0.0 

3 ex
n

x
n

f n

i i
n

i i ++−−−= ∑∑ ==
20)2cos1exp()12.0exp(20

11
2

3 π

 

30 [-32, 32]30 0.0 

4 1)cos(
4000

1
11

2
4 +−= ∏∑ ==

n

i
in

i i i
x

xf
 

30 [-600, 600]30 0.0 

5 ∑ =
−+−−−=

5

1
1

5 ]))([(
i i

T
ii caxaxf

 
4 [0,10]4 -10.0* 

6 ∑ =
−+−−−=

10

1
1

6 ]))([(
i i

T
ii caxaxf

 
4 [0,10]4 -10.0* 

Note: * given in [18], but we found they may not be the actual minimum values for the given functions. 
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7 5 5 3 3 0.3 
8 8 1 8 1 0.7 
9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 
Among the test functions, function 1f  and 2f  are 

typical unimodal functions, 3f  and 4f are multimodal 

functions with many local minima, and 5f  and 6f  are 
multimodal functions with only a few local minima. As 
claimed by Xin Yao in [18], these functions are 

challenging to every search algorithm. Figs.1-6 illustrate 
the plots of these functions with dimension n = 2. For the 
functions 3f  and 4f  as shown in Figs. 3(a) and 4(a), the 
enlarged plots are also shown in Figs. 3(b) and 4(b)  to 
depict the local minima. For the functions 5f  and 6f , as 
shown in Figs.5(a) and 6(a), the plots of two other 
functions - 5f  and - 6f  are also plotted in Figs. 5(b) and 

6(b) to show the local optimal points in 5f  and 6f  clearly. 

  
Fig.1 Benchmark function 1f                                                Fig.2 Benchmark function 2f  

 
(a) With the given domain range                                             (b) enlarged with smaller scales 

Fig.3 Benchmark function 

 
(a) With the given domain range                                (b) enlarged with smaller scales 
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Fig.4 Benchmark function 4f  

 
(a) 5f                                                                                                         (b) 5f−  

Fig. 5 Benchmark function 5f  

 
(a) 6f                                                                                                        (b) 6f−  

Fig.6 Benchmark function 6f  

4.2 Test Results 
 
The two algorithms use same parameters. The size of 
population is ( 1)K nμ = + . Table 3 tabulates the results 
obtained by running 10 times of the program. The 
experimental results show the proposed algorithm 
RCGAQS is more effective than the CGA cross over all 
the test benchmark functions in terms of both the mean 

function value and the standard derivation with the same 
inputs.   
 

Another finding is that the last two functions, which 
have a few local minima, have smaller function values 
than the ones given in [18]. The averaged minimal values 
for the functions 5f and 6f  of 10 runs are –10.13 and –
10.40 using RCGAQS, respectively. 

 
Table3：Comparison between RCGAQS and CGA on functions 1f – 6f  listed in Table 2 

RCGAQS CGA 
Function K n Number of 

Generation Mean Best Std Dev Mean Best Std Dev 

f1 10 10 3000 3.2030e-29 1.0128e-28 9.6979e+0 3.8623e-1 

f2 10 10 3000 3.2377e-6 6.8730e-6 1.0508e+1 6.8703e-1 
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f3 10 10 3000 3.9697e-1 6.5006e-1 3.6244e+0 1.9395e-3 

f4 15 10 3000 3.4927e-2 1.7985e-2 7.8300e-1 6.3444e-2 

f5 10 4 3000 -1.0131e+1 1.2506e-2 -7.7584e-3 1.9784e-4 

f6 10 4 3000 -1.0395e+1 5.4299e-3 -2.1031e-2 1.7364e-3 
Note:  

 All results have been averaged over 10 runs, where “Mean Best” indicates the mean best function values and “Std 
Dev” stands for the standard deviation. 

 

5. Conclusions and Discussion  
A new search algorithm RCGAQS algorithm for non-
linear function optimization has been proposed based on 
the classical genetic algorithm and quasi-simplex 
techniques with a new mutation operator. RCGAQS uses 
real-value for the representation of individuals 
(chromosomes) to eliminate the encoding/decoding phases 
and the difficulty in determining the maximum length of 
binary sequences. RCGAQS partitions each population 
into subpopulations in each iteration to increase the 
diversity of populations. Each subpopulation consists of 
n+1 individuals following the rule of nearest, i.e., amongst 
the individuals, one is the best individual locally and the 
others are closer to the best individual than other 
individuals out this subpopulation. The introduction of 
quasi-simplex techniques into genetic algorithm makes it 
possible to assign a higher probability for mutation to 
enhance the global exploration because the quasi-simplex 
can sufficiently make use of local information of the 
subpopulation to speed up local search velocity. RCGAQS 
makes a good balance between local exploitation and 
global exploration by allowing more individuals to mutate 
into new individuals scattered in the landscape globally 
and once a better individual is found, it will quickly search 
around the individual to find the local optimal using quasi-
simplex techniques on top of reproduction and crossover. 
Also it could take all related factors, such as simplicity, 
accuracy, computing load, convergence rate and global 
search capability, into account. The experimental results 
show that RCGAQS could find global optimal across all 
the benchmark functions selected to be representatives of 
singlemodel, multimodel with many optimal and 
multimodel with few optimal. More importantly, the 
standard derivations show that RCGAQS is independent 
of the initial population. Finally, RCGAQS found the 
smaller function values for the benchmark functions 5f  

and 6f  than the ones claimed in the literature [18]. 
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