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Summary 
Our aim is to find the best catalyst, the best combination of 
compounds, in order to optimize a chemical reaction. The 
chemists use mainly a heuristic algorithm, especially an 
evolutionary algorithm, to achieve the best combination. In this 
paper, we outline a variant of evolutionary optimization 
algorithm, says meta modeling. Our idea is to combine a 
statistical learning algorithm with the optimization process. The 
goal is a better use of the past experience, the labelled individuals, 
in the guidance of the search exploration of the optimal solution. 
The approach is especially useful in the combinatorial catalysis 
optimization because the fitness function is unknown and the 
labelled individual is obtained by real chemical reaction. This is 
highly costly and takes time. We show on a well-known chemists' 
benchmark that our process slightly the average performance of 
the standard evolutionary algorithms. But numerous problems 
remain opened. We try to inventory them in order to define our 
future work to improve the approach. 
Key words: Optimization, Data Mining, Combinatorial 
Catalysis 

1. Introduction 

Optimization algorithms receive great interest both in the 
academy and the industry. In particular, evolutionary 
algorithms (EA) have been demonstrated well fitted for 
solving discrete, discontinuous or noisy problems. 
Consequently, these types of methods are often used in 
real-world applications. Evolutionary strategies (ES) and 
genetic algorithms (GA) are becoming more and more 
used in combinatorial catalysis. For example, in 2000, 
efficient catalysts for oxidative dehydrogenation of 
propane were found with this methodology [1]. Libraries 
of catalysts have been synthesized and tested iteratively, 
according to the proposals made by an ES. After some 
generations, the targeted compound presenting the best 
performance, the optimum, was found.  
But standard EAs algorithms are not so well suited to 
catalysis. Indeed, in the general situation of the use of EAs, 
a large number of evaluations i.e. labelling each individual, 
are often needed to find the best individual. It is not scarce 
to let dozens of individuals evolve through hundreds of 
generations. The label of an individual is the output value 

of the mathematical function to optimize. In the catalyst 
context, the problem to solve has no mathematical 
expression. In terms of optimization: the fitness function is 
not a priori known. Each evaluation is in fact an 
experiment where the chemical reaction is really 
synthetized and the output measured. Consequently, even 
if a few real experiments show promising results, they 
remain scarce because of their cost [2]. 
In order to improve the optimization process, especially to 
quicken the achievement of the best solutions, the main 
idea of this paper is the better use of the past experiences, 
the labelled individuals, using data mining methods. Data 
mining is the practice of automatically extracting 
important patterns from data using machine learning or 
statistical algorithms. Although it is usually associated 
with commercial sales and purchases [3], numerous 
applications exist in the industry [4], and solutions using 
data mining have been proposed in combinatorial catalysis 
[5]. The idea is to use accumulated labelled data about 
known catalysts for a given reaction for building a 
mathematical model. This model can be used for 
predicting the performances of new, unknown catalysts. 
But for now, the state of knowledge does not really enable 
to build a reliable model for designing formulations with 
targeted performance. This is because of the lack of 
reliable data: no open wide database exists and literature 
often presents small datasets that poorly maps the catalysts 
search space. Moreover, a catalyst is not universal: each 
chemical reaction requires very different compounds. 
In this paper, we present a system which enable to save 
experiments by combining advantages of data mining and 
evolutionary optimization algorithm: a meta modeling 
algorithm. The basic idea was already reported in other 
studies [6]. The starting point consists in a real catalyst 
library which is synthesized and then tested. The 
corresponding information is stored in a database. We 
build a statistical model from this database using a 
knowledge discovery algorithm in order to label new 
virtual individuals proposed by genetic operators. The best 
individuals according to the predicted label from the 
statistical model are really synthetized i.e. we make the 
chemical reaction; we obtain the true label and the 
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resulting information are added to the database. At the next 
iteration, the knowledge algorithm will fine up the 
prediction. This process is repeated until the checking of a 
given criterion. The improvement of statistical model after 
each generation shall enable to direct the design of the 
libraries by a virtual pre-screening. 
In the next section, we present the concept of meta 
modeling and we discuss its fitting with regard to catalysis. 
The aim of this paper is proving the validity of the concept 
before real experimentation. Consequently, for this 
computer experiment, we used a catalysts virtual response 
surface that we depict in the third section. This 
catalysis-suggested function to be optimized comes from 
literature. For demonstrating the efficiency of meta 
modeling, we compare its performance with standard 
evolutionary optimization algorithms. We will conclude by 
discussing why the meta modeling approach is a good 
choice for catalysts design. 

2. Meta modeling in the combinatorial 
catalysis optimization context 

2.1 Meta Modeling 

Suggested by genetic algorithms [7], different meta 
modeling (MM) techniques exist: fitness inheritance [8], 
knowledge-relative genetic operators [9] or model 
management [10]. We retain this last option whose basic 
principles are illustrated on figure 1. This approach makes 
more sense because statistical models are a well-known 
methodology in catalysis. In the following, when we will 
refer to “meta modeling algorithm”, we assume the model 
management approach. 
The steps of the MM algorithm are: 
1. Initialization. Generate a random population of virtual 

catalysts (M x n individuals). 
2. Evaluation. Estimate the performance of the catalysts 

through a statistical model, based on previously acquired 
real data. In the first iteration, because no dataset is 
available, we assign a random label. 
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3. Catalysts choice. Choose the most promising catalysts 
according to the statistical labelling. The population size 
is reduced to n individuals. 

4. Evolution control. Synthesize and test promising 
catalysts pointed up by the model computation. This is 
the bottleneck of process. Each real chemical reaction 
experiment is very costly and takes a lot of time. 

5. Update the statistical model. New examples are 
available in the database; we can use them in order to 
update the statistical model that we use to assign a label 
to individuals in the step 2. 

6. Criterion. If verified then the evolution stops. The main 
criterion is the number of iterations because the budget 
(time and money) is the real constraint of our 
optimization process.  

7. Genetic operators. Produce a new population of virtual 
catalysts. The population size is increased to M × n 
individuals. 
a. Selection: pick an amount of catalysts in the 
population 
b. Crossover: mix the characteristics of the catalysts 
c. Mutation: include random changes in formulations 

8. Back to step 2 
 
Increasing the size of the population improves the 
efficiency of the EA algorithm. It is a well-known 
phenomenon. But in the catalyst optimization process, we 
cannot make use of this property because the real labelling 
of the individuals, the synthesis step (Step 4), is very 
costly. Our idea is to substitute to the real labelling, a 
statistical labelling, in order to better use the increasing 
diversity of the population in the step 7 (Genetic operators). 
The learning statistical model step, multiplying the 

individuals and applying the statistical model are costless 
operations, especially compared with the synthesis step. 
Practically, a population multiplier M is applied at the 
selection step. If n catalysts compose the population, then 
(M × n) virtual individuals will be generated through the 
genetic operators. Meta modeling allows the choice of the 
individuals that will be synthesized and tested. The 

increase of population is motivated by the human choice: 
more opportunities are offered to the experimenter. 
Nevertheless, this is a delicate operation and should be 
done very carefully. The diversity proposed by the 
algorithm should be respected, and should not be guided 
by subjective matters such as the catalyst synthesis 
easiness. Once chosen, the catalysts for evolution control 
need weeks of human labor. 

2.2 Meta modeling and standard genetic algorithm 

We want to compare our MM approach to standard 
evolutionary algorithms. We especially study two 
algorithms: evolutionary strategy and genetic algorithm. 
The particularity of the GA is the binary encoding of the 
values (catalyst composition) during the genetic operator 
phase (step 7). 
The main difference between the meta modeling approach 
and these standard EA are the increasing of the population 
(Step 7), the virtual labelling (step 2) and the selection 
(Step 3). For the standard EA, M=1 i.e. the size of the 
population does not vary during the optimization process. 
There is a lack of diversity of the population if n is small. 
In an optimization problem with a mathematical fitness 
function, we can increase n like we want. In a catalyst 
problem, n is often a constraint specified by the 
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characteristics of the robots used for the chemical reaction. 
Numerous of them can handle simultaneously a few 
number of reactions for an experiment. An experiment 
runs for a long time. Using the multiplier M (M > 1) 
improves the diversity of the population. But all the 
individuals cannot be synthesized. The selection process 
based on the predicted label from the statistical model 
allows leading the process on the best solutions, without 
increasing in any manner the cost of the experiments. 

2.3 Data mining algorithms 

The statistical model used for computing the predicted 
label of individuals plays a crucial role in the process. In 
the ideal, it should reproduce the fitness function to be 
optimized. But it is seldom possible. The question that 
should be raised then is: “which characteristic of the 
classifiers must be pointed up in this context?” 
A rough model allows much freedom for the search space. 
Consequently, it avoids a premature convergence towards 
a local optimum. But on the other hand the guidance is 
weak, the convergence to the global optimum is slow. At 
the opposite, an accurate model will guide steadily the 
process toward an optimum, but this optimum is often in 
relation to the representation bias of the classifier that is 
not the fitness function to optimize. The ideal combination 
would be a model formulation capable of progress during 
the evolution, it must above all indicate us the good 
directions to be explored for optimization. The important 
issue in evolutionary computation is the 
browsing/exploitation ratio [11].  
Among various data mining algorithms [4], we retained 
the classical linear regression. It consists in a mathematical 
function built according to known data; any new 
individual is estimated using this function.  We chose this 
method because it is particularly simple and still efficient. 
Not reported here, other learning algorithms such as 
nearest neighbor or PLS (Partial Least Square) regression 
are also used but did not improve significantly the results. 

3. A benchmark catalysis for the experiments 

3.1 A synthetic chemical reaction 

At this step of the advancement of our researches, it is not 
possible to evaluate the efficiency of our approach on a 
real chemical reaction. To show the efficiency of the meta 
modeling approach, we examine the optimization of 
virtual catalysts according to a theoretical response surface. 
Considering the evolution control step, this means that 
instead of synthesizing and testing the catalyst, a 
theoretical fitness value will be attributed. It is calculated 
according to a mathematical function, which reflects the 
behavior of the catalyst in real conditions.  
We name Φ  the function suggested by the oxidative 

dehydrogenation of ethane and propane [16]. Possible 
catalysts can be composed of eight elements: V, Mg, B, 
Mo, La, Mn, Fe and Ga. Moreover, an additional value is 
considered: the preparation method, either co precipitation 
or impregnation. Algebraically, we write a catalyst Χ as in 
equation 1 
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The performance of a catalyst, the response value, is 
defined in equation 2  
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The optimum is a compound containing 32% of Vanadium, 
32% of Magnesium and 36% of Molybdenum, the method 
being co precipitation: maxΦ  (0.32, 0.32, 0, 0.36, 0, 0, 
0, 0) = 7.55. Moreover, Φ  presents a local optimum 

localΦ  (0.66, 0.33, 0, 0, 0, 0, 0, 1) = 7.1. 
For genetic algorithm and meta modeling approach, we 
use a binary encoding during the genetic operators phase 
(Step 7). Seventeen genes represent the composition of the 
catalyst. Two genes represent each element: a Boolean for 
its presence, a real for its percentage. The seventeenth 
gene is also a Boolean; it represents the preparation 
method, 1 for co-precipitation, 0 for impregnation. An 
example of a chromosome is presented on figure 2. 

3.2 Parameters of the experiments and evaluation 
criteria 

To simulate the real conditions of an experimentation, we 
limited the total number of evaluations to 400 by 
organizing them in the following way: at each iteration, we 
consider that the robots can handle simultaneously 40 
chemical reactions, the reactions that a robot can handle 
simultaneously is called a library; the number of iterations 
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is 10. At the end of the process, we pick the best proposal 
of each algorithm.  
In order to obtain more reliable results, we repeat 50 times 
the whole process and we propose two evaluation criteria. 
The first one measures the average performance of the 
optimization algorithm over the 50 experiments. This 
indicates the performance of the approach, the expected 
value of the optimization when we use it. The second one 
measures the number of times where the approach reaches 
the optimal value (response value is equal to 7.5). This 
indicates the reliability of the approach, the capacity to 
find the real global optimum. These criteria are 
complementary. The good optimization approach must 
always reach the global optimum (reliability criterion), but 
we want that when it does not find the global optimum, it 
reaches nevertheless a good solution (performance 
criterion). 

4. Results of experiments 

4.1 Results and comments 

Comparative results with other evolutionary algorithms are 
depicted in the table 1. 
Table 1 Results over the 50 experiments. Comparison of meta modeling 
with other EA algorithms 

Opt. Algorithm Performance Reliability 
Meta modeling 7.275 10 
Evolutionary Strategy 7.05 12 
Genetic algorithm 6.675 8 

 
The multiplier M is set to 100 in our experiments. The 
meta modeling obtains good results. The average 
performance over the 50 experiments is 7.275 while the 
global optimum is 7.5. We can be confident with the 
proposal of this approach during its use. We note that on 
10 executions among 50, we reach the global optimum. 
These are an encouraging results for the utilization of this 
approach in a real chemical reaction. The approach often 
suggests solutions near the global optimum. 
Compared to other EA optimization methods, MM seems 
slightly better. In fact, the real confrontation can be made 
between the MM and the GA that we can consider like a 
MM approach with a multiplier (M = 1) and without 
statistical prediction. The difference between ES and GA 
seems to show that there are some problems during the 
binary encoding. That could make some interference into 
our approach that is also based on a binary encoding of the 
data. 
Numerous open discussions can be started from these 
results. We did not really evaluate the influence of the 
multiplier M. We can set this parameter as large as 
possible, but there is probably a value from which it is not 
necessary to increase it any more. Another open problem is 

the role of the learning algorithm. We use a simple linear 
regression in our experiments. It seems that it is not 
necessary to use very sophisticated classifiers in the meta 
modeling framework. But we suspect that the learning 
characteristics must be examined in relation to chemical 
reaction characteristics. 
Precisely, at this stage of our advance, we use only 
simulated chemical reactions in our experiments. Our 
benchmark is well known in the chemists’ community. It is 
a smooth landscape composed of only one global optimum 
that is quite easy to find using standard heuristic 
optimization algorithm, even if the surface is 
discontinuous. The main difficulty is the limited number of 
evaluations. The acceleration of the convergence is a 
crucial property of the optimization algorithm in this 
context. We cannot say on the other hand if an excessive 
acceleration will not be penalizing when surface to be 
explored is very wiggly with many local optima. 

4.2 Other optimization algorithms 

Another question is the behavior of other heuristic 
optimization such as simulated annealing or taboo 
approach. But with regard to the real high throughput 
experiment (HTE) conditions, we can discard these 
methods because they are difficult to use. They require 
synthesizing and testing the catalysts one by one. This 
does not fit the real experiments scheme. 
We nevertheless wanted to evaluate them in our context by 
fixing the maximum number of evaluation at 400 to put 
them on the same baseline with the others. It appears that 
the simulated annealing approach presents a performance 
of 6.825 and a reliability of 12. It is comparable to the 
evolutionary approaches. Surprisingly, the taboo algorithm 
shows very bad results. The performance is 3.6 and the 
reliability is 7. We think that this is mainly due to the 
benchmark characteristics. The surface is discontinuous 
and the taboo search does not allow wide individual moves. 
So when a solution is located in a poor zone of the search 
space, the possibilities for reaching the best zones are 
reduced. 

5. Conclusion 

We outline in this paper a promising optimization method, 
says meta modeling, based on evolutionary approach. It is 
well suited in the combinatorial catalysis optimization 
because the fitness function is not known. The labelling of 
the individuals consists on a real chemical reaction that is 
very costly, in money and in time. Our main idea is a 
better use of the past experience, the individuals really 
labelled, with a statistical learning algorithm. This allows 
us to multiply the individuals during the genetic operators, 
and select the best ones according to the predicted label 
from the statistical model before the real chemical reaction. 
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It seems that when the number of iterations is very small, 
our approach allows to better guidance of the optimization 
process. 
Our first results are mainly experimental. In a future work, 
we want to deeply examine the influence of the parameters 
of the approach: the statistical learning algorithm, the 
value M of the multiplier, the binary encoding technique. 
Furthermore, these parameters must be studied according 
to the characteristics of the chemical reaction and the 
catalysis components. We hope that when the fitness 
function is very hard to optimize, and the representation 
space is large, a better guidance will be more efficient in 
the context of very small number of iterations. 
To conclude this article on an optimistic note, we are 
currently evaluating this methodology on a real chemical 
reaction. 
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